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Abstract: Many web platforms now include recommender systems. Network representation learning
has been a successful approach for building these efficient recommender systems. However, learning
the mutual influence of nodes in the network is challenging. Indeed, it carries collaborative signals
accounting for complex user-item interactions on user decisions. For this purpose, in this paper,
we develop a Mutual Interaction Graph Attention Network “MIGAN”, a new algorithm based
on self-supervised representation learning on a large-scale bipartite graph (BGNN). Experimental
investigation with real-world data demonstrates that MIGAN compares favorably with the baselines
in terms of prediction accuracy and recommendation efficiency.

Keywords: recommender systems; mutual influence; graph attention network; self-supervised;
collaborative filtering

1. Introduction

In the literature, there are numerous techniques for building recommendation sys-
tems. They can be classified either as collaborative, content-based, or hybrid filtering
approaches [1–4]. Collaborative filtering is the most influential. It relies on identifying
users with similar tastes for item recommendations. It leverages their feedback to make
suggestions to the active user. Collaborative recommender systems have been implemented
in multiple application areas [5–7].

Learning effective user/item representations from their interactions and side infor-
mation in recommender systems is a challenging issue. Since most data have a graph
structure and the graph neural network (GNN) has superiority in representation learning,
using GNN in recommender systems is a flourishing field of research. Several works are
based on GNN to perform recommendations, and other tasks, such as the graph convo-
lutional network (GCN) [8] and graph attention network (GAT) [9]. GAT computes the
representation of nodes by adaptively combining their neighborhoods’ vectors using a
self-attention mechanism with trainable attention weights. Wang et al. [10] suggest a
knowledge graph attention network (KGAT) for KG-based recommendations. To enrich
the representation, the authors consider the implicit collaborative information of multi-hop
neighbors. In the work [11], the authors propose a neighbor-aware graph attention network
for recommendation tasks to model the implicit correlations of neighbors. Unlike previous
attention networks, our current work determines the most relevant weights characterizing
the mutual influence among item-users. In addition to learning the interaction between
user interests and item embeddings, it integrates a new component accounting for the
mutual influence of items carrying collaborative signals on user decisions. MIGAN learns
deeply the most relevant weights representing the users mutual influence on an item. It
exploits the complex relation between the user profile and the item attributes. Its main
advantage lies in its ability to discriminate the relative influence of various interactions
between nodes. Our main contributions summarize as follows:

Entropy 2022, 24, 1084. https://doi.org/10.3390/e24081084 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24081084
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-6666-952X
https://orcid.org/0000-0001-9124-4921
https://doi.org/10.3390/e24081084
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24081084?type=check_update&version=2


Entropy 2022, 24, 1084 2 of 14

• Our approach is based on self-supervised representation learning on a large-scale
bipartite graph (BGNN). We have adapted this powerful representation for the recom-
mendation task because its ability to model the dependencies between the nodes on a
large scale.

• The collaborative filtering recommender based on interactive neural attention net-
works takes advantage of the encoding potential of interactive attention between users
and items. It learns the most significant weights representing users’ mutual effect
on the item. Consequently, exploiting this information improves the recommender
systems’ accuracy.

• The empirical evaluation, including various real-world dataset, shows that MIGAN
significantly outperforms the state-of-the-art baselines.

The rest of the paper is organized as follows. Section 2 describes the related literature.
Section 3 presents in detail the proposed architecture. Section 4 discusses the experimental
results. Section 5 summarizes the conclusions.

