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Abstract: News reports in media contain news about society’s social and political conditions. With
the help of publicly available digital datasets of events, it is possible to study a complex network
of mass violations, i.e., Mass Killings. Multiple approaches have been applied to bring essential
insights into the events and involved actors. Power law distribution behavior finds in the tail of
actor mention, co-actor mention, and actor degree tells us about the dominant behavior of influential
actors that grows their network with time. The United States, France, Israel, and a few other
countries have been identified as major players in the propagation of Mass Killing throughout
the past 20 years. It is demonstrated that targeting the removal of influential actors may stop the
spreading of such conflicting events and help policymakers and organizations. This paper aims to
identify and formulate the conflicts with the actor’s perspective at a global level for a period of time.
This process is a generalization to be applied to any level of news, i.e., it is not restricted to only the
global level.

Keywords: complex networks; Mass Killing; social network analysis

1. Introduction

Complex network analysis has caught enough attention of researchers in multiple
fields due to its power to uncover complex mechanisms, structures, and dynamics [1–3],
spanning from social sciences to biological sciences. Network analysis is the investigation of
some measurements that depict the structure of a system or catch parts of people’s position
in the system [4,5]. Studying the perspective that network analysis shows is necessary to
understand the interlinked world [6]. Today, with the increase in activity, social dynamics
are being studied quantitatively and qualitatively [2,4,7,8]. This multidisciplinary research
area has been a traditional ground truth for social scientists, but now, there is also the
extensive participation of physicists, computer scientists, mathematicians, and others.
Theories of social sciences using tools for statistical physics, along with multiple science
disciplines such as mathematics, statistics, applied physics, and computer science, are
known as computational social sciences. As the name suggests, it uses computational
approaches to deal with social affairs. The study of social behavior is fascinating as it shows
the behavior of interacting agents/actors.

Social behavior of a society can be both constructive (positive, e.g., building society
or shaping culture) or destructive (negative, e.g., conflicts, wars, or battles) at several
temporal and spatial scales. Negative interactions occur due to social, economic, and
political pre-conditions.

This paper works on the Mass Killing dataset. The genocide scholar Ervin Staub uses
the term “Mass Killing” to describe the Killing of a group of people without the intention
of eliminating the whole group or its representatives [9]. In the reference section of the
encyclopedia (1999), Israel Charny defines generic genocide as “the mass executing of
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generous quantities of people, when not throughout military activity against the military
powers of a declared foe, under states of the basic lack of protection and weakness of
the people in question“ [10]. Valentino uses the term ”Mass Killing” and appropriately
characterizes it as “the deliberate murdering of countless noncombatants”. The word
“noncombatants” recognizes mass slaughtering from fight passing in war, which happens
as soldiers battle against one another. The “enormous number” he chooses as the edge to
mass-murdering seems to be “in any event fifty thousand purposeful passing’s through the
span of five or fewer years, which average in any event 10,000 executed every year” [11].
The availability of many digital media news datasets has made it possible to analyze
networks and bring critical insight into the individuals/actors/organizations/nations
involved.

Mass violation and Mass Killing is a significant issue affecting people worldwide
(Burma, Syria, Ukraine, Yemen, and in different forms in developed countries). It is get-
ting worse day by day. Understanding the structural composition of events is essential
to predicting such events in advance. Furthermore, understanding the contributing ac-
tors along with the interactions at the micro and macro level may allow policy makers,
strategists, and decision makers to deal with evolving events in their early days. Several
attempts are made to understand and model such events as mass shootings [12,13] and
cyber violence [14] using agent-based modeling techniques. In [15], the authors conducted a
comparative analysis of foiled and completed mass shootings in the United States between
2000 and 2019.

We do not have any tool, model, or pathway that we can use to analyze such news
occurrences and draw meaningful conclusions structurally. To understand the interactions
of actors, the development of mass violence events, and their evolutionary dynamics, it
is vital to have considerably reliable data in temporal settings. Earlier, the absence of
such data restricted social scientists from understanding and modeling such events with
structural representations. However, with the availability of data on social media and
the abundance of news data, scientists can now understand the dynamics of such events.
Indeed, studies understanding the structural representations of such events are receiving
attention from the scientific community. However, to the best of our knowledge, this is
one of the early attempts to employ news data to represent events of mass violence in
a structure, particularly with the help of complex network tools. Several recent studies
reported data-driven models and frameworks to study mass violence, including [16,17].
Public response data can also be employed to model the violence at the mass level [18].
However, comparatively, it is challenging to consider social media and news media as a
structured sources of information that can be credible and robust for such studies. With
the development of the Global Database of Events, Language and Tone (GDELT) service,
the robustness and availability of data are no longer a big challenge. To conduct such
a study, obtaining credible data over a long period was a significant challenge, as many
sources do not supply such accurate and dependable data. Apart from GDELT, a few
other sources https://acleddata.com/#/dashboard, accessed on 24 April 2021, and https:
//harvard.edu/dataverse/icews, accessed on 24 April 2021 provide similar events-based
news datasets. However, the GDELT update period for its the data set is much shorter than
the others, i.e., every 15 min, allowing for a more global view.

