Article

Spectra of Self-Similar Measures

Yong-Shen Cao ${ }^{1,2}$, Qi-Rong Deng ${ }^{1}$ and Ming-Tian Li ${ }^{1, *}$ (D)
1 Center for Applied Mathematics of Fujian Province, Fujian Key Laboratory of Mathematical Analysis and Applications (FJKLMAA), School of Mathematics and Statistics, Fujian Normal University, Fuzhou 350117, China
2 School of Computing and Information Science, Fuzhou Institute of Technology, Fuzhou 350506, China
* Correspondence: limtwd@fjnu.edu.cn

Citation: Cao, Y.-S.; Deng, Q.-R.; Li, M.-T. Spectra of Self-Similar Measures. Entropy 2022, 24, 1142.
https://doi.org/10.3390/ e24081142

Academic Editor: Boris Ryabko

Received: 30 June 2022
Accepted: 13 August 2022
Published: 17 August 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

This paper is devoted to the characterization of spectrum candidates with a new tree structure to be the spectra of a spectral self-similar measure $\mu_{N, D}$ generated by the finite integer digit set D and the compression ratio N^{-1}. The tree structure is introduced with the language of symbolic space and widens the field of spectrum candidates. The spectrum candidate considered by Łaba and Wang is a set with a special tree structure. After showing a new criterion for the spectrum candidate with a tree structure to be a spectrum of $\mu_{N, D}$, three sufficient and necessary conditions for the spectrum candidate with a tree structure to be a spectrum of $\mu_{N, D}$ were obtained. This result extends the conclusion of Łaba and Wang. As an application, an example of spectrum candidate $\Lambda(N, \mathcal{B})$ with the tree structure associated with a self-similar measure is given. By our results, we obtain that $\Lambda(N, \mathcal{B})$ is a spectrum of the self-similar measure. However, neither the method of Łaba and Wang nor that of Strichartz is applicable to the set $\Lambda(N, \mathcal{B})$.

Keywords: spectrality; tree structure; self-similar measure; orthogonal basis

MSC: 42C05; 42A65; 28A78; 28A80

1. Introduction

Let μ be a probability measure on \mathbb{R}^{d} with compact support K. We say that μ is a spectral measure if there exists a countable set $\Lambda \subset \mathbb{R}^{d}$ such that the set of exponential functions $E_{\Lambda}:=\{\exp 2 \pi i\langle\lambda, x\rangle: \lambda \in \Lambda\}$ is an orthogonal basis of $L^{2}(\mu)$. In this case, Λ is called a spectrum of μ and (μ, Λ) is called a spectral pair. In particular, if μ is the normalized Lebesgue measure restricted on K, we say K is a spectral set.

In [1], Fuglede introduced the notion of a spectral set in the study of the extendability of the commuting partial differential operators and raised the famous conjecture: K is a spectral set if and only if K is a translational tile. Although the conjecture was finally disproven for the case that $K \subset \mathbb{R}^{d}$ with $d \geq 3$ and is still open for \mathbb{R}^{d} with $d \leq 2$, it has led to the development of harmonic analysis, operator theory, tiling theory, convex geometry, etc.

In 1998, Jorgensen and Pedersen [2] discovered the first singular, non-atomic spectral measure-the middle-forth Cantor measure-and proved the middle-third Cantor measure is not a spectral measure. Following this discovery, there has been much research on the spectrality of self-similar (or self-affine) measures and Moran-type self-similar (or self-affine) measures (see for example [3-21] and the references therein).

Consider the iterated function system (IFS) $\left\{\phi_{j}\right\}_{j=1}^{q}$ given by

$$
\phi_{j}(x)=\frac{1}{N}\left(x+d_{j}\right)
$$

where N is an integer with $|N|>1$ and $D=\left\{d_{j}\right\}_{j=1}^{q}$ is a finite subset of \mathbb{R}. It is well known (see [22] or [23]) that there exists a unique probability measure $\mu_{N, D}$ satisfying

$$
\mu_{N, D}(E)=\frac{1}{q} \sum_{j=1}^{q} \mu_{N, D}\left(\phi_{j}^{-1}(E)\right), \text { for Borel set } E \text { of } \mathbb{R} .
$$

The measure $\mu_{N, D}$ is called the self-similar measure of the IFS $\left\{\phi_{j}\right\}_{j=1}^{q}$ and is supported on the set

$$
T(N, D)=\left\{\sum_{k=1}^{\infty} d_{k} N^{-k}: d_{k} \in D, k \geq 1\right\}
$$

which is the attractor of $\left\{\phi_{j}\right\}_{j=1}^{q}$. Given a finite set $S \subset \mathbb{Z}$ with $\sharp S=\sharp D$, we say $\left(\frac{1}{N} D, S\right)$ is a compatible pair if the matrix $\left[\frac{1}{\sqrt{q}} \exp \left(2 \pi i \frac{d}{N} s\right)\right]_{d \in D, s \in S}$ is a unitary matrix. In other words, $\left(\delta_{\frac{1}{N} D^{\prime}} S\right)$ is a spectral pair. For a finite set A in \mathbb{R},

$$
\delta_{A}:=\frac{1}{\sharp A} \sum_{a \in A} \delta_{a}
$$

where δ_{a} is the Dirac measure at a. Write

$$
\Lambda(N, S)=\left\{\sum_{j=0}^{k} s_{j} N^{j}: k \geq 0, s_{j} \in S\right\}
$$

Using the dominated convergence theorem, Strichartz [24] proved that $\mu_{N, D}$ is a spectral measure with a spectrum $\Lambda(N, S)$ under the conditions that $\left(\delta_{\frac{1}{N} D^{\prime}} S\right)$ is a spectral pair with $0 \in S$ and the Fourier transform of $\delta_{\frac{1}{N} D}$ does not vanish on $T(N, S)$. By using the Ruelle transfer operator, Łaba and Wang in [3] removed the condition that the Fourier transform of $\delta_{\frac{1}{N} D}$ does not vanish on $T(N, S)$. Furthermore, they obtained the following conclusion:

Theorem 1. (Łaba and Wang). Let $N \in \mathbb{N}$ with $|N|>1, D \subset \mathbb{Z}$ with $0 \in D$, and $\operatorname{gcd}(D)=$ $1,0 \in S \subset \mathbb{Z}$. If $\left(\frac{1}{N} D, S\right)$ is a compatible pair, then $\left(\mu_{N, D}, \Lambda(N, S)\right)$ is not a spectral pair if and only if there exist integers $m \geqslant 1,\left\{s_{j}\right\}_{j=0}^{m-1} \subset S$ and $\left\{\eta_{j}\right\}_{j=0}^{m-1} \subset \mathbb{Z} \backslash\{0\}$ such $\eta_{j+1}=N^{-1}\left(\eta_{j}+s_{j}\right)$ for $0 \leqslant j \leqslant m-1$, where $\eta_{m}:=\eta_{0}, s_{m}:=s_{0}$.

It is well known that to prove the spectrality of the invariant measure $\mu_{N, D}$, the first key step is to construct a suitable spectrum candidate. In this process, the set $\Lambda(N, S)=$ $S+N S+N^{2} S+\cdots$ (finite sum) is the natural spectrum candidate to be considered. Form Theorem 1, we conclude that $\Lambda(N, S)$ is not a spectrum of $\mu_{N, D}$ if and only if there is a periodic orbit $\left\{\eta_{j}\right\}_{j=0}^{m-1} \subset \mathbb{Z} \backslash\{0\}$ under the dual IFS $\left\{\psi_{i}(x)=\frac{1}{N}\left(x+s_{i}\right): s_{i} \in S\right\}$. The following example implies that the natural spectrum candidate has a weak point. When $D=\{0,1\}$, the invariant measure $\mu_{2, D}$ is just the Lebesgue measure on the unit interval with the unique spectrum \mathbb{Z}. However, $\Lambda(2,\{0,1\})=\mathbb{N} \neq \mathbb{Z}$ in this case. In other words, the natural candidate $\Lambda(2,\{0,1\})$ is not a spectrum of $\mu_{2, D}$. Actually, any set with form $S+2 S+2^{2} S+\cdots$ (finite sum) is not a spectrum of $\mu_{2, D}$. In this case, one needs to consider the spectrum candidate with a more general form $S_{1}+N S_{2}+N^{2} S_{3}+\cdots$ (finite sum), where $\left(\frac{1}{N} D, S_{i}\right)$ are compatible pairs. Moreover, it is well known that a spectral self-similar (or self-affine) measure has more than one spectrum in general. The results in [7,9-11] show that one may consider spectrum candidates with a tree structure. It is worth mentioning that Li [16] obtained a simplified form of Theorem 1. To the best of our understanding, partial results have been obtained in the case of a higher-dimensional space. Developing the method in [3], Dutkay and Jorgensen [14] obtained a sufficient condition for the spectral pair of self-affine measures, and Li [19] obtained a necessary condition for the natural spectrum candidate to be a spectrum of a self-affine measure.

Motivated by the above results, we considered a class of spectrum candidates with a tree structure (defined in Section 2) and obtained three necessary and sufficient conditions for such spectrum candidates not to be the spectra of $\mu_{N, D}$ (Theorem 2), which generalizes Łaba and Wang's result.

The most difficult part of the proof of Theorem 2 is that the first statement implies the second. For this purpose, we show a new criterion for Λ to be a spectrum of $\mu_{N, D}$. As an application, we give an example involving a self-similar measure μ and a spectrum candidate $\Lambda(N, \mathcal{B})$ with a tree structure in Section 4 . By Theorem 2, we obtain $(\mu, \Lambda(N, \mathcal{B}))$ is a spectral pair. However, neither the criterion of Łaba and Wang (Theorem 1) nor that of Strichartz [24] is applicable to this set $\Lambda(N, \mathcal{B})$.

2. Preliminaries

In this section, we shall recall some basic properties of spectral measures and introduce the tree structure using symbolic space.

Let μ be a probability measure on \mathbb{R}. The Fourier transform of μ is defined by

$$
\hat{\mu}(\xi)=\int e^{-2 \pi i \xi x} \mathrm{~d} \mu(x), \quad x \in \mathbb{R}
$$

We write $\mathcal{Z}(\hat{\mu})=\{\xi: \hat{\mu}(\xi)=0\}$. For a discrete set $\Lambda \subset \mathbb{R}$, write $E_{\Lambda}=\{\exp (2 \pi i x \lambda)$: $\lambda \in \Lambda\}$ for a family of exponential functions in $L^{2}(\mu)$. Then, E_{Λ} is an orthogonal family of $L^{2}(\mu)$ if and only if

$$
\Lambda-\Lambda \subset \mathcal{Z}(\hat{\mu}) \cup\{0\}
$$

Define

$$
Q_{\Lambda}(\xi)=\sum_{\lambda \in \Lambda}|\hat{\mu}(\lambda+\xi)|^{2}, x \in \mathbb{R}
$$

By using the Parseval identity, Jorgenson and Pederson ([2]) obtained the following basic criterion for the orthogonality of E_{Λ} in $L^{2}(\mu)$.

Proposition 1. The exponential function set E_{Λ} is an orthogonal set of $L^{2}(\mu)$ if and only if $Q_{\Lambda}(\xi) \leq 1$ for all $\xi \in \mathbb{R}$, and E_{Λ} is an orthogonal basis of $L^{2}(\mu)$ if and only if $Q_{\Lambda}(\xi)=1$ for all $\xi \in \mathbb{R}$.

Given a finite set $D \subset \mathbb{R}$, we call

$$
m_{D}(\xi)=\frac{1}{\sharp D} \sum_{d \in D} \exp (2 \pi i \xi d), \quad \xi \in \mathbb{R}
$$

the mask of D. It is clear that it is just the Fourier transformation of the uniform probability measure on D.

Definition 1. For two finite subsets D and S of \mathbb{R} with the same cardinality m, we say (D, S) is a compatible pair if

$$
\left[\frac{1}{\sqrt{m}} \exp (2 \pi i d s)\right]_{d \in D, s \in S}
$$

is a unitary matrix.
The following conclusion is well known.
Lemma 1. For two finite subsets D and S of \mathbb{R} with the same cardinality m, the following statements are equivalent:
(i). (D, S) is a compatible pair;
(ii). $m_{D}\left(s_{1}-s_{2}\right)=0$ for any $s_{1} \neq s_{2} \in S$;
(iii). $\sum_{s \in S}\left|m_{D}(\xi+s)\right|^{2}=1$ for any $\xi \in \mathbb{R}$.

