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Abstract: Entanglement as a vital resource for information processing can be described by special
properties of the quantum state. Using the well-known Weyl basis we propose a new Bloch decom-
position of the quantum state and study its separability problem. This decomposition enables us to
find an alternative characterization of the separability based on the correlation matrix. We show that
the criterion is effective in detecting entanglement for the isotropic states, Bell-diagonal states and
some PPT entangled states. We also use the Weyl operators to construct an detecting operator for
quantum teleportation.
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1. Introduction

Quantum information processing is responsible for implementing tasks such as super-
dense coding [1], teleportation [2] and key generation [3]. Quantum entanglement is one
of the key sources [4] of quantum advantages and has many applications ranging from
quantum teleportation to quantum cryptography [5]. In recent years, much effort has been
devoted to understanding entanglement , but still many problems remain unsolved. One
key problem is to determine whether a given bipartite state is entangled or not. Recall that
a bipartite quantum state ρ in a Hilbert spaceHA ⊗HB is separable if

ρ = ∑
i

piρ
A
i ⊗ ρB

i , (1)

where {pi} is a probability distribution, ρA
i and ρB

i are the reduced density matrices of
subsystemHA andHB respectively. Otherwise ρ is said to be entangled.

For low-dimensional bipartite systems such as 2⊗ 2, 2⊗ 3 and 3⊗ 2 systems, the cele-
brated PPT criterion [6] is a necessary and sufficient condition for separability. However, for
higher-dimensional multipartite systems, entanglement detection is widely believed to be
an NP-hard problem. Nevertheless there are several separability criteria available. Among
them, a notable one is entanglement witness which detects entanglement theoretically and
experimentally [7], and most linear separability criteria can be regarded as entanglement
witnesses. As a nonlinear separability criterion the local uncertainty relation [8] is an effec-
tive method to detect entanglement, and there are some nonlinear criteria based on matrix
methods, for example, the realignment criterion [9], the covariance matrix criterion [10]
and the separability criteria based on the correlation matrix [11,12].

In this paper, we focus on an improved Bloch representation of density matrix in terms
of the Weyl basis to derive separability criteria. Our work shows that the Weyl basis is
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advantageous in handling higher dimensional quantum states as well as revealing the
symmetry property. This new scheme markedly simplifies calculations involving density
matrices. Our method further demonstrates that Weyl operators can be widely applied
in quantum information realm [13–15]. Particularly, Weyl operators also play important
roles in entanglement detection [16–23]. In fact, Ref. [16] provided the generalized Pauli
matrices based on the Weyl operators, and proposed a criterion to detect entanglement
by the bounds of the sum of expectation values of any set of anti-commuting observables.
Moreover, the separability criteria in terms of the Weyl operators for bipartite and multipar-
tite quantum systems were presented in Ref. [17]. The Weyl operators also play a crucial
role in constructing the Weyl discrete channels. Furthermore, the Weyl operators have been
widely used in representation theory of affine Lie algebras and Yangians [24].

The layout of the paper is as follows. In Section 2 we first show that Weyl operators
provide a generalization of the Pauli operators that can represent any quantum state in
a tensor format. Based on the Weyl representation of quantum state, we will present a
separability criterion in terms of the correlation matrix for an arbitrary bipartite quantum
state in Section 3. Our method also gives a necessary and sufficient condition for separability,
which is applicable in quantum teleportation, as shown in Section 4. Detailed examples are
provided to illustrate the advantages of this method compared with previous methods.

2. The Representation of Quantum States in Terms of Weyl Operators

LetH be a d-dimensional Hilbert space with computational basis {|k〉}, andZd denotes
the finite field of modulo d integers. For simplicity all integers in the subscripts are modulo
d. Recall that the Weyl operators are defined by

Wnm := ∑
k∈Zd

e
2knπi

d |k〉〈(k + m)mod d|, n, m = 0, 1, . . ., d− 1. (2)

Clearly the set {Wnm} forms a basis of linear generators in the general linear Lie algebra
gl(d). We remark that the Weyl basis is also called the principal basis in the literature. When
d = 2, the Weyl operators specialize to the Pauli matrices, i.e., {W00, W01, W10, W11} =
{I, σ1, σ3,−iσ2}. In general when d =≥ 2, the Weyl basis is different from both the Cartan–
Weyl basis and Gell-Mann basis. The Weyl operators {Wnm} enjoy the following alge-
braic relations

WijWkl = e
2jkπi

d Wi+k,j+l , W†
kl = e

2klπi
d W−k,−l .