As a result, GDELT offers an excellent opportunity to explore such events based on
actual news, allowing us to look into structural patterns based on three measures: actors,
co-actor pairs, and actor degree, all of which occur in various parts of the world. To the
best of our knowledge, no theory has been created on GDLET data to examine Mass Killing
and discover its structural representation.

In the present study, we address a few compelling questions, including:

1. Is there any pattern to all the Mass Killing incidents that occur worldwide revealed
through the network’s structural organization?

2. If structural patterns exist, is there some resolution based on those structural attitudes?
3. If the structure is recurrent, it is recurrent in news stories of Mass Killings?

https://acleddata.com/#/dashboard
https://harvard.edu/dataverse/icews
https://harvard.edu/dataverse/icews
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4. Is there any structural coherence or pattern between occurrences?

Indeed, giving a positive answer to those questions indicates that there is anything in
the resolution we can reuse in other events. Consequently, such structural representations
can help us perform necessary actions in the early days of events to prevent massive
destruction to humanity.

This paper aims to identify and formulate a process that can help investigate time-
variant conflicting data, exploring it through actors involved in such events. This process
has been applied to the Global Database of Events, Languages, and Tone (GDELT), a global
news collection. However, it is not limited to this case only. Indeed, one can use it with
news having power-law properties at any level in their data.

2. Related Work

This work applies different approaches for investigating actor, co-actor pair, and actor
connectivity with others. Therefore, the literature review consists of work related to mass
violence and the steps involved in this work, applied by other authors to solve their issues.

In previous decades, the investigation of complex systems has been a fast-growing
research area. In 1950, two scientists discovered complex network topology by random
graph theory. As complex networks have many nodes with many interconnections, they
cannot be understood easily by visual inspection. Complex networks display complex
behavior. Therefore, it is essential to inspect their microscopic details to analyze them
in-depth. Various terminologies related to complex networks are described [19]. Network
analysis has been used in many real-world phenomena on various networks, e.g., on US
migration networks data [7], conflicting data [4,5], human life/interactions [20,21], railway
express network [22], ecological networks [23,24], social media network data [25,26], and
biological network data [27–29]. Analyzing a network through multiple approaches such
as quantitative and qualitative ones can provide a much more detailed explanation, deeper
insight, and better understanding of the development of the network, network dynamics,
and growth pattern of nodes. A step-by-step guide to designing a mixed-method approach
has been explained. The mixed-method approach (quantitative and qualitative) has become
popular as it provides a deeper understanding of the processes [30]. The mixed-method
approach to social network analysis can provide an important understanding of analyt-
ical and network dynamics [8]. Mass violence is experimentally infrequent. Examining
mass violence presents various methodological challenges. The complex idea of mass
violence occasions, which may have sprouted years earlier, makes investigators utilize
regular examination strategies risky. Complexity sciences and the interdisciplinary field of
computational social science offer new logical ideal models, implementations, and tools
appropriate to the investigation of complicated and dynamic occurrences such as mass
violence [31].

Network analysis has been reported on data related to mass violence, e.g., mass viola-
tion, Mass Killing, murdering. Three types of computational models have been presented
that will probably be specifically related to mass violence and incentive to the danger
appraisal and managing community [31]. Murder by structure has been analyzed in which
neighborhood social establishments and on-screen characters are reliant; that is, the social
systems of people and gatherings (regardless of whether prosocial or degenerate) reach
beyond neighborhood limits and encourage the spatial contagion of murder. Specifically,
some freak and criminal practices are particularly infectious, such as medicate management,
betting rings, and group practices [32].

Tasks of social network analysis include [33] the identification of the most influen-
tial, important, dominant, effective node or nodes [34,35], visualization of the interaction
between nodes [36], group analysis [37,38], network resilience [39,40], information spread-
ing [41,42], disease immunization [43,44], conflicts [4,5], measuring and visualizing the
growth of nodes, i.e., calculating network growth [45]. Any network data representing
the structural relationship of entities is called a graph. The graph is the interaction of
components known as nodes, and the component that links nodes with each other is called
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an edge link or the actor pair link [33]. There are different graph types: directed, weighted,
unweighted, undirected graphs, multigraphs, etc. The dataset that is the topic of this
study is a multigraph. Multigraphs are graphs or networks where multiple edges are
allowed between nodes, and self-loop is also allowed [46]. Multigraphs are also called mul-
tivariate networks. In a multivariate network, there are various relations where everyone
can be viewed as a binary variable factor in the group of actors comprising a univariate
network [47,48].