In other words, (D, S) is a compatible pair if and only if S is a spectrum of the uniform probability measure on D.

Let N be an integer with $|N|>1$ and $D=\left\{d_{j}\right\}_{j=1}^{q}$ a finite subset of \mathbb{Z} with $0 \in D$. We denote by $\mu_{N, D}$ the unique invariant measure with respect to the IFS $\left\{\phi_{j}(x)=\frac{1}{N}\left(x+d_{j}\right)\right.$: $1 \leq j \leq q\}$ with equal probability weights, i.e.,

$$
\mu_{N, D}=\frac{1}{q} \sum_{j=1}^{q} \mu_{N, D} \circ \phi_{j}^{-1} .
$$

In the sequel, we write $\mu=\mu_{N, D}$ for simplicity. Thus, we have

$$
\hat{\mu}(\xi)=\prod_{j=1}^{\infty} m_{D}\left(N^{-j} \xi\right), \quad \xi \in \mathbb{R}
$$

For $k \geq 1$, we write

$$
\begin{equation*}
\hat{\mu}_{k}(\xi)=\prod_{j=1}^{k} m_{D}\left(N^{-j} \xi\right), \quad \xi \in \mathbb{R} \tag{1}
\end{equation*}
$$

Write $Y\left(m_{D}\right)=\left\{\xi \in \mathbb{R}: m_{D}(\xi)=1\right\}$. When $\operatorname{gcd}(D)=1$, we have

$$
\begin{equation*}
Y\left(m_{D}\right)=\left\{\xi \in \mathbb{R}:\left|m_{D}(\xi)\right|=1\right\}=\mathbb{Z} \tag{2}
\end{equation*}
$$

Now, we introduce the tree structure. First, we recall some basic notation of symbolic space. Given a positive integer $q>1$, write $\Sigma_{q}=\{0,1, \cdots, q-1\}$. Let $\Sigma^{*}=\bigcup_{n=0}^{\infty} \Sigma_{q}^{n}$ stand for the set of all finite words, where $\Sigma_{q}^{0}=\{\vartheta\}$ denotes the set of empty words. The length of a finite word σ is the number of symbols it contains and is denoted by $|\sigma|$. The concatenation of two finite words σ and σ^{\prime} is written as $\sigma \sigma^{\prime}$. We say σ is a prefix of $\sigma \sigma^{\prime}$. Given $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n} \in \Sigma^{*}$ and $1 \leq k \leq n$, write $\left.\sigma\right|_{k}=\sigma_{1} \cdots \sigma_{k}$. The following definition will bring convenience to us.

Definition 2. A sequence of finite words $\left\{I_{n}\right\}_{n \geq 1} \subset \Sigma^{*}$ is called increasing if for any $n \geq 1, I_{n}$ is a prefix of I_{n+1} and $\left|I_{n+1}\right|=\left|I_{n}\right|+1$.

Let \mathcal{C} be a mapping from Σ^{*} to \mathbb{Z} satisfying $\mathcal{C}(\vartheta)=0$ and $\mathcal{C}(I)=0$ if I ends with the symbol 0 . It induces a family of mapping $\mathcal{F}=\left\{F_{I}\right\}_{I \in \Sigma^{*}}$ defined by

$$
\begin{aligned}
F_{I}: \Sigma^{*} & \longrightarrow \mathbb{Z} \\
& J \longmapsto \mathcal{C}\left(\left.I J\right|_{1}\right)+N \mathcal{C}\left(\left.I J\right|_{2}\right)+\cdots+N^{|J|-1} \mathcal{C}(I J),
\end{aligned}
$$

where $\left.I J\right|_{i}$ is the concatenation of I and $J \mid i$ for $1 \leq i \leq|J|$. We write $F(J)=F_{\vartheta}(J)$ for convenience. By a simple deduction, we have the following consistency: for any $I, J, K \in \Sigma^{*}$,

$$
\begin{aligned}
& F_{I}(J)+N^{|J|} F_{I J}(K) \\
= & \mathcal{C}\left(\left.I J\right|_{1}\right)+\cdots+N^{|J|-1} \mathcal{C}(I J)+N^{|J|} \mathcal{C}\left(\left.I J K\right|_{1}\right)+\cdots+N^{|J K|-1} \mathcal{C}(I J K) \\
= & F_{I}(J K) .
\end{aligned}
$$

Definition 3. We say a countable set $\Lambda \subset \mathbb{R}$ has a $(\mathcal{C}, \mathcal{F})$ tree structure if there exists a mapping \mathcal{C} and an associated family of mappings \mathcal{F} defined in the above paragraph such that

$$
\Lambda=\bigcup_{I \in \Sigma^{*}}\{F(I)\}
$$

For $I \in \Sigma^{*}$, let $S_{I}=\left\{\mathcal{C}(I i): i \in \Sigma_{q}\right\}$. According to the definition of the mapping \mathcal{C}, we have $\mathcal{C}(I 0)=0 \in S_{I}$.

Remark 1. Given a sequence of finite sets $\mathcal{S}=\left\{S_{n}\right\}_{n \geq 1}$, if $S_{I}=S_{n+1}$ for any $I \in \Sigma^{n}(n \geq 0)$, we obtain

$$
\Lambda=S_{1}+N S_{2}+N^{2} S_{3} \cdots .
$$

In particular, if $S_{n}=S$ for $n \geq 1$, we obtain

$$
\Lambda=S+N S+N^{2} S \cdots,
$$

which is just the case considered by Łaba and Wang in [3].
In this paper, we consider a countable set Λ as a spectrum candidate satisfying the following three conditions:
(C1). Λ has a $(\mathcal{C}, \mathcal{F})$ tree structure.
(C2). For any $I \in \Sigma^{*},\left(\frac{1}{N} D, S_{I}\right)$ is a compatible pair.
(C3). The set $\widetilde{S}=\bigcup_{I \in \Sigma^{*}} S_{I}$ is bounded.
Remark 2. Since we only assume that $\left(\frac{1}{N} D, S_{I}\right)$ is a compatible pair with $S_{I}=\{\mathcal{C}(I i)$: $\left.i \in \Sigma_{q}\right\}$, the map \mathcal{C} may not be a maximal mapping defined in [8] (Definition 2.5) even if $D=\{0,1, \cdots, q-1\}$.

Now, we exploit some basic properties of Λ satisfying the conditions (C1),(C2), and (C3). The first one is the uniqueness of the tree representation.

Proposition 2. Let $N \in \mathbb{Z}$ with $|N|>1$ and $D \subset \mathbb{Z}$ with $0 \in D$ and $\operatorname{gcd}(D)=1$. Assume that a countable set Λ satisfies the conditions (C1), (C2), and (C3). Then, for any $I \in \Sigma_{q}^{*}$ and $J, K \in \Sigma_{q}^{n}$ with $n \geqslant 0$, we have $F_{I}(J)=F_{I}(K)$ if and only if $J=K$.

Proof. We just prove the necessity. Suppose there exist $I \in \Sigma_{q}^{*}$ and $J \neq K \in \Sigma_{q}^{n}$ with $n \geqslant 1$ such that $F_{I}(J)=F_{I}(K)$. Let l be the smallest integer with $\left.J\right|_{l} \neq\left. K\right|_{l}$. From $F_{I}(J)=F_{I}(K)$, it follows that

$$
N^{l-1} \mathcal{C}\left(\left.I J\right|_{l}\right)+\cdots+N^{n-1} \mathcal{C}(I J)=N^{l-1} \mathcal{C}\left(\left.I K\right|_{l}\right)+\cdots+N^{n-1} \mathcal{C}(I K)
$$

which implies $\mathcal{C}\left(\left.I J\right|_{l}\right) \equiv \mathcal{C}\left(\left.I K\right|_{l}\right)(\bmod N)$. Noting $\mathcal{C}\left(\left.I J\right|_{l}\right), \mathcal{C}\left(\left.I K\right|_{l}\right) \in S_{\left.I J\right|_{l-1}}$, we obtain $\left(\frac{1}{N} D, S_{\left.I J\right|_{l-1}}\right)$ is not a compatible pair, which is a contradiction to the condition (C2).

Proposition 3. Let $N \in \mathbb{Z}$ with $|N|>1$ and $D \subset \mathbb{Z}$ with $0 \in D$ and $\operatorname{gcd}(D)=1$. Assume that a countable set Λ satisfies the conditions (C1),(C2), and (C3). Then, $E(\Lambda)$ is an orthogonal set of $L^{2}(\mu)$.

Proof. Given $\alpha \neq \beta \in \Lambda$, there exist two finite words $I, J \in \Sigma^{*}$ such that

$$
\alpha=F(I), \quad \beta=F(J) .
$$

If $|I| \neq|J|$, we add symbol 0 in the end of I or J to obtain $|I|=|J|$. Without loss of generality, we assume that $I, J \in \Sigma_{q}^{n}$ for some integer n. Let l be the smallest positive integer satisfying $\left.I\right|_{l} \neq\left. J\right|_{l}$. Recall that $F\left(\left.I\right|_{l}\right)=\mathcal{C}\left(\left.I\right|_{1}\right)+N \mathcal{C}\left(\left.I\right|_{2}\right) \cdots+N^{l-1} \mathcal{C}\left(\left.I\right|_{l}\right)$. Then, there exists an integer z_{0} such that

$$
N^{-l}\left(F\left(\left.I\right|_{l}\right)-F\left(\left.J\right|_{l}\right)\right)=\frac{1}{N}\left(\mathcal{C}\left(\left.I\right|_{l}\right)-\mathcal{C}\left(\left.J\right|_{l}\right)\right)+z_{0}
$$

By virtue of the condition (C2), we know that $\left(\frac{1}{N} D, S_{\left.I\right|_{l-1}}\right)$ is a compatible pair. Noting that both $\mathcal{C}\left(\left.I\right|_{l}\right)$ and $\mathcal{C}\left(\left.J\right|_{l}\right)$ belong to $S_{\left.I\right|_{l-1}}$, we obtain
$m_{D}\left(N^{-l}\left(F\left(\left.I\right|_{l}\right)-F\left(\left.J\right|_{l}\right)\right)\right)=m_{D}\left(\frac{1}{N}\left(\mathcal{C}\left(\left.I\right|_{l}\right)-\mathcal{C}\left(\left.J\right|_{l}\right)+z_{0}\right)=m_{D}\left(\frac{1}{N}\left(\mathcal{C}\left(\left.I\right|_{l}\right)-\mathcal{C}\left(\left.J\right|_{l}\right)\right)\right)=0\right.$.
This leads to

$$
\begin{aligned}
& \hat{\mu}(\alpha-\beta)=\hat{\mu}(F(I)-F(J)) \\
= & \prod_{j=1}^{l-1} m_{D}\left(N^{-j}(F(I)-F(J))\right) m_{D}\left(N^{-l}\left(F\left(\left.I\right|_{l}\right)-F\left(\left.J\right|_{l}\right)\right)\right) \prod_{j=l+1}^{\infty}\left(N^{-j}(F(I)-F(J))\right) \\
= & 0 .
\end{aligned}
$$

For any $I \in \Sigma_{q}^{*}$ and $k \geqslant 1$, define

$$
\Lambda_{I}=\left\{F_{I}(J): J \in \Sigma^{*}\right\} \quad \text { and } \quad \Lambda_{I}^{k}:=\left\{F_{I}(J): J \in \Sigma_{q}^{k}\right\} .
$$