2. Related Work

Graph embedding models are one of machine learning’s newest and fastest-growing
subfields. Its strength is in its ability to take advantage of the intrinsic graph structure of a
wide range of data types encountered in a wide range of applications. The graph format
models a set of elements (represented by nodes) and their relationships (represented by
edge) to capture structural information. Therefore, there have been proposed various graph
embedding models in literature [12,13]. Node2Vec is an embedding model for converting
graphs into numerical representations where each node in the network is used as a starting
point to produce a corpus of random walks [14]. In a first-order random walk, each step is
solely determined by the current state. The steps in a second-order random walk are deter-
mined by the current and prior states. The random walk corpus is fed through Word2Vec
to build the node embeddings. Liang et al. [15] extend the variational autoencoders (VAEs)
to collaborative filtering for implicit feedback. It models the collaborative information
into multinomial likelihood (MultiVAE) for the data distribution to sample prediction
for items on the long tail. Drif et al. [16] develop an ensemble variational autoencoder
framework for recommendations (EnsVAE) that specifies a procedure to transform sub-
recommenders’ predicted utility matrix into interest probabilities that allow the VAE to
represent the variation in their aggregation. This architecture is based on two components:
(1) GloVe content-based filtering recommender (GloVe-CBF) that exploits the strengths of
embedding-based representations and stacking ensemble learning techniques to extract
features from the item-based side information, and (2) a variant of neural collaborative fil-
tering recommender, named the Gate Recurrent Unit-based Matrix Factorization (GRU-MF)
recommender. It models a high level of non-linearities and exhibits interactions between
users and items in latent embeddings, reducing user biases towards items that are rated
frequently by users. Weng Lo et al. [17] suggested the graph flow data’s extensive structural
information based on a graph neural networks (GNNs). The latter works with the message
passing concept, where a node collects its neighbors features and sends them to a node as
a message. In recent years, the graph attention network approach has developed rapidly.
Wang et al. [18] introduced a multi-dimension interaction-based attentional knowledge
graph neural network (MI-KGNN) to improve recommendations based on knowledge
graph (KG). MI-KGNN explores the interaction between users and the neighborhood dur-
ing embedding propagation. In [10], the authors proposed a knowledge graph attention
network (KGAT) modeling the high-order connectivity in knowledge graphs. It exploits
the attention mechanism to determine important neighbors. In [19], the authors propose a
multi-view graph attention network (MV-GAN) based on the heterogeneous information
networks for the recommendation. They create attention networks at the node and path
levels to learn user and product representations from every view. A view-level attention
mechanism is developed to integrate various relationship types in multiple views co-
operatively. Liu et al. [20] propose a contextualized graph attention network (CGAT) based
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on an entity’s local and non-local context data in a knowledge graph. CGAT implements a
graph attention method to record local context information while considering users’ unique
preferences for entities. The non-local context of an entity is also extracted using a biased
random walk sampling method by CGAT. In fact, propagating information from nodes
across the network is done during numerous iterations. The aggregated information at each
node (node embedding) is a memory- and time-consuming task. Due to this fact, many
GNNs for recommendation suffer from scalability limitations, unpredictable memory, and
computational resource requirements on large graphs. To overcome these drawbacks, our
work considers node representation learning on large-scale bipartite graphs.

3. Mutual-Interaction Graph Attention Network Approach

The proposed architecture considers the mutual collaborative information of the user’s
preference on the whole neighboring item to enrich the representation. It is based on self-
supervised representation learning on a large-scale bipartite graph (BGNN) [21]. Figure 1
illustrates the model architecture in detail. We first formulate the recommendation task on
the bipartite graph. Secondly, we introduce the embedding representation based on BGNN
and then describe the mutual interaction graph attention mechanism.

Figure 1. MIGAN Architecture.

3.1. Problem Formulation

Let U = u1, u2, . . . , un and I = i1, i2, . . . , im be the sets of users and items, respectively,
where n is the number of users, and m is the number of items. We assume that Rn×m is the
user-item rating matrix.

We formulate the recommendation task as a prediction problem as follows:
R̂: utility matrix; r̂u: predicted rating for each user u ∈ U; U = u1, u2, . . . , un: is the

sets of users, where n is the number of users; I = i1, i2, . . . , im is the set of the items , where
m is the number of items; Rui: is the ground truth rating assigned by the user u on the
item i.

We define the utility matrix as:

R̂ui = PQT =
K

∑
k=1

pukqki (1)

where: K is latent space’s dimension.
S′(n×m): is the inner product of both user and item latent vectors. It is decomposed by

the matrix factorization method into P ∈ RN×K and Q ∈ RM×K.
To normalize R̂, we apply the min/max scaling:

minmax(x) =
x−min

max−min
∀x ∈ r̂(ui) (2)

where: min = min (rui) is the minimal rating;
max = max (rui): is the maximal rating. The normalization eliminates user bias. In

other words, users have different ways to rate the items. Some would only give high
ratings to items they like, while others do the opposite. Normalizing users’ ratings hide
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their bias by mapping them to values between 0 and 1. The lowest rating of each user
is associated with 0, while 1 represents their highest value. It assists in leveraging more
accurate collaborative-based recommendations.