Power laws are well-known all through nature, in areas such as astronomy, etymology,
and neuroscience [20,27,29,49]. The power-law distribution is hypothetically fascinating
due to the heavy tail. Whenever a researcher wants to study data distribution to know
whether power law is an appropriate distribution, then there are a few questions one
needs to answer, which are very well highlighted in [50]. Investigations of empirical
distribution that keep a power law generally estimate the scaling parameter α. There are a
few different ways of assessing it, but of course, not all will give accurate results and they
are all biased. A literature review shows that the Maximum Likelihood estimate (MLE) is
the best identified method. Indeed, it is reliable and unbiased and has been used by authors
frequently [34,50–53]. Exponents of power-law are critical as they provide inference about
the underlying phenomena, so this should be estimated very carefully.

The scaling boundary ordinarily lies in the range 2 < α < 3, even though there are
infrequent exceptional cases. Fitting a power-law conveyance to exact information, just as
estimating the power-law exponents of that fit, is non-trivial. The most significant primary
attributes in investigating large scale-free complex networks in empirical distribution
are degree distributions [49]. One often favors Complementary Cumulative Distribution
Functions (CCDF) for visualizing a heavy tail distribution.

Complex network analysis for the growth of the citation of scientific papers has been
studied. In particular, building up a stochastic model of reference elements is dependent on
copying the redirection-triadic closure mechanism. In a corresponding, more lucid way, the
model looks both for measurements of references of scientific papers and for their elements’
dynamics [2].

The identification of influencers is a hot topic in social network analysis. Many
centrality measures have been proposed to address this problem [54,55]. In [34], the authors
propose a method of local information dimensionality (LID) to identify the centrality of
actors. It relies on the local structural properties around the node. The locality scale is
proportional to the maximum shortest distance from the node. The Shannon entropy
measures the information contained in boxes with increasing size. The higher the local
dimensionally, the higher the importance of a node.

The robustness of a network is its ability to maintain its function even after an attack or
error [56]. In networks with exponential distribution, attacks and errors break the network
into several small clusters. Scale-free networks with an inhomogeneous degree distribution,
such as World Wide Web (W.W.W), and social networks, show a surprising degree of
robustness to error. Even with high failure rates, the node’s communication ability can
exist [39]. However, the robustness of networks lies in their high degree nodes. If such
nodes are the center of the attack, then the network breaks, hence making the network
vulnerable [4,5,39]. Attack and error strategies have been investigated in multilayer net-
works [40]. The authors in [56] report a comprehensive analysis of the tolerance to attack
and error on seven different datasets. In [57], the authors investigate the robustness of
multigraph scale-free networks to targeted attacks. A sequential reverse list of nodes is
maintained based on degree. One sorts the nodes in degree-descending order. They also
use the betweenness centrality, which counts the fraction of shortest paths in the network
that goes through the node [39,57].

3. Proposed Methodology

Figure 1 presents the workflow diagram of the proposed analysis.
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Figure 1. Flow of the proposed work.

3.1. Data Description

GDELT [58] is a digital database containing news articles from around the world
in several different languages. It is reachable through Google Cloud. The dataset of
GDELT updates every 15 min. GDELT has four main classes, known as Quad class, namely
1 = Verbal Cooperation, 2 = Material Cooperation, 3 = Verbal Conflict, and 4 = Material
Conflict. For example, if the Quad class is 4, both parties were involved in a material-type
conflict. ‘Event Root Code’ is the root level category/class, and Event Code is the CAMEO
(Conflict and Mediation Event Observations) code that falls under ‘Event Root Code’.

This work uses the ‘Mass Killing’ dataset of GDLET. It comes under the category
‘Material Conflicts’. ‘Event Root Code’ for ‘Mass Killing’ is (‘20’, Use Unconventional Mass
Violence), and Event code is (202, ‘Engage in Mass Killing’). Genocide scholars define Mass
Killing as the Killing of group members without the intention to eliminate the whole group.
It also applies to Killing large numbers of people without clear group membership. In the
GDELT source, “Mass Killing” refers to the Killing of multiple people without the intent
of genocide. According to the description published by the GDELT source, it is primarily
politically motivated. “Kurdish militia left two troops dead and 31 injured” is a typical
example of such an event reported in GDELT. We retrieved data from the GDELT repository
using the event code representing the single phrase “Mass Killing”. However, GDELT
determines what “Mass Killing” means because it was a term retrieved in relevance to Mass
Killing. GDELT news protagonists can be countries, international or regional militarized
teams, or international actors. We filtered the data so that a source cannot be an NGO,
group, or a non-state local contributor.