We write $\Lambda^{k}:=\Lambda_{\vartheta}^{k}$ for simplicity. It is clear that

$$
\Lambda_{I}^{k} \subsetneq \Lambda_{I}^{k+1}
$$

From the condition (C2) and Lemma 1(ii), it follows that $E\left(\Lambda_{I}^{k}\right)$ is an orthogonal set of $L^{2}\left(\mu_{k}\right)$. By (2), we obtain \# $\Lambda_{I}^{k}=q^{k}$. Noting the fact that $\operatorname{dim}\left(L^{2}\left(\mu_{k}\right)\right)=q^{k}$, we conclude that $E\left(\Lambda_{I}^{k}\right)$ is an orthogonal basis of $L^{2}\left(\mu_{k}\right)$. In other words, Λ_{I}^{k} is a spectrum of μ_{k}. By Lemma 1, we have

$$
\begin{equation*}
\sum_{\lambda \in \Lambda_{I}^{k}} \prod_{j=1}^{k}\left|m_{D}\left(N^{-j}(\xi+\lambda)\right)\right|^{2}=\sum_{\lambda \in \Lambda_{I}^{k}}\left|\hat{\mu}_{k}(\xi+\lambda)\right|^{2} \equiv 1, \quad \forall \xi \in \mathbb{R} . \tag{3}
\end{equation*}
$$

In fact, we have the following conclusion.
Proposition 4. Let $N \in \mathbb{Z}$ with $|N|>1$ and $D \subset \mathbb{Z}$ with $0 \in D$ and $\operatorname{gcd}(D)=1$. Assume that a countable set Λ satisfies the conditions (C1), (C2), and (C3). Then, $Q_{\Lambda}(\xi) \equiv 1$ if and only if $Q_{\Lambda_{I}}(\xi) \equiv 1$ for any $I \in \Sigma^{*}$,

Proof. By virtue of $\Lambda_{\vartheta}=\Lambda$, the sufficiency is obvious.
Next, we prove the necessity. Given $n \geq 1$ and $I \in \Sigma_{q}^{n}$, write $B_{I}=\{\xi+F(I): \xi \in[0,1]\}$ and $\widetilde{B}_{I}=\left\{N^{-n}(\xi+F(I)): \xi \in[0,1]\right\}$. It is easy to see that both B_{I} and \widetilde{B}_{I} are compact sets. Noting the fact that $\hat{\mu}_{n}$ can be extended to be an entire function on the complex plane, $\hat{\mu}_{n}$ has at most finitely many zero points in B_{I}. On the other hand, recall that

$$
\Lambda=\bigcup_{I \in \Sigma_{q}^{n}} \bigcup_{J \in \Sigma^{*}}\left(F(I)+N^{n} F_{I}(J)\right), \quad n \geq 1
$$

Noting the fact that every integer is a period of m_{D}, we have $\hat{\mu}_{n}(\xi+F(I J))=\hat{\mu}_{n}(\xi+F(I))$ for any $I \in \Sigma_{q}^{n}$ and $J \in \Sigma_{q}^{*}$. Hence,

$$
\begin{align*}
Q_{\Lambda}(\xi) & =\sum_{\lambda \in \Lambda}\left|\hat{\mu}_{n}(\xi+\lambda)\right|^{2}\left|\hat{\mu}\left(N^{-n}(\xi+\lambda)\right)\right|^{2} \\
& =\sum_{I \in \Sigma_{q}^{n}} \sum_{J \in \Sigma^{*}}\left|\hat{\mu}_{n}(\xi+F(I))\right|^{2}\left|\hat{\mu}\left(N^{-n}\left(\xi+F(I)+N^{n} F_{I}(J)\right)\right)\right|^{2} \\
& =\sum_{I \in \Sigma_{q}^{n}}\left|\hat{\mu}_{n}(\xi+F(I))\right|^{2} \sum_{J \in \Sigma^{*}}\left|\hat{\mu}\left(N^{-n}(\xi+F(I))+F_{I}(J)\right)\right|^{2} \tag{4}\\
& =\sum_{I \in \Sigma_{q}^{n}}\left|\hat{\mu}_{n}(\xi+F(I))\right|^{2} Q_{\Lambda_{I}}\left(N^{-n}(\xi+F(I))\right) .
\end{align*}
$$

In combination with (3), this means $Q_{\Lambda_{I}}(\xi)$ takes 1 on except at most finitely many points in \widetilde{B}_{I}, which implies $Q_{\Lambda_{I}}(\xi) \equiv 1$ by using the continuity of $Q_{\Lambda_{I}}(\xi)$.

In the end of this section, we define the dual IFS $\left\{\Phi_{s}(x)=\frac{1}{N}(x+s): s \in \widetilde{S}\right\}$, which plays an important role in what follows. Let T be the invariant set of the IFS, i.e.,

$$
T=\bigcup_{s \in \widetilde{S}} \Phi_{s}(T)
$$

Define $\mathcal{Z}(\hat{\mu}, T)=\mathcal{Z}(\hat{\mu}) \cap T$, which stands for the zero point set of $\hat{\mu}$ on T. It is clear that $p:=\# \mathcal{Z}(\hat{\mu}, T)$ is finite.

3. Main Theorem

In this section, we will give our main results involving three equivalent statements. To prove the most difficult part of the proof, we prepared several lemmas including a new criterion for a spectrum candidate with a tree structure to be a spectrum of a self-similar measure. At the end of this section, we show that the new criterion is just a sufficient and necessary condition, which is stated as a corollary .

Theorem 2. Let $N \in \mathbb{Z}$ with $|N|>1$ and $D \subset \mathbb{Z}$ with $0 \in D$ and $\operatorname{gcd}(D)=1$. Assume that a countable set Λ satisfies the conditions (C1),(C2), and (C3). Then, the following statements are equivalent:
(i). (μ, Λ) is not a spectral pair.
(ii). There exists a finite word $I \in \Sigma^{*}$ such that $\inf _{\xi \in T} Q_{\Lambda_{I}}(\xi)=0$.
(iii). There exist a finite word $J \in \Sigma^{*}$, a sequence of nonzero integers $\left\{\beta_{l}\right\}_{l \geq 1} \subset \mathbb{Z}, \backslash\{0\}$ and a sequence of increasing finite words $\left\{J i_{1} \cdots i_{l}\right\}_{l \geq 1} \subset \Sigma^{*}$, which has a prefix J such that, for any $l \geq 1$, we have $\beta_{l+1}=\frac{1}{N}\left(\beta_{l}+\mathcal{C}\left(J i_{1} \cdots i_{l}\right)\right)$.

We shall divide the proof into three parts (iii) \Rightarrow (i), (i) \Rightarrow (ii), and (ii) \Rightarrow (iii).
First, we prove (iii) \Rightarrow (i), which plays a key role in the proof of (i) \Rightarrow (ii).
Proof of Theorem 2 (iii) \Rightarrow (i). We shall prove $Q_{\Lambda_{J}}\left(\beta_{1}\right)=0$. Thus, from Proposition 4, the conclusion follows.

Given $\lambda \in \Lambda_{I}$, there exists a positive integer $m \geqslant 1$ and $L \in \Sigma_{q}^{m}$ such that

$$
\lambda=F_{I}(L) \in \Lambda_{I}^{m}
$$

Since the sequence $\left\{\beta_{l}\right\}_{l \geq 1}$ is nonzero, the sequence of integers $\left\{\mathcal{C}\left(J i_{1} \cdots i_{l}\right)\right\}_{l \geqslant 1}$ has infinitely many nonzero terms. Thus, there exist infinitely many terms l with $i_{l} \neq 0$. Take an integer $r>m$ with $i_{r} \neq 0$. Write $\lambda^{*}:=F_{J}(K) \in \Lambda_{J}^{r}$. According to Proposition 2 and $i_{r} \neq 0$, we have $\lambda \neq \lambda^{*}$ and $\lambda \in \Lambda_{J}^{m} \subset \Lambda_{J}^{r}$. From $\beta_{k+1}=N^{-1}\left(\beta_{k}+\mathcal{C}\left(J i_{1} \cdots i_{k}\right)\right)(k \geqslant 1)$, it follows that

$$
\begin{aligned}
\beta_{1}+\lambda^{*} & =N\left(\beta_{2}+\mathcal{C}\left(\left.J K\right|_{2}\right)+N \mathcal{C}\left(\left.J K\right|_{3}\right)+\cdots+N^{r-2} \mathcal{C}(J K)\right) \\
& =\cdots \\
& =N^{r} \beta_{r+1} \in N^{r} \mathbb{Z}
\end{aligned}
$$

which implies $\left|\widehat{\mu_{r}}\left(\beta_{1}+\lambda^{*}\right)\right|^{2}=1$. Noting (3) and $\lambda \neq \lambda^{*}$, we have

$$
1 \leqslant\left|\widehat{\mu_{r}}\left(\beta_{1}+\lambda^{*}\right)\right|^{2}+\left|\widehat{\mu_{r}}\left(\beta_{1}+\lambda\right)\right|^{2} \leqslant \sum_{\gamma \in \Lambda_{J}^{r}}\left|\widehat{\mu_{r}}\left(\beta_{1}+\gamma\right)\right|^{2}=1,
$$

Thus, we obtain $\left|\widehat{\mu_{r}}\left(\beta_{1}+\lambda\right)\right|=0$. Hence,

$$
\left|\hat{\mu}\left(\beta_{1}+\lambda\right)\right|=0, \quad \forall \lambda \in \Lambda_{J}
$$

It follows that $Q_{\Lambda_{J}}\left(\beta_{1}\right)=\sum_{\lambda \in \Lambda_{J}}\left|\hat{\mu}\left(\beta_{1}+\lambda\right)\right|^{2}=0$.
The following three lemmas play key roles in the proof of Theorem 2 (i) \Rightarrow (ii). First, we show a new criterion for Λ to be a spectrum of μ.

Lemma 2. Let $N \in \mathbb{Z}$ with $|N|>1$ and $D \subset \mathbb{Z}$ with $0 \in D$ and $\operatorname{gcd}(D)=1$. Assume that a countable set Λ satisfies the conditions (C1), (C2), and (C3). If there exists a positive number $c>0$ such that, for any ξ and $I \in \Sigma^{*}$, there is $\lambda_{\xi, I} \in \Lambda_{I}$ satisfying

$$
\left|\widehat{\mu}\left(N^{-|I|}(\xi+F(I))+\lambda_{\xi, I}\right)\right| \geq c,
$$

then (μ, Λ) is a spectral pair.
Proof. Suppose (μ, Λ) is not a spectral pair. Then, there exists $\xi_{0} \in T$ such that $Q_{\Lambda}\left(\xi_{0}\right)<1$.
Recall that $\Lambda^{n}=\left\{\mathcal{C}\left(\left.J\right|_{1}\right)+N \mathcal{C}\left(\left.J\right|_{2}\right)+\cdots+N^{n-1} \mathcal{C}(J): J \in \Sigma_{q}^{n}\right\}$ for $n \geq 1$. We write $Q_{n}\left(\xi_{0}\right):=\sum_{\lambda \in \Lambda^{n}}\left|\hat{\mu}\left(\xi_{0}+\lambda\right)\right|^{2}$. By virtue of $\lim _{n \rightarrow \infty} \Lambda^{n}=\Lambda$ and $\Lambda_{n} \subset \Lambda_{n+1}$ for $n \geq 1$, we obtain

$$
\lim _{n \rightarrow \infty} Q_{n}\left(\xi_{0}\right)=Q_{\Lambda}\left(\xi_{0}\right) \text { and } Q_{n}\left(\xi_{0}\right) \leqslant Q_{n+1}\left(\xi_{0}\right)
$$

Given a positive number ε with $\varepsilon<\frac{1}{2}\left(1-Q_{\Lambda}\left(\xi_{0}\right)\right)$, there exists an integer $M \geqslant 1$ such that

$$
\begin{equation*}
Q_{\Lambda}\left(\xi_{0}\right)-\varepsilon \leqslant Q_{M}\left(\xi_{0}\right) \leqslant Q_{n}\left(\xi_{0}\right) \leqslant Q_{\Lambda}\left(\xi_{0}\right)<1, \quad \forall n \geqslant M . \tag{5}
\end{equation*}
$$

By (1), we have

$$
\lim _{m \rightarrow \infty} \hat{\mu}_{m}\left(\xi_{0}+\lambda\right)=\hat{\mu}\left(\xi_{0}+\lambda\right), \quad \forall \lambda \in \Lambda .
$$