Although the Weyl operators are not Hermitian in general, they are unitary and enjoy the
orthogonal relation 〈Wnm, Wkl〉 = TrW†

nmWkl = dδnkδml ,

where δij is the Kronecker symbol. Subsequently the Weyl operators obey the trace relation

TrWij =

{
d, (i, j) = (0, 0),
0, otherwise.

As an example, there are nine linearly independent Weyl operators on a 3-dimensional
Hilbert space listed as follows:

W00 =

 1 0 0
0 1 0
0 0 1

, W01 =

 0 1 0
0 0 1
1 0 0

, W02 =

 0 0 1
1 0 0
0 1 0

,

W10 =

 1 0 0
0 ω 0
0 0 ω2

, W11 =

 0 1 0
0 0 ω

ω2 0 0

, W12 =

 0 0 1
ω 0 0
0 ω2 0

,

W20 =

 1 0 0
0 ω2 0
0 0 ω

, W21 =

 0 1 0
0 0 ω2

ω 0 0

, W22 =

 0 0 1
ω2 0 0
0 ω 0

,
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where ω is a 3rd primitive unit root of 1, i.e., ω3 = 1.
Since the d2 linearly independent Weyl operators Wnm form a basis of gl(d), every

d× d density matrix ρ can be uniquely expressed as a linear combination of the Weyl basis:

ρ =
1
d
(I + ∑

(i,j) 6=(0,0)
aijWij), (3)

where the coefficients aij = TrW†
ijρ for i, j = 0, 1, . . ., d− 1. Since ρ† = ρ, the coefficients

satisfy the symmetry condition

a∗nm = e
−2nmπi

d a−n,−m, (4)

where ∗ means complex conjugation. We also call ν = (aij) the Bloch vector of ρ relative to
the Weyl basis and its length is defined as |ν| = ∑i,j |aij|2. Therefore any density matrix ρ

in Hilbert spaceH can be uniquely characterized by a d2 − 1 dimensional vector ν ∈ Cd2−1

with the symmetry condition (4), that is, d2 − 1 real parameters.

Theorem 1. For any d-dimensional quantum state ρ in the form of Equation (3), the length of the
vector ν = ν(ρ) satisfies the following inequality

|ν| ≤
√

d− 1. (5)

In particular, the equality holds if and only if ρ is pure.

Proof. Since any quantum state ρ satisfies the trace condition Trρ2 ≤ 1, one obtains that

Trρ2 =
1
d2 Tr(I + ∑ aijWij)(I + ∑ aklWkl)

=
1
d
+

1
d2 ∑ e

2jkπi
d aijaklTrWi+k,j+l ≤ 1.

Note that W00 = I and the matrices Wij are traceless for (i, j) 6= (0, 0), the only nonzero
terms in the summation are for k = −i and l = −j, that is,

Trρ2 =
1
d
(1 + ∑ e

−2ijπi
d aija−i,−j) ≤ 1. (6)

Using the symmetry condition (4), the trace is simplified as

Trρ2 =
1
d
(1 + ∑ aija∗ij) =

1
d
(1 + |ν|2) ≤ 1. (7)

Therefore |ν| ≤
√

d− 1. If ρ is pure, we have Trρ2 = 1, which means |ν| =
√

d− 1. This
completes the proof.

Theorem 1 tells us that all Bloch vectors lie within a hypersphere of radius
√

d− 1
with the pure states on the spherical surface. Moreover, the quantum state ρ is determined
by the Bloch vector ν = ν(ρ) satisfying ν with the symmetry condition (4), thus the set of
the Bloch vectors is a subset of the vector space Cd2−1 with d2 − 1 parameters.