Each news event mention two actors. Actors are the interacting entities in the news. It
reads as “Actor1 acted on Actor2”. Each news article is associated with several additional
fields related to date, name, country, geography, code for the country, geography, Goldstein
score showing the intensity of Conflict, quad class, root event code, and event code. Each
event has a global event id.

The total number of events for Mass Killing (MK) equals 127,089. As we are interested
in analyzing networks based on actors involved in MK, we extract the following attributes
for each event: Global Event Id, SQL DATE, Actors code, and actors name. As actors with
similar ‘actor codes’ are found in different locations to get a unique identifier for actors,
we combine ‘ActorCode’ with ‘ActorGeo_ADM1Code’ using the separator ‘_’. After that,
leading and trailing spaces that do not produce good results are removed. After the filtering
process, the size of the dataset is reduced to 112,781 events.

The GDELT dataset contains multiple types of information, including the collection
of news on the Mass Killings in the world. News has been collected around the world in
the last 20 years. Each record in the news involves two actors that are contributing to the
particular type of event. Every event/row has a link to where we may acquire the most up-
to-date information. It also informs us of the date on which the event occurred. However, it
does not provide information on how many people are killed in each occurrence or on the
financial damages. Moreover, the Killing over religious grounds is also underrepresented
in the GDELT database. However, utilizing the knowledge at hand can accomplish a great
deal since we have identified people who are heavily involved in the spread of such events.
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3.2. Network Construction

In this paper, a multigraph is considered to be the network structure. It is a graph with
parallel edges and self-loops. A multigraph also called multiple or multivariate graphs,
comprises many actors and a collection of relations that determine how actor pairs are
linked [3,4]. We adopt the same network construction described in the papers [5,6]. It is
illustrated in Figure 2 and the data is given in Table 1.

• Any two actors involved in an event are linked with a unit weight of 1. The actors are
called to be co-actors.

• For example, suppose an actor, let us presume A1, is involved in multiple events
during a specified time duration. The node size is proportional to its number of
events.

GDELT is a digital news dataset. There are news stories about various events happen-
ing worldwide on every specific date. Every record contains Actor1 and Actor2 and many
more attributes related to the actors. Actors are the nodes that have a link with each other
because they are quoted in the same record. Since it allows a multigraph network creation,
one can find the exact relation between two nodes at various time stamps. The edge’s
weight (thickness) depends on how frequently that link appeared in the dataset. Similarly,
the edge thickness is proportional to the number of times an actor pair is involved in the
events. The link between the nodes is called an actor pair link.

Table 1. Sample data for the network construction (illustrated in Figure 2).

Events Node1 Node2

E1 A1 A2
E2 A2 A3
E3 A4 A5
E4 A1 A2
E5 A2 A4
E6 A6 A7
E7 A1 A2
E8 A1 A2
E9 A1 A2

E10 A1 A2
E11 A4 A2
E12 A2 A6

A1 

A2 

A3 

A5 

A6 

A7 

A4 

Figure 2. Sample network visualization (data from Table 1). It is the most straightforward visualiza-
tion to understand how real complex network is built. The size of a node increases as the number
of times it appears in news events increases. The weight is the number of mentions/occurrences of
an actor pair in the news. The more often a specific edge is involved in events, the more prominent
it becomes.



Entropy 2022, 24, 1017 7 of 17

4. Results and Discussion
4.1. Quantitative Analysis of Network

The power-law behavior is typical in many situations. One can use it to depict a
phenomenon where a probability of a small number of events is expected, while the
likelihood of more significant events is uncommon. Unfortunately, understanding the
power law is not as easy because of the fluctuation in the tail of the distribution. The
power law is in the form: p(x) = K Xα, where “α” is the scaling parameter [7–9]. It can
be represented by the cumulative distribution function (CDF), the probability density
function (PDF), or the complementary cumulative distribution function (CCDF). However,
usually, one prefers CCDFs for envisioning a power-law heavy tail behavior [7–9]. If a
distribution is plotted with logarithmic axes and shows a straight line, it demonstrates
power-law distribution.

The investigation of the GDELT news is at the day level. Indeed, we analyze the
number of news events reported every single day.