In combination with (5), we have a positive integer $K \geqslant M+1$ such that

$$
\sum_{\lambda \in \Lambda^{M}}\left|\hat{\mu}_{K}\left(\xi_{0}+\lambda\right)\right|^{2} \leqslant \sum_{\lambda \in \Lambda^{M}}\left|\hat{\mu}\left(\xi_{0}+\lambda\right)\right|^{2}+\varepsilon \leqslant Q_{\Lambda}\left(\xi_{0}\right)+\varepsilon .
$$

According to (3), we have $\sum_{\lambda \in \Lambda^{K}}\left|\hat{\mu}_{K}\left(\xi_{0}+\lambda\right)\right|^{2}=1$. Thus,

$$
\begin{align*}
\sum_{I \in \Sigma_{q}^{K} \backslash \Sigma_{q}^{M}}\left|\hat{\mu}_{K}\left(\xi_{0}+F(I)\right)\right|^{2} & =\sum_{\lambda \in \Lambda^{K}}\left|\hat{\mu}_{K}\left(\xi_{0}+\lambda\right)\right|^{2}-\sum_{\lambda \in \Lambda^{M}}\left|\hat{\mu}_{K}\left(\xi_{0}+\lambda\right)\right|^{2} \tag{6}\\
& \geqslant 1-Q_{\Lambda}\left(\xi_{0}\right)-\varepsilon>0 .
\end{align*}
$$

For any $I \in \Sigma_{q}^{K} \backslash \Sigma_{q}^{M}$, there exists $\lambda_{\xi_{0}, I} \in \Lambda_{I}$ such that

$$
\begin{equation*}
\left|\hat{\mu}\left(N^{-K}\left(\xi_{0}+F(I)\right)+\lambda_{\xi_{0}, I}\right)\right|>c . \tag{7}
\end{equation*}
$$

Write $\widetilde{\Lambda}=\left\{F(I)+N^{K} \lambda_{\tilde{\xi}_{0}, I}: I \in \Sigma_{q}^{K} \backslash \Sigma_{q}^{M}, \lambda_{\tilde{\xi}_{0}, I} \in \Lambda_{I}\right\}$. It is clear that $\widetilde{\Lambda} \subset \Lambda$. Since $\left(\frac{1}{N} D, S_{I}\right)$ is a compatible pair for any $I \in \Sigma^{*}, \mathcal{C}(I)=0$ if and only if the finite word I ends with the symbol 0 . Then, we have

$$
\Lambda^{M} \cap \tilde{\Lambda}=\varnothing
$$

In combination with (5)-(7), we obtain

$$
\begin{aligned}
& Q_{\Lambda}\left(\tilde{\xi}_{0}\right)=\sum_{\lambda \in \Lambda}\left|\hat{\mu}\left(\xi_{0}+\lambda\right)\right|^{2} \\
& \geq \sum_{\lambda \in \Lambda^{M}}\left|\hat{\mu}\left(\tilde{\xi}_{0}+\lambda\right)\right|^{2}+\sum_{\lambda \in \tilde{\Lambda}}\left|\hat{\mu}\left(\xi_{0}+\lambda\right)\right|^{2} \\
& =\sum_{\lambda \in \Lambda^{M}}\left|\hat{\mu}\left(\xi_{0}+\lambda\right)\right|^{2}+\sum_{I \in \Sigma^{K} \backslash \Sigma^{M}}\left|\hat{\mu}\left(\tilde{\xi}_{0}+F(I)+N^{K} \lambda_{\tilde{\xi}_{0}, I}\right)\right|^{2} \\
& =\sum_{\lambda \in \Lambda^{M}}\left|\hat{\mu}\left(\tilde{\xi}_{0}+\lambda\right)\right|^{2}+\sum_{I \in \Sigma^{K} \backslash \Sigma^{M}}\left|\hat{\mu}_{K}\left(\tilde{\xi}_{0}+F(I)\right)\right|^{2} \mid \hat{\mu}\left(N^{-K}\left(\tilde{\xi}_{0}+F(I)\right)+\left.\lambda_{\xi_{0}, I}\right|^{2}\right. \\
& \geqslant Q_{\Lambda}\left(\xi_{0}\right)-\varepsilon+c^{2} \sum_{I \in \Sigma^{K} \backslash \Sigma^{M}}\left|\hat{\mu}_{K}\left(\xi_{0}+F(I)\right)\right|^{2} \\
& \geqslant Q_{\Lambda}\left(\tilde{\xi}_{0}\right)-\varepsilon+c^{2}\left(1-Q_{\Lambda}\left(\tilde{\xi}_{0}\right)-\varepsilon\right) .
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$, we obtain

$$
0 \geqslant c^{2}\left(1-Q_{\Lambda}\left(\xi_{0}\right)\right),
$$

which is a contradiction to $\left.Q_{\Lambda}\left(\xi_{0}\right)\right)<1$.
To use Lemma 2, we need the following lemma, which implies that, under some conditions for any point in T, there exists a path that escapes from $\mathcal{Z}(\hat{\mu}, T)$.

Lemma 3. Let $N \in \mathbb{Z}$ with $|N|>1$ and $D \subset \mathbb{Z}$ with $0 \in D$ and $\operatorname{gcd}(D)=1$. Assume that a countable set Λ satisfies the conditions (C1), (C2), and (C3) and $\inf _{\xi \in T} Q_{\Lambda_{I}}(\xi)>0$ for any $I \in \Sigma_{q}^{*}$. If $\mathcal{Z}(\hat{\mu}, T) \neq \varnothing$ and for any $\alpha \in \mathcal{Z}(\hat{\mu}, T)$ and $I \in \Sigma^{*}$, there exists no $K \in \Sigma^{*}$ with $\alpha+F_{I}(K)=0$, then for any $\xi \in T$, there exist two nonnegative integers w and v with $1 \leqslant v \leqslant p+1$ and a finite word $J=j_{1} \cdots j_{w+v} \in \Sigma_{q}^{*}$ satisfying the following property:

If $w=0$, we have

$$
0<\left|m_{D}\left(N^{-l}\left(\xi+F_{I}\left(\left.J\right|_{l}\right)\right)\right)\right|<1, \quad 1 \leqslant l \leqslant v,
$$

and $\left|\hat{\mu}\left(N^{-v}\left(\xi+F_{I}(J)\right)\right)\right|>0$;
If $w>0$, we have

$$
\begin{aligned}
& m_{D}\left(N^{-l}\left(\xi+F_{I}\left(\left.J\right|_{l}\right)\right)\right)=1, \quad 1 \leqslant l \leqslant w \\
& 0<\left|m_{D}\left(N^{-l}\left(\xi+F_{I}\left(\left.J\right|_{l}\right)\right)\right)\right|<1, \quad w+1 \leqslant l \leqslant w+v
\end{aligned}
$$

and $\left|\hat{\mu}\left(N^{-w-v}\left(\xi+F_{I}(J)\right)\right)\right|>0$.
Proof. First, we shall prove the existence of w. If $T \cap \mathbb{Z}=\varnothing$, we take $w=0$. If $T \cap \mathbb{Z} \neq \varnothing$, since $\left(\frac{1}{N} D, S_{I}\right)$ is a compatible pair, by Lemma 1 (iii), there exists $j_{1} \in \Sigma_{q}$ such that

$$
\begin{equation*}
\left|m_{D}\left(N^{-1}\left(\xi+F_{I}\left(j_{1}\right)\right)\right)\right|>0 . \tag{8}
\end{equation*}
$$

If $\left|m_{D}\left(N^{-1}\left(\xi+F_{I}\left(j_{1}\right)\right)\right)\right|<1$, we take $w=0$. If $\left|m_{D}\left(N^{-1}\left(\xi+F_{I}\left(j_{1}\right)\right)\right)\right|=1$, also by Lemma 1(iii), there exists $j_{2} \in \Sigma_{q}$ such that

$$
\left|m_{D}\left(N^{-2}\left(\xi+F_{I}\left(j_{1} j_{2}\right)\right)\right)\right|>0
$$

If $\left|m_{D}\left(N^{-2}\left(\xi+F_{I}\left(j_{1} j_{2}\right)\right)\right)\right|<1$, we take $w=1$. When $\left|m_{D}\left(N^{-2}\left(\xi+F_{I}\left(j_{1} j_{2}\right)\right)\right)\right|=1$, the process goes on. Under the process, we claim that there exists a finite sequence of symbols $\left\{j_{n}\right\}_{n=1}^{w} \subset \Sigma_{q}$ such that

$$
m_{D}\left(N^{-l}\left(\xi+F_{I}\left(j_{1} \cdots j_{l}\right)\right)\right)=1, \quad \forall 1 \leqslant l \leqslant w
$$

and

$$
\begin{equation*}
0<\left|m_{D}\left(N^{-w-1}\left(\xi+F_{I}\left(j_{1} \cdots j_{w+1}\right)\right)\right)\right|<1, \quad \forall j_{w+1} \in \Sigma_{q} . \tag{9}
\end{equation*}
$$

Otherwise, there exists an infinite sequence $\left\{j_{l}\right\}_{l \geqslant 1} \subset \Sigma_{q}$ such that $m_{D}\left(N^{-l}\left(\xi+F_{I}\left(j_{1} \cdots j_{l}\right)\right)\right)$ $=1$ for $l \geqslant 1$. By (2) and the hypothesis of the lemma, we have $N^{-l}\left(\xi+F_{I}\left(j_{1} \cdots j_{l}\right)\right) \in \mathbb{Z} \backslash\{0\}$. According to the proof of Theorem 2(iii) $\Rightarrow(\mathrm{i})$, we obtain $Q_{\Lambda_{I}}(\xi)=0$, which is a contradiction to the condition $\inf _{\tilde{\xi} \in T} Q_{\Lambda_{I}}(\xi)>0$ for any $I \in \Lambda^{*}$.

Next, we shall prove the existence of v. We write $\widetilde{J}:=j_{1} \cdots j_{w}$ and $\eta:=N^{-w}\left(\tilde{\xi}+F_{I}(\widetilde{J})\right)$, where $\widetilde{J}=\vartheta, F_{I}(\widetilde{J})=0$ and $\eta=\xi$ when $w=0$. In what follows, we define a sequence of sets $\left\{Y_{n}\right\}_{n \geq 0}$ by induction on n. Define $Y_{0}=\{\vartheta\}$, and

$$
Y_{n}:=\left\{L \in \Sigma_{q}^{n}:\left.L\right|_{n-1} \in Y_{n-1}, 0<\left|m_{D}\left(N^{-n}\left(\eta+F_{I \widetilde{J}}(L)\right)\right)\right|<1\right\}, \quad n \geq 1
$$

We have the following claim.
Claim: For $n \geq 1$, we have $\# Y_{n} \geqslant 2^{n}$.
Proof. When $n=1$, since $\left(\frac{1}{N} D, S_{I \tilde{J}}\right)$ is a compatible pair, there exist two symbols $l_{1} \neq l_{2} \in \Sigma_{q}$ such that

$$
0<\left|m_{D}\left(N^{-1}\left(\eta+F_{I \tilde{J}}\left(l_{k}\right)\right)\right)\right|<1, \quad 1 \leqslant k \leqslant 2
$$

Thus, we obtain $\# Y_{1} \geqslant 2$. Suppose the inequality $\# Y_{n} \geqslant 2^{n}$ holds as $n=k$. Let $n=k+1$. For any $L \in Y_{k}$, it is clear $\left.L\right|_{1} \in Y_{1}$. By (9), we obtain $N^{-1}\left(\eta+F_{I \widetilde{J}}\left(\left.L\right|_{1}\right)\right) \notin \mathbb{Z}$. Thus, $N^{-k}\left(\eta+F_{I \widetilde{J}}(L)\right) \notin \mathbb{Z}$. Since $\left(\frac{1}{N} D, S_{I \widetilde{J}}\right)$ is a compatible pair, there exist at least two symbols $l_{1} \neq l_{2} \in \Sigma_{q}$ such that

$$
0<\left|m_{D}\left(N^{-n-1}\left(\eta+F_{I \widetilde{J}}\left(L l_{k}\right)\right)\right)\right|<1, \quad 1 \leqslant k \leqslant 2
$$

By the arbitrariness of $L \in Y_{k}$, we obtain $\# Y_{n+1} \geqslant 2^{n+1}$. Hence, the claim follows by induction.
Together with Proposition 2, the above claim implies

$$
\#\left\{N^{-p-1}\left(\alpha+F_{I \widetilde{J}}(L): L \in Y_{p+1}\right\}=\# Y_{p+1} \geqslant 2^{p+1}>p\right.
$$

Thus, by $p=\sharp \mathcal{Z}(\hat{\mu}, T)$, there exists a finite word $L \in Y_{p+1}$ such that

$$
\left|\hat{\mu}\left(N^{-p-1}\left(\eta+F_{I \widetilde{J}}(L)\right)\right)\right|>0 .
$$

Let $v \geqslant 1$ be the smallest positive integer such that $\left|\hat{\mu}\left(N^{-v}\left(\eta+F_{I \tilde{J}}(L)\right)\right)\right|>0$ for some $L=l_{1} \cdots l_{v}$. By taking $J=\widetilde{J} l_{1} \cdots l_{v}$, we finish the proof.