Table 1 reports the notations used in the rest of this paper.

Table 1. Notation and descriptions.

Symbols Definitions and Descriptions

rui User u’s rating for item i

pu The user u’s embedding.

qi The item i’s embedding.

g Long-Short-Term-Memory function

xu The user embedding layer followed by LSTM layer

xi The item embedding layer followed by LSTM layer

h The Multi-Layer-Perception application

lstmu The user LSTM layer following by MLP

lstmi The item LSTM layer following by MLP

α∗u Attention network function for user u

α∗i Attention network function for item i

αu The last attention weights for user u

αi The last attention weights for item i

Cui User-item space

Ct Text space

⊕ The concatenation operator

r
′
ui User u’s rating expected value for item i

W, b The weight and bias in neural network

U, I Nodes of bipartite graph

Xu, Xi lists of Features

Bu, Bi adjacency matrix

A bipartite graph is composed of two independent sets of vertices, U1 and I1. The
edges connect a vertex from one set U1 to one in I1.

We define Bipartite Graphs as follows: Let G = (U1, I1, E) be a bipartite graph. eij
represents the edge between ui and ij.

Bu ∈ RM×N is the incidence matrix for U1. Bi ∈ RN×M is the incidence matrix for
I1. Where

Bu(i, j) =
{

1 if eij ∈ E,
0 if eij /∈ E.

(3)

Xu ∈ RM×P : is defined as a feature matrix of node ui (Xi is similarly written).
Our work is based on the self-supervised node representation learning model [21] that

can employ topology information as well as separate node attributes from two domains to
increase the recommendation performance for large graph.

3.2. Embedding Representation Based on Bipartite Graph Neural Networks (BGNN)

He et al. [21] proposed a a self-supervised representation learning framework for large-
scale bipartite graphs. In this section, we adapt the outputs of this BGNN architecture, thus,
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we can deploy it in our recommendation system. Let us define the following notions: Hu ∈
RP′ ( Hi ∈ RQ′, respectively): is nodes embedding representation for U1 (I1, respectively).
femb: is an embedding model given by θ parameters.

The embedding of distinct node features Xu and Xi is written as:

Hu, Hi = femb(Xu, Bu, Xi, Bi, θ) (4)

The architecture of femb is based on two functions: (i) Inter-Domain Message Passing
(IDMP) and (ii) Intra-Domain Alignment (IDA). We will describe briefly these functions
and show how we prepare the outputs for the recommendation task (interested reader can
refer to [21] for more details). IDMP enables one domain to aggregate information from the
other domain, through the linked edges, as follows:

Hi→u = fu(Xi, Bu, θ) (5)

Hu→i = fi(Xu, Bi, θ) (6)

such as: fu (resp. fi): represents the IDMP function for this domain.
Hi→u (resp. Hu→i): is the flow of aggregated information from I1 (resp. U1) to U1

(resp. I1). After that, the Intra-Domain Alignment (IDA) is deployed for theses two distinct
features into a single representation. After the self-supervised training, the algorithm gives
the domains representation of H1

u and H1
I . The adversarial loss Ladv is used to compute the

best results.
Lossu = Ladv(Hi→u, Xu) (7)

Lossi = Ladv(Hu→i, Xi) (8)

Thus, the Inter-Domain Message Passing (IDMP) is expressed as:

H(K)
i→u = σ(B

′
uH(K)

i WK
u ) (9)

H(K)
u→i = σ(B

′
i H

(K)
u WK

i ) (10)

where: B
′
u = D−1

u Bu is the normalization of Bu (Du is the degree matrix of Bu). By normal-
izing the incidence matrix of the graph, the algorithm can effectively reduce the computa-
tional cost. σ is the activation function ReLU [22]. K denotes the depth index of the hidden
features of the nodes in set U1 (resp. I1).