The number of events that occurs every single day is a random variable. The com-
plementary cumulative probability distribution function (CCDF) for the number of events
performed every day is shown in Figure 3. A power law with exponent 2.82 ± 0.025 is a
good fit for these data. This paper also investigates the actors involved in MK. One can
observe that certain actors are frequently engaged in such activities making their network
bigger and bigger with respect to time, and some actors do not grow their network. One
can inspect the network throughout other quantities such as interaction with actors, i.e.,
actor mention, actor pair (co-actor mention), and actor connected to other unique actors.
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(b) CCDF plot of no. of events reported on a particular day 

MK

Figure 3. Visualization of no. of events every single day. (a) Time series of no. of events reported on a
single day, for ‘Mass Killing’ dataset, and (b) shows CCDF Q(n) that n or more events happened on a
particular day. Data seems to fit power-law decay with exponents 2.82 ± 0.025.

Figure 4 shows the CCDFs plots visualization of actor mention, actor-pair and actor
degree for aggregated.
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Figure 4. The figure shows the complementary cumulative distribution function (CCDF) for aggre-
gated years for the following parameters. (a) Plot of CCDF for actor Mention Qa(m) aggregate that
an actor is mentioned m or more times follows a power-law distribution with exponents 1.67 ± 0.006.
(b) Plot CCDF for actor pair mention aggregate Qab(w) indicates that an actor pair is mentioned w
or more times which follows a power-law distribution with exponents 1.48 ± 0.003. (c) CCDF for
actor degree aggregate Qa(k) indicates that an actor is co-mentioned with k or more actors following
a power-law distribution with exponents 1.77 ± 0.007.

We analyze the network from three perspectives.

1. The actor mention: It is the number of times an actor is involved with other actors in
inciting an event. It is denoted by m. Its complementary cumulative density function
(CCDF) indicated by Qa(m) fits well a power law with exponents 1.67 ± 0.006,

2. The actor-pair mention: It measures the number of times an actor-pair is involved
in an event. It is denoted by w. Its complementary cumulative distribution function
(CCDF), represented by Qab(w), fits well a power law with exponents of 1.48 ± 0.003.

3. The number of unique actors’ k connected to a node: The complementary cumulative
distribution function for actor degree is denoted by Qa(k). The probability of actor
degree fits well a power-law with exponents 1.77 ± 0.007.

CCDFs plot for actor mention, actor pair mention, and actor degree are also visualized
for each year in Figure 5. Plots are noisy because there is less data for each year than the
aggregated data plots (2001–2020). However, it still seems that the power law is a good fit.
The exponents’ values for the three quantities are reported in Table 2.
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Table 2. Exponents calculations for actor mention, actor pair mention and actor degree for individual
and aggregated years (2001–7 July 2020).

Year Actor Pair Mention Actor Mention Actor Degree

2001 1.29 ± 0.01 1.71 ± 0.02 1.56 ± 0.02
2002 1.27 ± 0.01 1.73 ± 0.02 1.52 ± 0.02
2003 1.25 ± 0.01 1.62 ± 0.02 1.53± 0.02
2004 1.24 ± 0.02 1.68 ± 0.02 1.53 ± 0.02
2005 1.29 ± 0.01 1.85 ± 0.03 1.61 ± 0.02
2006 1.32 ± 0.01 1.77 ± 0.02 1.57 ± 0.02
2007 1.49 ± 0.02 1.91 ± 0.03 1.45 ± 0.01
2008 1.34 ± 0.01 1.88 ± 0.02 1.62 ± 0.02
2009 1.31 ± 0.01 1.91 ± 0.02 1.64 ± 0.01
2010 1.38 ± 0.01 1.79 ± 0.02 1.57 ± 0.01
2011 1.35 ± 0.01 1.73 ± 0.01 1.6 ± 0.01
2012 1.43 ± 0.01 1.89 ± 0.01 1.71 ± 0.01
2013 1.45 ± 0.01 1.87 ± 0.01 1.61 ± 0.01
2014 1.47 ± 0.01 1.92 ± 0.02 1.65 ± 0.01
2015 1.5 ± 0.1 1.96 ± 0.01 1.66 ± 0.01
2016 1.48 ± 0.01 1.95 ± 0.01 1.65 ± 0.01
2017 1.44 ± 0.01 1.91 ± 0.01 1.63 ± 0.01
2018 1.48 ± 0.01 1.93 ± 0.02 1.63 ± 0.01
2019 1.45 ± 0.01 1.91 ± 0.01 1.62 ± 0.01
2020 1.42 ± 0.01 1.82 ± 0.02 1.51 ± 0.01