Lemma 4. If $T \cap \mathbb{Z} \neq \varnothing$, then there exists $\alpha_{1}>0$ such that, for any integer sequence $\left\{\theta_{i}\right\}_{i \geqslant 1} \subset$ $T \cap \mathbb{Z}$, we have

$$
\prod_{i=1}^{\infty}\left|m_{D}\left(x_{i}\right)\right| \geqslant \alpha_{1}
$$

where $x_{i} \in B\left(\theta_{i}, N^{-i}\right)$.

Proof. For any $\theta \in T \cap \mathbb{Z}$, we have $m_{D}(\theta)=1$. On the other hand, the mask function m_{D} can be extended to an entire function on the complex plane. Thus, m_{D} is uniformly continuous on any compact set. Hence, there exists a positive number c_{1} such that

$$
\left|1-m_{D}(x)\right|=\left|m_{D}(\theta)-m_{D}(x)\right| \leqslant c_{1}|x-\theta|, \quad \forall x \in\{\xi+y: \xi \in T,|y| \leq 1\}
$$

Given a sequence $\left\{\theta_{i}\right\}_{i \geqslant 1} \subset T \cap \mathbb{Z}$, we have

$$
\left|m_{D}\left(x_{i}\right)\right| \geqslant 1-c_{1}\left|x_{i}-\theta_{i}\right| \geqslant 1-N^{-i} c_{1}, \quad \forall x_{i} \in B\left(\theta_{i}, N^{-i}\right), i \geqslant 1 .
$$

It is clear that there exists a positive integer $K>0$ such that, for $k \geqslant K$, we have $N^{-k} c_{1}<\frac{1}{2}$. Note an elementary inequality:

$$
1-x \geqslant e^{-2 x}, \quad 0 \leq x \leqslant \frac{1}{2}
$$

Then, we have

$$
\begin{align*}
\prod_{i=1}^{\infty}\left|m_{D}\left(x_{i}\right)\right| & =\prod_{i=1}^{K}\left|m_{D}\left(x_{i}\right)\right| \prod_{i=K+1}^{\infty}\left|m_{D}\left(x_{i}\right)\right| \\
& \geqslant\left(\frac{1}{2}\right)^{K} \prod_{i=K+1}^{\infty} e^{-2 c_{1} N^{-i}} \tag{10}\\
& =\left(\frac{1}{2}\right)^{K} e^{\sum_{i=K+1}^{\infty}-2 c_{1} N^{-i}} \\
& =\left(\frac{1}{2}\right)^{K} e^{-2 c_{1} \frac{1}{N^{K}(N-1)}}=: \alpha_{1}>0
\end{align*}
$$

for all $x_{i} \in B\left(\theta_{i}, N^{-i}\right)$. The proof is complete.
Proof of Theorem $2(\mathrm{i}) \Rightarrow($ ii $)$. We expect to obtain a contradiction after assuming

$$
\begin{equation*}
\inf _{\xi \in T} Q_{\Lambda_{I}}(\xi)>0, \quad \forall I \in \Sigma_{q}^{*} \tag{11}
\end{equation*}
$$

We shall prove that there is a positive number $c>0$ such that, for any $\xi \in T$ and $I \in \Sigma^{*}$, there exists $\lambda_{\xi, I} \in \Lambda_{I}$ satisfying

$$
\left|\widehat{\mu}\left(N^{-|I|}(\xi+F(I))+\lambda_{\xi, I}\right)\right| \geq c
$$

If $\mathcal{Z}(\hat{\mu}, T)=\varnothing$, then $\hat{\mu}(\xi)$ has a positive lower bound on compact set T. Write $c:=\inf _{\xi \in T}|\hat{\mu}(\xi)|>0$. For any $\xi \in T$ and $I \in \Sigma_{q}^{*}$, take $\lambda_{\xi, I}=0 \in \Lambda_{I}$. Noting $N^{-|I|}(\xi+$ $F(I)) \in T$, we have

$$
\left|\hat{\mu}\left(N^{-|I|}(\xi+F(I))\right)\right| \geqslant c .
$$

From Lemma 2, it follows that (μ, Λ) is a spectral pair, which is a contradiction to the hypothesis.

Next, we focus on the case $\mathcal{Z}(\hat{\mu}, T) \neq \varnothing$. We shall deal with two cases.
Case i. For any $\eta \in \mathcal{Z}(\hat{\mu}, T)$ and $I \in \Sigma^{*}$, there exists $J \in \Sigma^{*}$ such that

$$
\begin{equation*}
\eta+F_{I}(J)=0 \tag{12}
\end{equation*}
$$

By $|\hat{\mu}(0)|=1$, there exists a positive number δ with $0<\delta_{1}<1$ such that

$$
\begin{equation*}
|\hat{\mu}(x)|>\frac{1}{2}, \quad \forall x \in B\left(0, \delta_{1}\right) \tag{13}
\end{equation*}
$$

Write $\delta:=\min \left\{\delta_{1}, \frac{d}{4}\right\}$, where d denotes the smallest distance between different points in $\mathcal{Z}(\hat{\mu}, T) \cup(T \cap \mathbb{Z})$, i.e., $d:=\min \{|x-y|: x \neq y \in \mathcal{Z}(\hat{\mu}, T) \cup T \cap \mathbb{Z}\}$.

We denote the set of points that has a positive distance from the zero points of $\hat{\mu}(\xi)$ in T by

$$
P:=T \backslash\left(\bigcup_{\theta \in \mathcal{Z}(\hat{\mu}, T)} B(\theta, \delta)\right) .
$$

It is clear that P is a compact set and $\alpha_{0}:=\inf _{\xi \in P}|\hat{\mu}(\xi)|>0$. Write $\alpha:=\min \left\{\frac{1}{2} \alpha_{1}, \alpha_{0}\right\}$. Given $\xi \in T$ and $I \in \Sigma^{*}$, define $\widetilde{\xi}=N^{-|I|}(\tilde{\xi}+F(I))$.

If $\widetilde{\xi} \in P$, we take $\lambda_{\xi, I}=0$. Then,

$$
\begin{equation*}
\left|\hat{\mu}\left(N^{-|I|}(\xi+F(I))+\lambda_{\xi, I}\right)\right|=|\hat{\mu}(\widetilde{\xi})| \geq \alpha_{0} \geq \alpha \tag{14}
\end{equation*}
$$

If $\widetilde{\xi} \notin P$, by the definition of P, there exists a unique $\theta \in \mathcal{Z}(\hat{\mu}, T) \subset T \backslash\{0\}$ such that $\widetilde{\xi} \in B(\theta, \delta)$. According to (12), there exists $J \in \Sigma^{*}$ such that

$$
\begin{equation*}
\theta+F_{I}(J)=0 \tag{15}
\end{equation*}
$$

Take $\lambda_{\xi, I}=F_{I}(J)$. Then, we have

$$
\begin{equation*}
N^{-l}\left(\widetilde{\xi}+F_{I}\left(\left.J\right|_{l}\right)\right) \in B\left(N^{-l}\left(\theta+F_{I}\left(\left.J\right|_{l}\right)\right), N^{-l} \delta\right), \quad 1 \leq l \leq|J| . \tag{16}
\end{equation*}
$$

On the other hand, by (15), we have

$$
N^{-l}\left(\theta+F_{I}\left(\left.J\right|_{l}\right)\right) \in \mathbb{Z} \cap T, \quad 1 \leq l \leq|J| .
$$

In combination with Lemma 4 and (16), this leads to

$$
\begin{equation*}
\prod_{l=1}^{|J|}\left|m_{D}\left(N^{-l}\left(\theta+F_{I}\left(\left.J\right|_{l}\right)\right)\right)\right|>\alpha_{1} . \tag{17}
\end{equation*}
$$

Furthermore, by (16) we have

$$
N^{-|J|}\left(\widetilde{\zeta}+F_{I}(J)\right) \in B\left(N^{-|J|}\left(\theta+F_{I}(J)\right), N^{-|J|} \delta\right) \subset B\left(0, \delta_{1}\right) .
$$

Then, by (13), we have $\left|\hat{\mu}\left(N^{-|J|}\left(\widetilde{\xi}+F_{I}(J)\right)\right)\right| \geq \frac{1}{2}$. Together with (17), this inequality implies

$$
\begin{align*}
\left|\hat{\mu}\left(N^{-|I|}(\xi+F(I))+\lambda_{\xi, I}\right)\right| & =\left|\hat{\mu}\left(\widetilde{\xi}+F_{I}(J)\right)\right| \\
& =\prod_{l=1}^{|J|}\left|m_{D}\left(N^{-l}\left(\theta+F_{I}\left(\left.J\right|_{l}\right)\right)\right)\right|\left|\hat{\mu}\left(N^{-|J|}\left(\widetilde{\xi}+F_{I}(J)\right)\right)\right| \tag{18}\\
& \geqslant \frac{1}{2} \alpha_{1} \\
& \geqslant \alpha .
\end{align*}
$$

Case ii: There exist $\eta^{*} \in \mathcal{Z}(\hat{\mu}, T)$ and $I \in \Sigma^{*}$ such that, for any $J \in \Sigma^{*}$, we have

$$
\begin{equation*}
\eta^{*}+F_{I}(J) \neq 0 . \tag{19}
\end{equation*}
$$

Recall that $\widetilde{S}=\bigcup_{I \in \Sigma^{*}} S_{I}$ and $p=\sharp \mathcal{Z}(\hat{\mu}, T)$. Let

$$
U:=\bigcup_{l=1}^{p+1}\left\{N^{-l}(\theta+\lambda): \lambda \in \widetilde{S}+N \widetilde{S}+\cdots+N^{l-1} \widetilde{S}, \theta \in \mathcal{Z}(\hat{\mu}, T) \cup(T \cap \mathbb{Z})\right\}
$$

Furthermore, we write

$$
V=\left\{x \in U:\left|m_{D}(x)\right| \neq 0\right\} \text { and } W=\{x \in V:|\hat{\mu}(x)| \neq 0\} .
$$

It is clear $W \subset V \subset U \subset T$. Since $\left(\frac{1}{N} D, S_{I}\right)$ is a compatible pair for any $I \in \Sigma^{*}$, we obtain $V \neq \varnothing$.

Next, we shall prove $W \neq \varnothing$.
Claim 1: There exists $a \in \widetilde{S}$ such that

$$
0<\left|m_{D}\left(N^{-1}\left(\eta^{*}+a\right)\right)\right|<1
$$

Proof. If $T \cap \mathbb{Z}=\varnothing$, then we have $\sup \left\{\left|m_{D}(\eta)\right|: \eta \in T\right\}<1$ by noting that T is compact. A trivial fact that $N^{-1}\left(\eta^{*}+a\right) \in T$ for any $a \in \widetilde{S}$ implies the claim is true.