Let σ is the Intra-Domain Alignment (IDA) discriminator and φ is the IDMP generator.
The discriminator loss function is expressed as follows:

LD(σ|φ) =
1
M

M

∑
j=1

logPσ,φ(source = 0|hu(j))−
1
N

N

∑
j=1

logPσ,φ(source = 1|hi→u(j)) (11)

where: Pσ,φ (source = 1|h) is the probability that the input feature vector h is from the
source domain Hi→u.

The implementation for the self-supervised representation learning on large scale
bipartite graph (BGNN) for the recommendation task is summarized in Algorithm 1.
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Algorithm 1 Bipartite Graph Neural Networks for recommendation task.
Input
Xu : User f eatures list
Xi : Item f eatures list
R : Rating matrix
Output

embu : Users′ Embedding representation based on BGNN.

embi : Items′ Embedding representation based on BGNN.

Begin
phase 1 . Extract the graph from the rating matrix

Bu, Bi = GetBipartiteGraph(R)
phase 2 . Computing embeddings for each item and user

H0
u = Xu H0

i = Xi

for j = 0, 1, . . . , K do
H j

u→i = IDMP(Bi, HK
u )

H j
i→u = IDMP(Bu, HK

i )

HK
u = IDA(H j

u→i)

HK
i = IDA(H j

i→u)
Endfor

phase 3 . embeddings preparation
embu = GetEmbeddings(HK

u )
embi = GetEmbeddings(HK

i )
return embu, embi

3.3. The Interactive Attention Network Recommender

The interactive attention network recommendation system aim at identifying latent
features that show the users and items mutual influence. The attention mechanism has been
shown to be useful in a variety of machine learning applications, including image/video
captioning [23,24]. Our proposed interactive concept extracts each participant’s contribu-
tion from their compressed representation. Thus, it allows the proposed recommendation
framework to model efficiently the interaction characteristic. This attention network model
figures out which weights best represent the users’ mutual effect on the item. Figure 2
explains the mutual interactions between users and items.

Algorithm 2 shows the architecture of the proposed interactive attention network.
In order to anticipate a distribution over the items, we create combined user and item
interactive attention maps. As a result, the co-attention mechanism detects a correlation
between items and users and calculates the likelihood that an item will be of interest to
indirect comparable individuals.

The first embedding layers eu and ei captures latent features of users pu and items qi.
They are followed by Long-Short-Term-Memory (LSTM) layers to learn long sequences
with long time lags. Each LSTM state includes two inputs: the current feature vector and
the output vector ht−1 from the previous state. Its output vector is ht. We chose to apply
the LSTM model as it exhibits interactions between users and items in latent embeddings.
Each node embedding layer is chained with an LSTM layer that contains recurrent modules
enabling long-range learning. Information from nodes neighbors gradually enhances the
subsequent feature representation because LSTM has an augmented hidden state with
non-linear mechanisms. It allows propagating without modification, updating, or reset-
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ting states using simple learned gating functions. The LSTM representation is expressed
as follows:

htu = g1(p) (12)

hti = g2(q) (13)

Figure 2. The interactive attention network recommender. In this example, user 1 and user 2 rate
three similar items. They have strong interactive attention. User 2 and user 3 rate an item not seen
by user 1. Therefore, one can deduce that this new item can also attract user 1. It is a first-order
interaction. Moreover, one can deduce a mutual influence based on entities’ dependencies at more
than a first order interaction level. For example, user 1 influences user 4 (a similar user of user 3),
generating a recommendation based on user 3 preferences.

The learned representation is Hp and Hq, respectively, with d × n dimensions for
Hp and d × m for Hq. Users and items embedded inputs are projected into a vector
representation space using the attention technique. In fact, this representation models
the high-order non-linear mutual relationship. For the interactive attention mechanism,
we build an attention maps in order to predict a distribution over the items. For this
purpose, we compute a matrix L = tanh(H>p Wpq Hq) , where L ∈ Rn×m, and Wpq is a d× d
a learnable parameters matrix. The features co-attention maps is defined as:

α∗p = tanh(Wp Hp + (Wq Hq)L>)
α∗q = tanh(Wq Hq + (Wp Hp)L)

(14)

The interactive attention model uses a tangent function to model the mutual interac-
tions between users and items. Afterward, we compute the the probability distribution
over the embedding space. The softmax function is used to generate the attention weights:

αu = So f tmax( f (α∗p)) (15)

αi = So f tmax( f (α∗q)) (16)

where f : is a multi-layer neural network.
Then, the high order interaction latent space of users and items is given by:

f1 = [β′u ⊕ β′i] (17)



Entropy 2022, 24, 1084 8 of 14

where βp and βq: are the derived attention weights.
As a result, the predicted matrix R̂ui is defined as:

R̂ui = f ( f1) (18)

where f : is a dense layer using a sigmoid activation function.
Finally, we train the model to minimize the loss function which is the Mean Absolute

Error (MAE):

L(Rui, R̂ui) =
1
|C| ∑

(u,i)∈C
|(Rui − R̂ui)| (19)

Algorithm 2 CoAttention: The interactive attention network recommender.
Input

lstmU: user’s lstm : size d× n
lstmI: item’s lstm: size d×m

Output
attui : The Interactive Attention between users and items

Begin
phase 1 . initialization of weights

Wu : size n× d
Wi : size m× d
Wui : size d× d
bu : size d× n
bi : size d×m

phase 2 . tanh function application
S = lstmI
G = lstmU
F = tanh(StWuiG)
α∗u = tanh(WuG + (WiS)Ft)
α∗i = tanh(WiS + (WuG)F)

phase 3 . Softmax function application
αu = softmax( f (buα∗u))

αi = softmax( f (biα
∗
u))

βu = O(αu)
βi = O(αi)

. O: is the batch.dot() function from Keras backend that is used between two
tensors ((αp)t and (G)t), (α(q)t and (S)t) respectively.

phase 4 . Each output of function O are transposed and then used as input
into a product function. After that, both results (β′u β′i) can be summed by a concatenate
function.

attui = concatenation(β′u, β′i)
return attui

Algorithm 3 summarizes the overall mutual-interaction graph attention network
approach. Network representation learning can tackle the recommendation problems by
embedding nodes into a low-dimensional space Rd. Furthermore, this adapted BGNN
representation for recommendation task improves multi-hop relationship modeling and the
training accuracy. Unlike previous research on graph neural networks for recommendation
that only learn complex relationship between the target and their neighbors using attention
network, our work learn the most important weights representing the users’ mutual
influence on the item based on the interactive attention.
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Algorithm 3 Migan: Mutual-Interaction Graph Attention Network.
Input

Xu : User f eatures list
Xi : Item f eatures list
U : List o f user : size = n
I : List o f item : size = m
R : Rating matrix

Output Pui : prediction matrix
Begin

phase 1 . Preparing data to be passed to the BGNN
foreach u ∈ U, i ∈ V do Rj = minmax(R)

phase 2 . extracting embeddings by BGNN-Class()

embu, embi = BGNN(Xu, Xi, Rj)

phase 3 . User and Item embedding are followed by LSTM layers.
lstmu = LSTM(embu)
lstmi = LSTM(embi)

phase 4 . Applying Attention mechanism
attu = Attention(lstmu)
atti = Attention(lstmi)
attui = CoAttention(lstmu, lstmi)

phase 5 . Concatenating The outputs

ATT = concatenation(attu, atti, attui)
InteractiveAttention = BuildModel(ATT) ;
InteractiveAttention.trainModel(D);

return Pui = InteractiveAttention.predict(ϕ)

4. Experiments and Discussion

We conduct our experiments on MovieLens 1M that is commonly used for benchmark-
ing recommendation frameworks. The MovieLens dataset [25] is a real, timestamped 5-star
ratings of the MovieLens platform users on various films. The selected dataset contains
1 million ratings from 6000 users over 4000 movies. Table 2 shows the dataset description.
We divide the datasets into 75% training data and 25% testing data in a stratified way.

Table 2. MovieLens 1M description.