2001–2020 1.48 ± 0.0 1.67 ± 0 1.48 ± 0.0

Power-law exponents with standard error sigma have been calculated using
MLE [34,49–52].
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Figure 5. Plot of cumulative probability CCDF Qa(m) an actor is mentioned m times or more,
Qab(w) indicates that an actor pair is mentioned w or more times, Qa(k) indicates that an actor is
co-mentioned with k or more actors. Because there is less data for each year than in the aggregated
years (2001–2020), the graphs are noisy. However, the power law appears to be a suitable fit. The
actual fits are given in Table 2.
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In a random network, most nodes have comparable degrees and no hub. In contrast,
in a network with a power-law degree distribution, there are numerous nodes with few
links held together by a few highly connected hubs. Typically, in real-world networks, the
power-law indices range between two and three. The network topology moves towards a
hub and spoke configuration for low values of the exponent, while for high values, it looks
like a random network.

We study the network from three perspectives: the actor mention in Figure 4a, the
co-actor mention in Figure 4b, and the actor degree mention in Figure 4c on an aggregated
basis. Results show that while most actors are comparatively less engaged, the statistics
above quantitatively represent the variety in actor activity: The actor mentions Qa(m)
power-law distributions show that a sizable minority are persistently involved in issues
of “Mass Killing”. The power-law distributions for actor Mention Qab(w) suggest similar
traits for actor pairs. The wide degree distributions Q(k) reveal the importance of the
number of actors interacting with a vast number of actors.

Furthermore, we also investigated the power-law distribution every year for the three
perspective actors mention in Figure 5a, the co-actor mention in Figure 5b, and the actor
degree mention in Figure 5c on an aggregated basis. Results show that the counts are
lower for the individual years due to less aggregation, which causes the data to be noisier.
However, the degree distributions still have a power-law tail.

When we refer to Mass Killings, we do not use any information about the number of
people concerned by the event. Consequently, as we interpret “Mass Killing” as a single
word to extract data from the GDELT repository without any further analysis, there is
no direct relation between the number of people involved in the event and the present
study. However, one can note that the proposed framework can incorporate the number of
people involved using a weighted network. The rsults of our investigations show no clear
relationship between the various power-law indices of the different measures. It behaves
as if each measurement is independent. The only consistent behavior is that they all share
the property of obeying a power-law distribution.

4.2. Cluster Analysis

After inspecting and visualizing the network for the aggregated years (2001–7 July
2020), one can observe that the network consists of several separate components. It simply
means that the actor involved in one event is never concerned about the other events
throughout the duration. After inspecting the size of clusters, it appears that it grows
linearly with the network size. The size of the largest cluster is 103–104, greater than the
smaller cluster. Results are reported in Table 3 and visualized in Figure 6 (Cluster analysis
using CCDF plots).
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Figure 6. Cumulative probability CCDF charts are used to analyse clusters. (a) For aggregated years,
a CCDF Q(s) plot of a cluster of sizes higher than s. (2001–7 July 2020). In comparison to the others,
the largest cluster is quite enormous. (b) The CCDF Q(s) plot demonstrates that there is a cluster of
size greater than s.
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Figure 6 shows cluster analysis for each year. Power law fit for each cluster is in Table 4.

Table 3. Shows statistics of total number of nodes and total nodes in each year’s largest component.

Year Total Nodes Largest Cluster Size

2001 1247 320
2002 1126 321
2003 955 256
2004 1101 402
2005 726 60
2006 1131 471
2007 1293 389
2008 1584 482
2009 2865 1331
2010 2284 879
2011 3532 1963
2012 4551 2871
2013 4175 2282
2014 5330 3486
2015 7964 5446
2016 7482 5040
2017 5970 3906
2018 5359 3315
2019 5093 3275
2020 1973 843

2001–2020 32,213 26,796

Table 4. Power-law exponents for cluster analysis for individual years.

Year Exponent Year Exponent
2001 1.98 ± 0.06 2011 1.85 ± 0.02
2002 1.82 ± 0.05 2012 1.85 ± 0.02
2003 1.83 ± 0.05 2013 2.03 ± 0.02
2004 1.75 ± 0.04 2014 1.88 ± 0.02
2005 1.6 ± 0.08 2015 1.9 ± 0.01
2006 1.86 ± 0.04 2016 1.87 ± 0.01
2007 1.69 ± 0.04 2017 1.99 ± 0.02
2008 1.94 ± 0.05 2018 1.88 ± 0.02
2009 1.96 ± 0.03 2019 1.96 ± 0.02
2010 1.85 ± 0.03 2020 1.81 ± 0.03

Table 3 reports the total numbers of nodes and the size of the largest component s1
commonly referred as the giant component for each year. Figure 7 illustrates the relation
between these two quantities in a log–log scale.
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Figure 7. Variation of the size of the largest cluster s1 with network size N, for different years
(2001–2020) as well as for aggregate years (2001–2020).