When $T \cap \mathbb{Z} \neq \varnothing$, suppose the claim is false. Since $\left(\frac{1}{N} D, S_{I}\right)$ is a compatible pair, by Lemma 1(iii) for $\eta^{*} \in \mathcal{Z}(\hat{\mu}, T)$, there exists $j_{1} \in \Sigma_{q}$ such that $m_{D}\left(N^{-1}\left(\eta^{*}+F_{I}\left(j_{1}\right)\right)\right)=1$. By (2) and (19), we obtain $N^{-1}\left(\eta^{*}+F_{I}\left(j_{1}\right)\right) \in(T \cap \mathbb{Z}) \backslash\{0\}$. Furthermore, there exists $j_{2} \in \Sigma_{q}$ such that $m_{D}\left(N^{-2}\left(\eta^{*}+F_{I}\left(j_{1} j_{2}\right)\right)\right)=1$, which implies $N^{-2}\left(\eta^{*}+F_{I}\left(j_{1} j_{2}\right)\right) \in(T \cap \mathbb{Z}) \backslash\{0\}$. Repeating this process, we obtain a sequence of symbols $\left\{j_{l}\right\}_{l \geqslant 1} \subset \Sigma_{q}$ such that

$$
N^{-l}\left(\eta^{*}+F_{I}\left(j_{1} \cdots j_{l}\right)\right) \in(T \cap \mathbb{Z}) \backslash\{0\}, \quad l \geqslant 1 .
$$

By a similar argument in the proof of Theorem $2($ iii $) \Rightarrow(i)$, we obtain $Q_{\Lambda_{I}}\left(\eta^{*}\right)=0$, which implies a contradiction to (11). The claim is proven.

Next, we define a sequence of set $\left\{Y_{n}\right\}_{n \geq 0}$ by induction on n. Let $Y_{0}:=\left\{\eta^{*}\right\}$, and

$$
Y_{n}:=\left\{N^{-1}(\eta+a): 0<\left|m_{D}\left(N^{-1}(\eta+a)\right)\right|<1, \eta \in Y_{n-1}, a \in \widetilde{S}\right\}, \quad n \geqslant 1 .
$$

By a similar argument in the proof of the claim in Lemma 3, we obtain $\# Y_{n} \geq 2^{n}$ for $1 \leq n \leq p+1$. On the other hand, for any $\eta \in Y_{p+1}$, there exists $\lambda \in \widetilde{S}+N \widetilde{S}+\cdots+N^{p} \widetilde{S}$ such that $\eta=N^{-p-1}\left(\eta^{*}+\lambda\right)$ and $0<\left|m_{D}(\eta)\right|<1$, which implies $Y_{p+1} \subset V$. Then, we conclude

$$
\# V \geqslant \# Y_{p+1} \geqslant 2^{p+1}>p
$$

Recall that p is the number of zero points of $\hat{\mu}(\xi)$ on compact T. Then, we obtain $W \neq \varnothing$.
Noting that $W \subset V \subset U$ and U is a finite set, it is obvious that both W and V are finite sets. Write

$$
\begin{aligned}
& \left.\alpha_{2}:=\min \left\{\mid m_{D}(\eta)\right) \mid \neq 0: \eta \in V\right\}>0, \\
& \alpha_{3}:=\min \{|\hat{\mu}(\eta)| \neq 0: \eta \in W\}>0 .
\end{aligned}
$$

Then, there exists a positive number $\delta_{2}>0$ such that, for any $\eta \in V$ and $\omega \in W$, we have

$$
\begin{gather*}
\left|m_{D}(x)\right|>\frac{1}{2} \alpha_{2}, \quad \forall x \in B\left(\eta, \delta_{2}\right) \tag{20}\\
|\hat{\mu}(x)|>\frac{1}{2} \alpha_{3}, \quad \forall x \in B\left(\omega, \delta_{2}\right) . \tag{21}
\end{gather*}
$$

Write $\widetilde{\delta}:=\min \left\{\delta_{1}, \delta_{2}, \frac{d}{4}\right\}$. We let $\widetilde{P}:=T \backslash\left(\bigcup_{\theta \in \mathcal{Z}(\hat{\mu}, T)} B(\theta, \widetilde{\delta})\right)$ denote the set of points that has a positive distance (at least $\widetilde{\delta}$) from the zero points of $\hat{\mu}(\tilde{\xi})$ in T. It is clear that \widetilde{P} is a compact set and $\alpha_{4}:=\inf _{\tilde{\xi} \in \tilde{P}}|\hat{\mu}(\xi)|>0$. We write

$$
\widetilde{\alpha}:=\min \left\{\alpha_{1} \frac{\alpha_{3}}{2}\left(\frac{\alpha_{2}}{2}\right)^{p+1}, \alpha_{4}\right\}
$$

where α_{1} comes from Lemma 4.
Given $\xi \in T$ and $I \in \Sigma_{q}^{*}$, write $\widetilde{\xi}:=N^{-|I|}(\xi+F(I))$.

If $\widetilde{\xi} \in \widetilde{P}$, we take $\lambda_{\xi, I}=0 \in \Lambda_{I}$. Then, we have

$$
\begin{equation*}
\left|\hat{\mu}\left(N^{-|I|}(\tilde{\xi}+F(I))+\lambda_{\xi, I}\right)\right|=|\hat{\mu}(\widetilde{\xi})| \geqslant \alpha_{4} \geqslant \widetilde{\alpha} . \tag{22}
\end{equation*}
$$

If $\widetilde{\xi} \notin \widetilde{P}$, there exists $\theta \in \mathcal{Z}(\hat{\mu}, T)$ such that $\widetilde{\xi} \in B(\theta, \widetilde{\delta})$. If there exists $J \in \Sigma^{*}$ such that

$$
\theta+F_{I}(J)=0,
$$

we take $\lambda_{\xi, I}=F_{I}(J)$. Then, by a similar argument as (18), we have

$$
\begin{equation*}
\left|\hat{\mu}\left(N^{-|I|}(\xi+F(I))+\lambda_{\xi, I}\right)\right| \geq \alpha \tag{23}
\end{equation*}
$$

If there is no $J \in \Sigma^{*}$ such that

$$
\theta+F_{I}(J)=0
$$

by Lemma 3, there exist two integers $0 \leqslant w<\infty, 1 \leqslant v \leqslant p+1$ and a finite word $J:=j_{1} \cdots j_{w+v} \in \Sigma_{q}^{*}$ such that when $w=0$, we have

$$
\begin{equation*}
0<\left|m_{D}\left(N^{-l}\left(\theta+F_{I}\left(\left.J\right|_{l}\right)\right)\right)\right|<1, \quad 1 \leqslant l \leqslant v, \tag{24}
\end{equation*}
$$

and $\left|\hat{\mu}\left(N^{-v}\left(\theta+F_{I}(J)\right)\right)\right|>0$; when $w>0$, we have

$$
\begin{array}{lr}
m_{D}\left(N^{-l}\left(\theta+F_{I}\left(\left.J\right|_{l}\right)\right)\right)=1, & 1 \leqslant l \leqslant w, \\
0<\left|m_{D}\left(N^{-l}\left(\theta+F_{I}\left(\left.J\right|_{l}\right)\right)\right)\right|<1, & w+1 \leqslant l \leqslant w+v, \tag{26}
\end{array}
$$

and $\left|\hat{\mu}\left(N^{-w-v}\left(\theta+F_{I}(J)\right)\right)\right|>0$.
Take $\lambda_{\xi, I}:=F_{I}(J)$. In the case $w=0$, since $\widetilde{\xi} \in B(\theta, \widetilde{\delta})$, it is obvious that

$$
\begin{equation*}
N^{-l}\left(\widetilde{\xi}+F_{I}\left(\left.J\right|_{l}\right)\right) \in B\left(N^{-l}\left(\theta+F_{I}\left(\left.J\right|_{l}\right)\right), N^{-l} \widetilde{\delta}\right), \quad 1 \leqslant l \leqslant v \tag{27}
\end{equation*}
$$

Noting that $\theta \in \mathcal{Z}(\hat{\mu}, T) \cup(T \cap \mathbb{Z})$, by (24), we obtain

$$
N^{-l}\left(\theta+F_{I}\left(\left.J\right|_{l}\right)\right) \in V, \quad 1 \leqslant l \leqslant v
$$

Together with (20) and (27), the above inequality implies

$$
\begin{equation*}
\left|m_{D}\left(N^{-l}\left(\widetilde{\xi}+F_{I}\left(\left.J\right|_{l}\right)\right)\right)\right|>\frac{\alpha_{2}}{2}, \quad 1 \leqslant l \leqslant v . \tag{28}
\end{equation*}
$$

Furthermore, since $N^{-v}\left(\theta+F_{I}(J)\right) \in V$ and $\left|\hat{\mu}\left(N^{-v}\left(\theta+F_{I}(J)\right)\right)\right|>0$, we have $N^{-v}(\theta+$ $\left.F_{I}(J)\right) \in W$ and $N^{-v}\left(\widetilde{\xi}+F_{I}(J)\right) \in B\left(N^{-v}\left(\theta+F_{I}(J)\right), N^{-v} \widetilde{\delta}\right)$. From (21), it follows that

$$
\begin{equation*}
\left|\hat{\mu}\left(N^{-v}\left(\widetilde{\xi}+F_{I}\left(\left.J\right|_{l}\right)\right)\right)\right| \geqslant \frac{\alpha_{3}}{2} . \tag{29}
\end{equation*}
$$

In combination with (28), this yields

$$
\begin{align*}
\left|\hat{\mu}\left(N^{-|I|}(\xi+F(I))+\lambda_{\xi, I}\right)\right| & =\left|\hat{\mu}\left(\widetilde{\xi}+\lambda_{\xi, I}\right)\right| \\
& =\prod_{i=1}^{\infty}\left|m_{D}\left(N^{-i}\left(\widetilde{\xi}+F_{I}(J)\right)\right)\right| \\
& =\prod_{i=1}^{v} \mid m_{D}\left(N^{-i}\left(\widetilde{\xi}+F_{I}(J)\right)| | \hat{\mu}\left(N^{-v}\left(\widetilde{\xi}+F_{I}(J)\right)\right) \mid\right. \tag{30}\\
& \geqslant \frac{\alpha_{3}}{2}\left(\frac{\alpha_{2}}{2}\right)^{p+1} \\
& \geqslant \widetilde{\alpha} .
\end{align*}
$$

In the case $w>0$, we shall divide the product into three parts

$$
\begin{align*}
& \left|\hat{\mu}\left(N^{-|I|}(\tilde{\xi}+F(I))+\lambda_{\xi, I}\right)\right| \\
= & \prod_{i=1}^{\infty}\left|m_{D}\left(N^{-i}\left(\widetilde{\xi}+F_{I}(J)\right)\right)\right| \tag{31}\\
= & \prod_{i=1}^{w}\left|m_{D}\left(N^{-i}\left(\widetilde{\xi}+F_{I}(J)\right)\right)\right| \prod_{i=w+1}^{w+v}\left|m_{D}\left(N^{-i}\left(\widetilde{\xi}+F_{I}(J)\right)\right)\right|\left|\hat{\mu}\left(N^{-w-v}\left(\widetilde{\xi}+F_{I}(J)\right)\right)\right| .
\end{align*}
$$

By (2) and (25), we have

$$
\begin{equation*}
N^{-l}\left(\theta+F_{I}\left(\left.J\right|_{l}\right)\right) \in T \cap \mathbb{Z}, \quad 1 \leqslant l \leqslant w \tag{32}
\end{equation*}
$$

Noting $\widetilde{\xi} \in B(\theta, \widetilde{\delta})$, we have

$$
N^{-l}\left(\widetilde{\xi}+F_{I}\left(\left.J\right|_{l}\right)\right) \in B\left(N^{-l}\left(\theta+F_{I}\left(\left.J\right|_{l}\right)\right), N^{-l} \widetilde{\delta}\right), \quad 1 \leqslant l \leqslant w .
$$

Thus, by (10), we obtain

$$
\begin{equation*}
\prod_{l=1}^{w}\left|m_{D}\left(N^{-l}\left(\widetilde{\xi}+F_{I}\left(\left.J\right|_{l}\right)\right)\right)\right| \geqslant \alpha_{1} \tag{33}
\end{equation*}
$$

By (32), we have $N^{-w}\left(\theta+F_{I}\left(\left.J\right|_{w}\right)\right) \in \mathcal{Z}(\hat{\mu}, T) \cup(T \cap \mathbb{Z})$. Then, by (26), we have

$$
N^{-l}\left(\theta+F_{I}\left(\left.J\right|_{l}\right)\right) \in V, \quad w+1 \leqslant l \leqslant w+v
$$

and

$$
\begin{equation*}
N^{-l}\left(\widetilde{\xi}+F_{I}\left(\left.J\right|_{l}\right)\right) \in B\left(N^{-l}\left(\theta+F_{I}\left(\left.J\right|_{l}\right)\right), N^{-l} \widetilde{\delta}\right), \quad w+1 \leqslant l \leqslant w+v \tag{34}
\end{equation*}
$$

By (20) and (21), we obtain

$$
\begin{equation*}
\left|m_{D}\left(N^{-l}\left(\widetilde{\xi}+F_{I}\left(\left.J\right|_{l}\right)\right)\right)\right|>\frac{\alpha_{2}}{2}, \quad w+1 \leqslant l \leqslant w+v, \tag{35}
\end{equation*}
$$

and

$$
\left|\hat{\mu}\left(N^{-w-v}\left(\widetilde{\xi}+F_{I}(J)\right)\right)\right| \geqslant \frac{\alpha_{3}}{2} .
$$

Together with (31), (33), and (35), the above inequality yields

$$
\begin{equation*}
\left|\hat{\mu}\left(N^{-|I|}(\xi+F(I))+\lambda_{\xi, I}\right)\right| \geq \alpha_{1}\left(\frac{\alpha_{2}}{2}\right)^{p+1} \frac{\alpha_{3}}{2} \geq \widetilde{\alpha} . \tag{36}
\end{equation*}
$$

In combination with (14), (18), (22), (23), (30), and (36), by Lemma 2, we obtain (μ, Λ) is a spectral pair, which is a contradiction to our hypothesis. We finish the proof of (i) \Rightarrow (ii) in Theorem 2.