3. Application of Weyl Operators in Separability Criteria

With the Weyl basis, a quantum state ρ in space HA ⊗HB with dimHA = dA and
dimHB = dB can be decomposed as

ρ =
1

dAdB
(IA ⊗ IB + ∑

(i,j) 6=(0,0)
αijWA

ij ⊗ IB + ∑
(k,l) 6=(0,0)

βkl IA ⊗WB
kl + ∑

(i,j),(k,l) 6=(0,0)
λk,l

i,j WA
ij ⊗WB

kl), (8)
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where the coefficients αij = Trρ(WA
ij )

† ⊗ IB, βkl = TrρIA ⊗ (WB
kl)

†, λk,l
i,j = Trρ(WA

ij )
† ⊗

(WB
kl)

†, IA(B) and WA(B)
ij are the identity operator and the Weyl operators of spaceHA(B),

respectively. Let α and β be two complex vectors with dimension d2
A − 1 and d2

B − 1,
respectively, that is,

α = (αij) = (α01, . . . , α0,dA−1, . . . , αdA−1,0, . . . , αdA−1,dA−1)
t,

β = (βkl) = (β01, . . . , β0,dB−1, . . . , βdB−1,0, . . . , βdB−1,dB−1)
t,

where t denotes transposition. The entries λk,l
i,j form a matrix M with size (d2

A − 1)× (d2
B −

1), which will be referred to as the correlation matrix of ρ (relative to the Weyl bases) . It
is the correlation matrix of ρ under the Weyl basis. Since ρ† = ρ, the entries satisfy the

symmetry conditions: α∗ij = e
−2ijπi

dA α−i,−j, β∗kl = e
−2klπi

dB β−k,−l , (λ
k,l
i,j )
∗ = e−2πi( ij

dA
+ kl

dB
)
λ−k,−l
−i,−j .

According to the decomposition in Equation (8), the reduced states of ρ on the two
subsystems are respectively given by

ρA = TrBρ =
1

dA
(IA + ∑

(i,j) 6=(0,0)
αijWA

ij ), (9)

ρB = TrAρ =
1

dB
(IB + ∑

(k,l) 6=(0,0)
βklWB

kl). (10)

Theorem 2. A bipartite quantum state ρ in the form of Equation (8) is a product state, i.e.,
ρ = ρA ⊗ ρB, if and only if the correlation matrix M is of rank 1: the matrix M can be written as

M = αβt. (11)

for some column vectors α and β.

Proof. One notices that Equation (8) can be rewritten as

ρ = ρA ⊗ ρB +
1

dAdB
∑

(i,j),(k,l) 6=(0,0)
(λk,l

i,j − αijβkl)WA
ij ⊗WB

kl . (12)

Since the matrices WA
ij ⊗WB

kl are linearly independent, (λk,l
i,j − αijβkl)WA

ij ⊗WB
kl = 0 if

and only if λk,l
i,j − αi,jβk,l = 0 for (ij), (kl) 6= (0, 0), that is, M = αβt, and this completes

the proof.

Since any mixed state is a convex combination of pure states, Theorem 2 provides a
necessary condition for separability for any mixed state in a bipartite system.

Now we denote the Ky Fan matrix norm of M as ‖M‖KF = ∑ ξi = Tr
√

M†M, which is
the sum of the singular values ξi of the matrix M. Notice that the Ky Fan norm, the trace
norm and the Shatten-1 norm are uniform for a square matrix. Then we have the following
necessary condition for separability for any bipartite quantum state.