We compute the variation of the size of the largest cluster with respect to the number
of actors present in that cluster. First, one calculates the network’s size and the largest
connected component for each year and the aggregated years (2001–2020). The power law
fits the data with an exponent value of 1.12 ± 0.03. One can see in Figure 7 that the size
of the largest cluster increases super linearly with the network size. Table 4 reports the
power-law exponents.

4.3. Network Growth Properties

Computational models are valuable for testing theories and for inspecting activities
over time. To examine influential actors that grow with respect to time, we extract the
top 10 actors based on degree and mention parameters. We calculate cumulative growth
rates π(m) for actor mention m and π(k) for actor degree. We calculate Π (x) = ∆ x/∆ t to
determine the growth rate for a given quantity x. We found that (x) is quite noisy in real
data. Therefore, we computed the cumulative integral,

∫ x
0 Π (x’) dx (x) which is less noisy.

Growth has been calculated and analyzed by many authors on the datasets they used to
calculate the growth pattern of various dynamics of the network [2,4,27,30].

Plots in Figure 8 suggest that π (m) and π (k) are superlinear functions of their argument
degree and mention, respectively. Table 5 presents their exponent’s calculation. Plots in
Figure 8 also show that actors’ growth is not independent of their respective arguments,
i.e., degree and mention.
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Figure 8. Cumulative growth rates for Actor mention π(m) and for Actor degree π(k) for the top 10
actors based on their mention and degree, respectively. The plot shows that π(m) and π(k) are super
linear functions of their respective arguments, degree and mention, respectively. Fitting exponents
are given in Table 5.

The plots in Figure 8 shows the growth pattern of top 10 actors based on their degree
and mention.
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Table 5. Exponents calculations for the top 10 actors based on degree and mention.

Actor Actor Degree Actor Actor Mention

USA_USDC 2.36 ± 0.61 USA_USDC 2.36 ± 0.61
FRA_FRB9 2.53 ± 0.41 FRA_FRB9 2.53 ± 0.41
ISR_IS00 3.02 ± 0.83 ISR_IS00 3.02 ± 0.83
USA_US 3.09 ± 0.94 USA_US 3.09 ± 0.94
SYR_SY 2.13 ± 0.36 SYR_SY 2.13 ± 0.36

SYR_SY13 1.89 ± 0.28 SYR_SY13 1.89 ± 0.28
USA_USFL 2.33 ± 0.47 USA_USFL 2.33 ± 0.47

ISR_IS 2.09 ± 0.55 ISR_IS 2.09 ± 0.55
USA_USCT 1.67 ± 0.21 USA_USNY 2.3 ± 065

PSE_IS00 2.81 ± 0.81 IRQ_IZ 1.99 ± 0.49

4.4. Tolerance to Attack and Failure

To study the robustness of the ‘Mass Killing’ dataset, the network is set to break by
targeted (Figure 9a) and by random (Figure 9b) removal of nodes [5,6]. Understanding
how a network is robust to a targeted attack is essential in network science. Targeted attack
experiments based on centrality measures proceed as follows.

1. Compute the largest connected component of the network
2. Choose a centrality measure accounting for a node’s importance
3. Rank the nodes according to the centrality measure.
4. Remove the nodes by descending order of centrality
5. After removing the nodes found in the previous step, the process is repeated.
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Figure 9. The network’s structure under degree targeted attack: One removes nodes in descending
order of their degree. The plot depicts the evolution of the giant component G (fraction of nodes in
the largest connected component) and the average number of nodes in clusters other than the giant
component (c), with an increasing percentage of nodes removed (f). Targeted node removal (a) is
more effective at splitting the network than random removal (b). The results are for the networks
aggregated over 2001–2020.

In Figure 9a, the behavior of the network under the degree targeted attack can be seen,
the nodes with a high degree are removed, and the network breaks rapidly. The largest
component breaks after the removal of less than 10% of nodes under degree targeted attack.
In contrast, in random (Figure 9b) removal of nodes, as there is a large number of nodes
with a low degree, the probability of selecting such nodes is very high, and the attack fails
to break the network.

Attacks split the network into multiple components. “f” is the fraction of nodes
removed, “G” is the fraction of nodes in the largest connected components and “c” refers
to the average size of isolated clusters other than the giant component.