Finally, we shall prove Theorem 2 (ii) \Rightarrow (iii).
Since T is compact, there exists $\xi^{*} \in T$ such that $Q_{\Lambda_{I}}\left(\xi^{*}\right)=0$. Write

$$
X:=\left\{\xi \in T: \hat{\mu}(\xi)=0 \text { and } m_{D}(\xi) \neq 0\right\} .
$$

It is clear that $0 \notin X$. Since $\left(\frac{1}{N} D, S_{I}\right)$ is a compatible pair, by Lemma 1 , there exists an integer $j \in \Sigma_{q}$ with $m_{D}\left(\frac{1}{N}\left(\xi^{*}+F_{I}(j)\right)\right) \neq 0$. Noting that

$$
0=Q_{\Lambda_{I}}\left(\zeta^{*}\right)=\Sigma_{\lambda \in \Lambda_{I}}\left|\hat{\mu}\left(\zeta^{*}+\lambda\right)\right|^{2} \geq\left|m_{D}\left(\frac{1}{N}\left(\xi^{*}+F_{I}(j)\right)\right)\right|^{2}\left|\hat{\mu}\left(\frac{1}{N}\left(\zeta^{*}+F_{I}(j)\right)\right)\right|^{2}
$$

we obtain $\hat{\mu}\left(\frac{1}{N}\left(\xi^{*}+F_{I}(j)\right)\right)=0$. By virtue of $\xi^{*} \in T$, we have $\frac{1}{N}\left(\xi^{*}+F_{I}(j)\right) \in T$. Hence, X is nonempty.

Next, we define a sequence of the subset of X by induction on n. Define $X_{0}:=\left\{\xi^{*}\right\}$ and

$$
X_{n+1}:=\left\{N^{-n-1}\left(\xi+F_{I}(J)\right) \in X: N^{-n}\left(\xi+F_{I}\left(\left.J\right|_{n}\right)\right) \in X_{n}, J \in \Sigma_{q}^{n+1}\right\}, \quad n \geq 0
$$

We have the following conclusion.
Claim 2: $\# X_{n+1} \geqslant \# X_{n}, n \geqslant 0$.
Proof. When $n=0$, by the definition of $Q_{\Lambda_{I}}\left(\zeta^{*}\right)$, we have

$$
0=Q_{\Lambda_{I}}\left(\xi^{*}\right)=\sum_{j_{1} \in \Sigma_{q}}\left|m_{D}\left(N^{-1}\left(\zeta^{*}+F_{I}\left(j_{1}\right)\right)\right)\right|^{2} \cdot Q_{\Lambda_{I_{1}}}\left(N^{-1}\left(\xi^{*}+F_{I}\left(j_{1}\right)\right)\right) .
$$

Noting that $\left(\frac{1}{N} D, S_{I}\right)$ is a compatible pair, Lemma 1 (iii) implies that there exists at least one symbol $j_{1} \in \Sigma_{q}$ such that $\left|m_{D}\left(N^{-1}\left(\xi^{*}+F_{I}\left(j_{1}\right)\right)\right)\right|>0$, which implies $Q_{\Lambda_{I j_{1}}}\left(N^{-1}\left(\zeta^{*}+\right.\right.$ $\left.\left.F_{I}\left(j_{1}\right)\right)\right)=0$. Hence, we have $\hat{\mu}\left(N^{-1}\left(\xi^{*}+F_{I}\left(j_{1}\right)\right)\right)=0$. This leads to $\# X_{1} \geqslant \# X_{0}$. Suppose Claim 2 holds for $n=k-1$. Then, X_{k} is nonempty. For any $y \in X_{k}$, there exists $\widetilde{J} \in \Sigma_{q}^{k}$ such that $y=N^{-k}\left(\zeta^{*}+F_{I}(\widetilde{J})\right)$ and

$$
\prod_{i=1}^{k}\left|m_{D}\left(N^{-i}\left(\xi^{*}+F_{I}\left(\left.\widetilde{J}\right|_{i}\right)\right)\right)\right|>0
$$

By (1) and (4), we have

$$
0=Q_{\Lambda_{I}}\left(\tilde{\zeta}^{*}\right)=\sum_{\widetilde{J} \in \Sigma_{q}^{k}} \prod_{i=1}^{k}\left|m_{D}\left(N^{-i}\left(\zeta^{*}+F_{I}\left(\left.\widetilde{J}\right|_{i}\right)\right)\right)\right|^{2} \cdot Q_{\Lambda_{I \tilde{J}}}\left(N^{-k}\left(\zeta^{*}+F_{I}(\widetilde{J})\right)\right)
$$

Then, we obtain $Q_{\Lambda_{I J}}\left(N^{-k}\left(\zeta^{*}+F_{I}(\widetilde{J})\right)\right)=0$. By a similar argument, we have

$$
\begin{aligned}
0 & =Q_{\Lambda_{I \tilde{J}}}\left(N^{-k}\left(\zeta^{*}+F_{I}(\widetilde{J})\right)\right) \\
& =\sum_{j_{k+1} \in \Sigma_{q}}\left|m_{D}\left(N^{-k-1}\left(\xi^{*}+F_{I}\left(\widetilde{J} j_{k+1}\right)\right)\right)\right|^{2} \cdot Q_{\Lambda_{I \widetilde{J} j_{k+1}}}\left(N^{-k-1}\left(\xi^{*}+F_{I}\left(\widetilde{J} j_{k+1}\right)\right)\right) .
\end{aligned}
$$

Noting that $\left(\frac{1}{N} D, S_{\widetilde{J}}\right)$ is a compatible pair, by Lemma 1(iii), there exists at least one symbol $j_{k+1} \in \Sigma_{q}$ such that

$$
\left|m_{D}\left(N^{-k-1}\left(\widetilde{\zeta}^{*}+F_{I}\left(\widetilde{J} j_{k+1}\right)\right)\right)\right|>0 .
$$

Hence, $Q_{\Lambda_{I \tilde{j}_{k+1}}}\left(N^{-k-1}\left(\zeta^{*}+F_{I}\left(\widetilde{J} j_{k+1}\right)\right)\right)=0$, which implies $\hat{\mu}\left(N^{-k-1}\left(\zeta^{*}+F_{I}\left(\widetilde{J} j_{k+1}\right)\right)\right)=0$. Thus, we obtain

$$
N^{-k-1}\left(\tilde{\zeta}^{*}+F_{I}\left(\widetilde{J} j_{k+1}\right)\right) \in X_{k+1}
$$

If we consider $N^{-n-1}\left(\widetilde{\zeta}^{*}+F_{I}\left(\widetilde{J} j_{n+1}\right)\right)$ as a "next generation" of $N^{-n}\left(\mathcal{\zeta}^{*}+F_{I}(\widetilde{J})\right)$ for $n \geq 1$, Proposition 2 implies that different points of X_{k} have different "next generations". Thus, we obtain $\# X_{k+1} \geqslant \# X_{k}$, which implies Claim 2 is true.

By noting the fact that X is a subset of the finite set $\mathcal{Z}(\hat{\mu}, T)$, there exists a positive integer $h \in \mathbb{N}$ such that

$$
\begin{equation*}
\# X_{h+m}=\# X_{h}, \quad m \geq 1 . \tag{37}
\end{equation*}
$$

From the above argument, it follows that for any $y=N^{-n}\left(\xi^{*}+F_{I}\left(j_{1} \cdots j_{n}\right)\right) \in X_{n}$ if there exists a symbols $j_{n+1} \in \Sigma_{q}$ such that $\left|m_{D}\left(N^{-n-1}\left(\zeta^{*}+F_{I}\left(j_{1} \cdots j_{n} j_{n+1}\right)\right)\right)\right|>0$, then y has a "next generation" $N^{-n-1}\left(\zeta^{*}+F_{I}\left(j_{1} \cdots j_{n} j_{n+1}\right)\right) \in X_{n+1}$. Noting that $\left(\frac{1}{N} D, S_{I j_{1} \cdots j_{n}}\right)$ is a compatible pair, by Lemma 1 (iii), we have

$$
\Sigma_{j_{n+1} \in \Sigma_{q}}\left|m_{D}\left(N^{-1}\left(y+\mathcal{C}\left(I J j_{n+1}\right)\right)\right)\right|^{2}=1 .
$$

In combination with (37), we conclude that for any $n \geq h$, there exists only one symbol $j_{n+1} \in \Sigma_{q}$ such that $\mid m_{D}\left(N^{-1}\left(y+\mathcal{C}\left(I J j_{n+1}\right)\right) \mid \neq 0\right.$. In fact, $\mid m_{D}\left(N^{-1}\left(y+\mathcal{C}\left(I J j_{n+1}\right)\right) \mid=1\right.$. Then, we obtain

$$
N^{-n-1}\left(\xi^{*}+F_{I}\left(J j_{n+1}\right)\right)=N^{-1}\left(y+\mathcal{C}\left(I J j_{n+1}\right) \in \mathbb{Z}\right.
$$

Continuing the process, we obtain a sequence of symbols $\left\{j_{h+l}\right\}_{l \geqslant 1} \subset \Sigma_{q}$, such that

$$
N^{-h-l}\left(\xi^{*}+F_{I}\left(J j_{h+1} \cdots j_{h+l}\right)\right) \in \mathbb{Z}, \quad l \geqslant 1 .
$$

Define $\beta_{1}:=N^{-h}\left(\xi^{*}+F_{I}(J)\right)$ and

$$
\beta_{l}:=N^{-h-l+1}\left(\xi^{*}+F_{I}\left(J j_{h+1} \cdots j_{h+l-1}\right)\right), \quad l \geqslant 2 .
$$

It is clear $\beta_{l} \in X_{h+l-1}$, which implies β_{l} is nonzero. Thus, the sequence of nonzero integers $\left\{\beta_{l}\right\}_{l \geqslant 1}$ and the increasing sequence of finite words $\left\{J j_{h+1} \cdots j_{h+l}\right\}_{l \geqslant 1}$ with the prefix J fulfill the request.

As a corollary of Lemma 2 and Theorem 2, we obtain another necessary and sufficient condition for Λ to be a spectrum of μ.