Theorem 3. If a bipartite state ρ in the form of Equation (8) is separable, then the correlation
matrix M of ρ satisfies the inequality as follows

‖M‖KF ≤
√
(dA − 1)(dB − 1). (13)

Proof. Suppose the quantum state ρ is separable, then there exists a series of ps, ρA
s ,

ρB
s such that ρ = ∑s psρA

s ⊗ ρB
s , with ps ≥ 0 and ∑s ps = 1. Suppose ρA

s = 1
dA

(IA +

∑(i,j) 6=(0,0) α
(s)
ij WA

ij ) and ρB
s = 1

dB
(IB + ∑(k,l) 6=(0,0) β

(s)
kl WB

kl) with Bloch vectors αs = (α
(s)
ij )
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and βs = (β
(s)
ij ), respectively. Therefore the correlation matrix M of ρ is M = ∑s psαsβt

s.
One sees that

‖M‖KF ≤ ∑
s

ps‖αsβt
s‖KF = ∑

s
ps|αs||βs|

≤ ∑
s

ps ·
√

dA − 1 ·
√

dB − 1 =
√
(dA − 1)(dB − 1). (14)

where we have used the equality of norm [25], for any pure state |a〉 and |b〉,

‖|a〉〈b|‖KF = ||a〉|||b〉|. (15)

This completes the proof.

Example 1. Consider the isotropic state ρiso = ( 1−p
d2 )I ⊗ I + p|ψ+〉〈ψ+|, where 0 ≤ p ≤ 1.

They are separable if and only if p ≤ 1
d+1 [26]. Since the maximally-entangled pure state |ψ+〉 =

1√
d ∑d−1

i=0 |ii〉 has Bloch decomposition relative to Weyl operators as follows

|ψ+〉〈ψ+| =
1
d2 I ⊗ I + ∑

(i,j) 6=(0,0)

1
d2 Wij ⊗W−i,−j. (16)

Therefore, the isotropic state can be represented as

ρiso =
1
d2 (I ⊗ I + ∑

(i,j) 6=(0,0)
pWij ⊗W−i,−j). (17)

Note that the Ky Fan norm of correlation matrix M of ρiso is ‖M‖KF = (d2 − 1)p. Theorem 3
implies that p ≤ 1

d+1 when the isotropic state is separable. This means that we can detect all
entangled isotropic states by Theorem 3.

Example 2. Let ρ be the following 3× 3 PPT entangled state found in [27]:

ρ =
1
4
(I −

4

∑
i=0
|χi〉〈χi|), (18)

where |χ0〉 = |0〉(|0〉 − |1〉)/
√

2, |χ1〉 = (|0〉 − |1〉)|2〉/
√

2, |χ2〉 = |2〉(|1〉 − |2〉)/
√

2,
|χ3〉 = (|1〉 − |2〉)|0〉/

√
2, |χ4〉 = (|0〉+ |1〉+ |2〉)(|0〉+ |1〉+ |2〉)/3. We get the Ky Fan

norm of the correlation matrix ‖M‖KF approximately equal to 2.15, which violates the inequality in
Theorem 3 . Therefore the state ρ is entangled.

Example 3. The Bell-diagonal states can be represented as ρ = 1
4 (I4 +∑3

i=1 tiσi⊗ σi), where σi are
three Pauli operators [28]. The Bell-diagonal states are known to be separable iff |t1|+ |t2|+ |t3| ≤
1 [28]. Consider the Bloch decomposition of ρ relative to the Weyl operators

ρ =
1
4
(I2 ⊗ I2 + t1W01 ⊗W01 + t3W10 ⊗W10 − t2W11 ⊗W11). (19)

Then the Ky Fan norm of the correlation matrix is ‖M‖KF = |t1|+ |t2|+ |t3|. It follows from
Theorem 3 that |t1|+ |t2|+ |t3| ≤ 1 when the Bell-diagonal states are separable. Again Theorem 3
completely detects the entanglement for the Bell-diagonal states.

Example 4. Consider the bipartite state

ρ± = p|φ±〉〈φ±|+ (1− p)|00〉〈00|, (20)



Entropy 2022, 24, 1064 6 of 8

where p ∈ [0, 1], and |φ±〉 = 1√
2
(|01〉 ± |10〉). The Peres–Horodecki criterion establishes that

the state is separable iff p = 0 [6]. For the Bloch representation using Weyl operators, thus we
obtain that

ρ± =
1
4
(I2 ⊗ I2 + (1− p)W10 ⊗ I2 + (1− p)I2 ⊗W10 ± pW01 ⊗W01 (21)

∓pW11 ⊗W11 + (1− 2p)W10 ⊗W10).