# Users 6040

# Movies 3883

# Ratings 1000209

Sparsity % 95.5%

Item Genomic Tags

User Demographics

We evaluate MIGAN using Mean Average Precision and Normalized Discounted Cu-
mulative Gain. The mean average precision (MAP) measures the accuracy of information
retrieval. The results of recommender systems are frequently pruned to return the Top-k
components. The value of k varies based on the application: a system might display the
top three trending items or the best ten items that meet the current user’s preferences. The
Normalized Discounted Cumulative Gain (NDCG) calculates an item’s normalized useful-
ness depending on its position in the final list. It is used to assess the Top-k recommended
items’ ranking quality. Interested readers can refer to [16] for more details.
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4.1. Hyperparameters Analysis

Here, we report the hyperparameters analysis phase, which is performed separately
for each MIGAN recommender variant. Evaluation is done with MAP@k and NDCG@k.

The main idea of our model is to pass the results of the BGNN through a neural
network and then apply the attention model to it. Consequently, we perform the analysis
on 1–6 variants and focus on the learning algorithms used by each hyperparameter. We
have 3 hyperparameters and two kinds of recurrent networks: Embedding output size = 50,
75, 100, Neural network = LSTM, GRU. It gives us six variants. The architecture of each
variant is as follows:

• variant 1: BGNN output size =75× 1 | Neural Network = LSTM.
• variant 2: BGNN output size = 100× 1 | Neural Network = LSTM.
• variant 3: BGNN output size =50× 1 | Neural Network = LSTM.
• variant 4: BGNN output size = 75× 1| Neural Network = GRU.
• variant 5: BGNN output size = 100× 1| Neural Network = GRU.
• variant 6: BGNN output size = 50× 1 | Neural Network = GRU.

As shown in Table 3, Variant 1 scores better than the other variants. Thus, it is picked
for further tweaking.

Table 3. The best scoring MIGAN variant.

Mean Average Precision Normalized DCG

Variant MAP@10 MAP@30 MAP@50 NDCG@10 NDCG@30 NDCG@50

Variant 1 0.85 0.83 0.81 0.71 0.78 0.79

Variant 2 0.82 0.78 0.76 0.65 0.72 0.76

Variant 3 0.80 0.77 0.76 0.66 0.73 0.76

Variant 4 0.79 0.74 0.773 0.62 0.71 0.73

Variant 5 0.79 0.73 0.70 0.60 0.71 0.72

Variant 6 0.77 0.76 0.73 0.63 0.73 0.75

We generate the utility matrix based on the learned embeddings. Figure 3 illustrates
the hyperparameters analysis.

We explore a range of values for each hyperparameter as reported below:

• Dimensions of the embedding α ∈ [30, 100];
• Number of dense layers after the co-attention θ ∈ [2, 20];
• Number of neurons per dense layer τ ∈ [30, 150];
• Activation function used in the dense layers σ ∈ {selu, elu, relu};
• Optimizer λ ∈ {sgd, adam, adagrad}.

Results illustrate that we achieve the best performance for the following settings:
α = 50, θ = 3, τ = 100, σ = elu, λ = Adam.
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Figure 3. Hyperparameter searching MIGAN filtering recommendation system.

4.2. Performance Comparison with the Baselines

In this subsection, MIGAN’s final benchmark results are compared to the outcomes of
certain baseline recommender systems. We execute the baselines in the same evaluation
environment as MIGAN to guarantee that comparisons are fair. Furthermore, we deploy
the NeuRec library. Furthermore, we deploy the NeuRec library. It is released on GitHub
as open-source software under an MIT license, and it implements 33 neural recommender
systems [26].

We compare the proposed recommender framework with the following baselines:

• The stacked content-based filtering recommender: the work [16] developed a content-based
recommender system based on the stacking ensemble learning.

• Neural collaborative filtering (NCF) [27]: this work developed a recommender framework
that uses the multi-layer perceptron to exploit the user-item interaction.

• Variational Autoencoders for Collaborative Filtering (MultiVAE) [15]: This approach in-
vestigates the collaborative information in a multinomial distribution to recommend
items on the long tail.

• Node2Vec embedding: We propose a variant of MIGAN architecture, which deploys
Node2Vec embedding representation instead of BGNN.