Under a targeted attack (Figure 9a), for a small value of “f”, the network fragments
into clusters of varying sizes. However, there is still one largest connected component.
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As “f” increases, the clusters divide into single nodes or clusters of size two. Therefore
the value of “c”, increases until “c” = 2. After that, it starts to decrease. Indeed, a small
value of “f” only leads to the separation of single nodes and c ' 1. As “f” grows, the size of
the pieces that break off the main cluster also grows, showing a unique behavior. When
removing only 5% of the nodes from the network, the main cluster breaks into small pieces,
leading to G ' 0, and the size of fragmentation c ' 2 is at its peak. As we continue to
remove nodes, we fragment these isolated nodes, leading to a decreasing c.

Under random attack (Figure 9b), we do not observe a fragmentation point. Instead,
the size of the largest cluster gradually shrinks. The network is deflating as a result of nodes
breaking off one at a time, the rising error level leading to the isolation of single nodes, not
clusters of nodes. On the other hand, when the network is broken under random attack,
No fragmentation point is observed for random failures; instead, the size of the largest
cluster gradually shrinks. The network is deflating as a result of nodes breaking off one at
a time, the rising error level leading to the isolation of single nodes, not nodes of clusters.

For 20 years, the Figure 10 displays the percentage of top actors who have participated
in the propagation of Mass Killing events. By establishing connections among the actors,
the network of actors is developed. That network is processed through centrality analysis.
It reveals several key players over 2 decades. Over the last 20 years, several countries have
been deeply involved in Mass Killing events. Here, we attempt to break the network and
identify those nodes that have made the network considerably stronger as time has passed
by targeted attacks. The image above depicts the top recognized nodes with the highest
network engagement, such as the United States (91.2%), France (87.2%), Israel (82.8%),
Syria (78%), Iraq (51.2%), Palestine (49%), China (48.8%), Germany (44%), London (44.6%),
and so on.
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Figure 10. For 20 years, this graph displays the percentage of top actors who have participated in the
propagation of Mass Killing events.

We discovered ways to disrupt the network of such mass violation events through
testing, allowing government and policymakers to intervene and stop the spread of such
events. As a result, rather than randomly eliminating nodes, we discovered that removing
targeted actors (i.e., actors with a bigger number of neighbors are selected in every largest
component) can break such a violating network.

The present study performs several investigations to unravel the hidden patterns of
corporations and conflicts among the key actors during the global events of Mass Killings.
It aims to understand the structural representation of corporations among countries during
challenging times of Mass Killings and violence. The GDELT dataset is employed to
investigate the interactions among the actors. These interactions are considered undirected
graphs. Results show that the actor graph based on news events on Mass Killing exhibit a
power-law degree distribution. It expresses that a few key actors are related to most of the
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global events of Mass Killing and violence. Moreover, one can also consider that the news
data on global Mass Killings and violence focus mainly on a few actors. That might be
possible because the havoc of Mass Killing concentrates in a few places worldwide. Further
investigation reveals that the key players involved in the news about most of the Mass
Killing events in the past 2 decades are the USA, Israel, and Syria. Further investigation
shows that the USA is an active country trying to solve global issues. Consequently, it is
involved in a majority of international events. In contrast, although Israel and Syria are
actors of localized events, there exist several news events over the period that led the two
countries to the top of the contributing actors. One of the main lessons learned from this
analysis is that a few countries can negotiate and regulate to bring peace and minimize
conflicts making a significant impact on the overall world peace.

5. Conclusions

News reports in media play an essential role in bringing out news analysis. This work
also uses the digital news presented in the GDELT dataset for a specified time duration.
The aggregated data over the years makes it possible to build a network and visualize
and inspect it. We study the network from three perspectives: actor occurrences, co-actor
occurrences, and the degree of a node. These are good representatives of the intensity,
impact, and significance of the engagement of actors with others. This study shows that
there are large clusters. In other words, most actors form a giant component throughout
time and hence are influential. There are also tiny clusters. Indeed, some actors do not grow
their network over time and are not influential. Identifying such actors frequently involved
in spreading such conflicting events is a critical approach that can help policymakers such
as organizations, governments, etc., make their policies and help prevent the spread of such
events. On the basis of centrality measures, the United States, France, Israel, Syria, Iraq,
Palestine, China, Germany, and London were identified as the top nodes deeply involved in
Mass Killings over a 20-year period. The probability distribution of actor mention, co-actor
mention, and actor degree have a power-law decay in their tails, revealing the underlying
mechanism behind the events. The contribution of this work is to identify, investigate and
formulate a time-variant conflicting complex network concerning the actor’s involvement in
the global news event. This process is not restricted to the global news dataset but can also
apply to other datasets. The mixed approach used here offers a sufficient understanding
for analyzing such complex networks.
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