Therefor, the Ky Fan norm of the correlation matrix M of state ρ± is ‖M‖KF = 2p + |1− 2p|,
which implies that ‖M‖KF ≤ 1 if p ≤ 1

2 , so entanglement is detected only if p > 1
2 .

4. Application of Weyl Operators in Quantum Teleportation

In the process of quantum teleportation, the optimal fidelity of teleportation as an
entangled resource can be expressed by fully entangled fraction [29–31]. For a given
quantum state ρ in d-dimensional Hilbert space, the optimal fidelity of telepotation with
respective to ρ can be described by the function

fmax(ρ) =
dF(ρ)
d + 1

+
1

d + 1
, (22)

where F(ρ) is the fully entangled fraction with respect to ρ defined by [30]:

F(ρ) = max
U
〈ψ+|(U† ⊗ I)ρ(U ⊗ I)|ψ+〉, (23)

where U runs through all d× d unitary matrices, I is the d× d identity matrix, and |ψ+〉 is
the maximally entangled state. A state ρ is a useful resource for teleportation if and only if
F(ρ) > 1

d [30]. If F(ρ) ≤ 1
d , the fidelity is considered to be no better than separability. In

this sense, the fully entangled fraction F(ρ) can be used to detect a quantum teleportation
resource. Ref. [32] gave an elegant formula for a two-qubit system by using the method of
Lagrange multipliers. Refs. [33,34] constructed the teleportation witness for detecting the
quantum states that are useful for quantum teleportation.

Now we construct an operator using the Weyl representation to detect if a quantum
state is useful for quantum teleportation. Since the maximally entangled state |ψ+〉 =
∑i

1√
d
|ii〉 can be decomposed as Equation (16) according to the Weyl operators [35], we let

Pij = UWijU†
U and define a normal operator O by

OU := I ⊗ I + ∑
(i,j) 6=(0,0)

Pij ⊗W−i,−j. (24)

We claim that the operator OU can be used to detect whether an unknown quantum state is
available for teleportation.

Theorem 4. The quantum state ρ in a quantum system H⊗H with dim(H) = d is useful for
teleportation if and only if there exists some unitary operator U such that the mean value satisfies
the inequality:

〈OU〉ρ > d. (25)

Proof. For any quantum state ρ, it has

〈OU〉ρ = 〈I ⊗ I + ∑
(i,j) 6=(0,0)

Pij ⊗W−i,−j〉ρ

= 〈I ⊗ I + ∑
(i,j) 6=(0,0)

UWijU† ⊗W−i,−j〉ρ

= d2〈U ⊗ I|ψ+〉〈ψ+|U† ⊗ I〉ρ
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Since maxU〈OU〉ρ = d2F(ρ), and quantum state is useful for quantum teleportation if
and only if F(ρ) > 1

d . Note that the maximum value is attainable since SU(d) is compact.
Therefore the quantum state is useful for quantum teleportation if and only if there exists
some unitary U such that 〈OU〉ρ > d. This completes the proof.

Example 5. Consider the following bipartite state [36]

ρ = p|φ−〉〈φ−|+ (1− p)|00〉〈00|, (26)

where p ∈ [0, 1] and |φ−〉 = 1√
2
(|01〉 − |10〉). The PPT criterion establishes that state (26) is

separable iff p = 0 [6]. We choose the operator U = |0〉〈1|+ |1〉〈0| = σ1, then one has 〈O〉ρ = 3p.
Therefore the quantum state ρ in Equation (26) is useful for quantum teleportation when p > 2

3 .

5. Conclusions

We have investigated the Bloch decomposition of a density matrix relative to the
Weyl basis in the quantum system. The geometric properties of Bloch vectors, including
the length, are described in detail. For the bipartite quantum states, we have provided a
necessary condition of separability in terms of the Ky Fan norm of the correlation matrix.
Furthermore, we have demonstrated the feasibility and effectiveness of our separability
criterion in detecting entanglement using examples of isotropic states, Bell-diagonal states
and some PPT entangled states. Finally, we have constructed an operator based on the
Weyl operators for detecting useful resources for quantum teleportation.
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