Table 4 reports the performance of the various approaches under investigation using
the MovieLens dataset. According to mean average precision, MIGAN outperforms the
baselines. Indeed, it models the higher-order feature interactions. Figure 4 shows the
MAP@k evaluation versus k-top items. As the MAP measure indicates the fraction of
relevant articles in the top k suggestions averaged over all users, MIGAN creates a tai-
lored recommendation. To put it differently, MIGAN outperforms the other models in
recalling relevant items for the user. It retains the user–item interaction and generates a
user-specific task recommendation. Furthermore, both recommender-based BGNN and the
recommender-based Node2Vec are quite competitive. For example, MIGAN and Node2Vec
achieve MAP@10 = 0.85, and MAP@10 = 0.84, respectively, outperforming the other base-
lines. The training loss equals 0.23 with dimensions d = 70 and 0.32 with d = 50 for BGGN
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and Node2vec, respectively. Node2Vec is a random walk-based node embedding method
producing high memory consumption for large graphs. In contrast, the cascaded training
used in BGGN does not involve loading the entire graph into memory. Consequently, it
reduces the memory cost and training time. The MultiVAE recommender scores poorly.
Indeed, it does not use a enough rich representation of data semantic. The neural collabora-
tive filtering approach (Neural CF) shows a good score with k = 10, MAP@10 = 0.74 due to
the appropriate representation of the interaction between user and item.

Table 4. Recommendation performance (%) of compared approaches conducted on MovieLens 1M
dataset. We generate Top 10, 30, and 50 items for each user. The best score of MAP@k and NDCG@k
are highlighted with a bold font.

Mean Average Precision Normalized DCG

Rec sys MAP@10 MAP@30 MAP@50 NDCG@10 NDCG@30 NDCG@50

Glove-Cbf 0.82 0.78 0.77 0.67 0.74 0.77

Node2Vec 0.84 0.82 0.81 0.55 0.65 0.69

MultiVAE 0.62 0.58 0.54 0.57 0.62 0.65

Neural CF 0.74 0.68 0.65 0.68 0.73 0.76

MIGAN 0.85 0.83 0.81 0.71 0.78 0.79

Figure 4. Performance results of Top-K recommended lists, according to MAP. The ranking position
K ranges from 1 to 50.

Figure 5 shows that MIGAN exhibit a high NDCG score on MovieLens. Its Top-k
recommendation list is quite similar to the ground-truth list. MIGAN boosts the modeling
of user–item interaction. Indeed, the more interested the users are in an item, the more
likely users with similar preferences to recommend it. Note that the Node2Vec also presents
good NDCG scores. The graph recommender effectively obtains the user’s overall interest
built by the neighborhood representation.

Figure 5. Performance results of Top-K recommended lists according to NDGC. The ranking position
K ranges from 1 to 50.
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5. Conclusions

We propose and investigate a graph recommender where each user’s recommended
content is accurate and personalized. MIGAN is a collaborative filtering (CF) system. A
neural graph represents the item and users. It computes a representation of nodes by
combining their neighborhoods’ vectors according to their mutual influence interaction by
utilizing a co-attention mechanism with trainable attention weights. The attention weights
are adjustable parameters computed by aggregating neighbor vectors. This neural graph
architecture predicts the ratings assigned by the users to the items.

We perform a comparative evaluation of several configurations for the RS using the
well-known dataset MovieLens. We use two metrics to quantify its accuracy: the mean
average precision (MAP) and the normalized discounted cumulative gain (NDCG). The
first is about the accuracy of the recommendation. The second is about the ranking of
the recommended items. Comparing MIGAN performance with some baselines shows
that it outperforms all its alternatives in MAP and NDGC scores. However, it would be
very interesting to focus on a specific domain for recommendation tasks, such as taking
the knowledge graph to distill attribute-based collaborative signals and compare MIGAN
performance with knowledge graph attention network models. Thus, future work will
investigate this framework for collaborative knowledge graphs involving contextual and
semantic data. Future work will investigate this framework for other recommendation
tasks involving contextual data.
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RS Recommender Systems
MIGAN Mutual-Interaction Graph Attention Network
BGNN Bipartite Graph Neural Networks
IDMP Inter-Domain Message Passing
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LSTM Long-Short-Term-Memory
GRU Gate Recurrent Unit
MAP Mean Average Precision
NDCG Normalized Discounted Cumulative Gain
Neural-CF Neural Collaborative Filtering
Glove-Cbf Glove Content-based filtering recommender
MultiVAE Variational Autoencoders recommender
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