Proposition 5. Let $N \in \mathbb{Z}$ with $|N|>1$ and $D \subset \mathbb{Z}$ with $0 \in D$ and $\operatorname{gcd}(D)=1$. Assume that a countable set Λ satisfies the conditions (C1), (C2), and (C3). Then, (μ, Λ) is a spectral pair if and only if there exists a positive number $c>0$ such that, for any ξ and $I \in \Sigma^{*}$, there is $\lambda_{\xi, I} \in \Lambda_{I}$ satisfying

$$
\left|\widehat{\mu}\left(N^{-|I|}(\xi+F(I))+\lambda_{\xi, I}\right)\right| \geq c .
$$

Proof. The sufficiency follows from Lemma 2. We just prove the necessity here. Suppose that (μ, Λ) is a spectral pair. By Propositions 3 and 4, we obtain, for any $I \in \Sigma^{*}$,

$$
Q_{\Lambda_{I}}(\xi) \equiv 1, \quad \xi \in \mathbb{R} .
$$

By a similar argument in the proof of Theorem 2 (i) \Rightarrow (ii), for any $\xi \in T$ and $I \in T$, there exists $\lambda_{\xi, I} \in \Lambda_{I}$ such that

$$
\left|\widehat{\mu}\left(N^{-|I|}(\xi+F(I))+\lambda_{\xi, I}\right)\right| \geq c .
$$

We finish the proof.

4. An Example

In this section, we construct a self-similar measure and a set $\Lambda(N, \mathcal{B})$ with a tree structure. Neither the criterion of Łaba and Wang (Theorem 1) nor that of Strichartz ([24]) are applicable to this set $\Lambda(N, \mathcal{B})$. However, we show that there does not exist an infinite orbit $\left\{\beta_{l}\right\}_{l \geq 1} \subset \mathbb{Z} \backslash\{0\}$ associated with the dual IFS (see Theorem 3), which implies $\Lambda(N, \mathcal{B})$ is a spectrum by Theorem 2 .

Example 1. Let $N=6$ and $D=\{0,1,2\}$. Write μ for the invariant measure associated with the IFS $\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$ defined by

$$
\phi_{1}(x)=\frac{1}{6} x, \quad \phi_{2}(x)=\frac{1}{6}(x+1), \quad \phi_{3}(x)=\frac{1}{6}(x+2) .
$$

Let $B_{1}=\{0,8,22\}, B_{2}=\{0,22,38\}, B_{3}=\{0,8,52\}$, and $B_{4}=\{0,38,52\}$. By Lemma 1, a simple induction implies that $\left(\frac{1}{6} D, B_{i}\right)$ is a compatible pair for $1 \leq i \leq 4$. Noting

$$
\frac{1}{6}(4+8)=2, \frac{1}{6}(2+22)=4, \frac{1}{6}(4+8)=2, \frac{1}{6}(2+22)=4, \cdots
$$

$$
\frac{1}{6}(10+38)=8, \frac{1}{6}(8+52)=10, \frac{1}{6}(10+38)=8, \frac{1}{6}(8+52)=10, \cdots
$$

we see that both $\Lambda\left(6, B_{1}\right)$ and $\Lambda\left(6, B_{4}\right)$ have an infinite iterated nonzero integer sequence, where $\Lambda(N, S):=S+N S+N^{2} S+\cdots$ finite sum. Thus, by Theorem 1 or by Theorem 2, we conclude that both $\Lambda\left(6, B_{1}\right)$ and $\Lambda\left(6, B_{4}\right)$ are not a spectrum of μ. We consider the following set defined by $\left\{B_{i}: 1 \leq i \leq 4\right\}$.

$$
\begin{align*}
& \Lambda(N, \mathcal{B}):=B_{1}+\underbrace{N B_{2}+N^{2} B_{3}}_{B_{2} \text { and } B_{3} \text { repeat } 1 \text { time }}+ \\
& N^{3} B_{4}+\underbrace{N^{4} B_{3}+N^{5} B_{2}+N^{6} B_{3}+N^{7} B_{2}}_{B_{3} \text { and } B_{2} \text { repeat } 2 \text { times }}+ \\
& N^{8} B_{1}+\underbrace{N^{9} B_{2}+N^{10} B_{3}+N^{11} B_{2}+N^{12} B_{3}+N^{13} B_{2}+N^{14} B_{3}+N^{15} B_{2}+N^{16} B_{3}}_{B_{2} \text { and } B_{3} \text { repeat } 2^{2} \text { times }}+ \tag{38}\\
& N^{17} B_{4}+\underbrace{N^{18} B_{3}+N^{19} B_{2}+\cdots+N^{32} B_{3}+N^{33} B_{2}}_{B_{3} \text { and } B_{2} \text { repeat } 2^{3} \text { times }}+\cdots \quad \text { (finite sum). }
\end{align*}
$$

According to Remark 1, it is clear that Theorem 1 cannot work. We shall show $\Lambda(N, \mathcal{B})$ is a spectrum of μ by Theorem 2 in the following Theorem 3. Then, we show that Strichartz's criterion (Theorem 2.8 in [24]) is not appropriate by proving the following Theorem 4.

Let A_{n} denote the set of coefficients of $N^{n}(n \geq 0)$ in (38). Given two integers l and k with $l>k \geq 0$, we write

$$
\begin{equation*}
\Lambda_{k}^{l}:=A_{k}+N A_{k+1}+N^{2} A_{k+2}+\cdots+N^{l-k-1} A_{l-1} . \tag{39}
\end{equation*}
$$

We also write $\Lambda^{k}:=\Lambda_{0}^{k}$ for simplicity. For three integers m, n, and k with $0 \leq m<n<k$, we have

$$
\begin{align*}
& \Lambda_{m}^{n}+N^{n-m} \Lambda_{n}^{k} \\
= & A_{m}+N A_{m+1}+\cdots+N^{n-m-1} A_{n-1}+N^{n-m} A_{n}+\cdots+N^{k-m-1} A_{k-1} \tag{40}\\
= & \Lambda_{m}^{k}
\end{align*}
$$

Theorem 3. Given nonzero integer sequence $\left\{\beta_{i}\right\}_{i \geq 1}$, then, for any integer $M>0$, there exists an integer $i \geqslant M$ such that

$$
\beta_{i+1} \neq N^{-1}\left(\beta_{i}+a_{i}\right),
$$

for any $a_{i} \in A_{i}$.
Proof. Suppose that there exists a positive integer M such that, for any $i>M$, we have $\beta_{i+1}=6^{-1}\left(\beta_{i}+a_{i}\right)$. Let T_{0} be the self-similar set generated by the dual IFS $\left\{\frac{1}{6}(x+s): s \in\right.$ $\left.\bigcup_{j=1}^{4} B_{j}\right\}$.

According to the definition of the attractor T_{0}, there exists a positive integer K such that, for any $i \geq K, \beta_{i}$ belongs to a neighborhood of T_{0}, i.e.,

$$
\beta_{i} \in\left(-1, \frac{53}{5}\right)
$$

Recall a fact that $\bigcup_{i=0}^{\infty} A_{i}=\{0,8,22,38,52\}$. Then, $\beta_{K+1}=6^{-1}\left(\beta_{K}+a_{K}\right)$ with $a_{K} \in \bigcup_{j=1}^{4} B_{j}$ implies $\beta_{K} \in\{2,4,6,8,10\}$. By noting that $\beta_{K+2}=6^{-1}\left(\beta_{K+1}+a_{K+1}\right)$ with $a_{K+1} \in \bigcup_{j=1}^{4} B_{j}$ implies $\beta_{K} \neq 6$, hence $\beta_{K} \in\{2,4,8,10\}$. If $\beta_{K}=2$, then

$$
a_{K}=22, a_{K+1}=8, a_{K+2}=22, a_{K+3}=8, \cdots
$$

Hence, $\{8,22\} \cap A_{i} \neq \varnothing$ for all $i \geq K$, which contradicts that $\{8,22\} \cap B_{4}=\varnothing$ and $B_{4}=A_{i}$ for infinitely many i. Hence, $\beta_{K} \in\{4,8,10\}$.

By a similar argument for other cases, i.e., $\beta_{K} \in\{4,8,10\}$, we always obtain a contradiction. Then, we finish the proof.

The following result shows that Strichartz's method (Theorem 2.8 in [24]) is not applicable to the above set $\Lambda(N, \mathcal{B})$.

Theorem 4. We have

$$
\liminf _{n \rightarrow \infty} \inf _{\lambda \in \Lambda^{n}}\left|m_{D}\left(N^{-n} \lambda\right)\right|=0
$$

Proof. Obviously, we need only to prove that there exists a subsequence $\left\{\lambda_{n_{k}}\right\}_{k \geq 1} \subset \Lambda^{n_{k}}$ such that $N^{-n_{k}} \lambda_{n_{k}}$ tends to a zero point of m_{D} as k tends to infinity. Let T_{0} be the attractor of the $\operatorname{IFS}\left\{\Phi_{j}(x)=\frac{1}{6}(x+j): j \in \bigcup_{i=1}^{4} B_{i}\right\}$. Thus, we have $T_{0} \subset\left[0, \frac{52}{5}\right]$.

For $k \geq M$, we write $n_{k}=2^{2 k+2}+2 k+1$, and we take

$$
\beta_{n_{k}}=38+52 \times 6+38 \times 6^{2}+52 \times 6^{3}+\cdots+38 \times 6^{2^{2 k+1}} \in \Lambda_{2^{2 k+1}+2 k-1^{\prime}}^{n_{k}}
$$

where the coefficients 38 and 52 appear alternately. By a simple deduction, we obtain

$$
\begin{equation*}
6^{-2^{2 k+1}-2}\left(10+\beta_{n_{k}}\right)=\frac{4}{3} \tag{41}
\end{equation*}
$$

Take arbitrarily $\alpha \in \Lambda^{2^{2 k+1}+2 k-1}$, and write

$$
\lambda_{n_{k}}=\alpha+6^{2^{2 k+1}+2 k-1} \beta_{n_{k}}
$$

By (40), we obtain

$$
\lambda_{n_{k}} \in \Lambda^{n_{k}}
$$

According to the definition of T_{0}, we have

$$
6^{-2^{2 k+1}-2 k+1} \alpha \in T_{0}
$$

which implies $\left|6^{-2^{2 k+1}-2 k+1} \alpha-10\right| \leq \frac{52}{5}$. In combination with (41), we have

$$
\begin{aligned}
& \left|6^{-n_{k}} \lambda_{n_{k}}-\frac{4}{3}\right| \\
= & \left|6^{-2^{2 k+1}-2}\left(6^{-2^{2 k+1}-2 k+1} \alpha+\beta_{n_{k}}\right)-6^{-2^{2 k+1}-2}\left(10+\beta_{n_{k}}\right)\right| \\
= & \left|6^{-2^{2 k+1}-2}\left(6^{-2^{2 k+1}-2 k+1} \alpha-10\right)\right| \\
\leqslant & 6^{-2^{2 k+1}-2} \times \frac{52}{5} .
\end{aligned}
$$

Noting the fact that $m_{D}\left(\frac{4}{3}\right)=0$, we finish the proof.

5. Summary and Conclusions

In this paper, we introduced a tree structure with the language of symbolic space. The natural spectrum candidate of a self-similar measure associated with an IFS is a set with a special tree structure. We obtained three equivalent conclusions for Λ to be a spectrum of a self-similar measure. One of them implies that there exists an infinite orbit with an element of a nonzero integer associated with the dual IFS. An example involving a selfsimilar measure and a spectrum candidate $\Lambda(N, \mathcal{S})=S_{0}+N S_{1}+N^{2} S_{2} \cdots$ showed the tree structure expands essentially the field of spectrum candidates.

It is one of the most important problems to find all spectra of a spectral measure. We are not sure that every spectrum of a self-similar measure holds a tree structure. On the other hand, the self-similar $\mu_{N, D}$ measure has another description, $\mu_{N, D}=\delta_{\frac{1}{N} D} * \delta_{\frac{1}{N^{2}} D} * \cdots$. It is obvious to ask if Theorem 2 holds for the Moran-type self-similar measure. As mentioned in the Introduction, the version of Theorem 1 in higher-dimensional space has not been obtained completely. It is the next research direction to prove Theorem 2 the for self-affine measures.

Author Contributions: Formal analysis, Y.-S.C., Q.-R.D. and M.-T.L.; Funding acquisition, Q.-R.D. and M.-T.L.; Investigation, Y.-S.C., Q.-R.D. and M.-T.L.; Writing-original draft, Y.-S.C., Q.-R.D. and M.-T.L. All authors have read and agreed to the published version of the manuscript.

Funding: The work was supported by NNSFC (Nos. 11971109, 11971190). It was also partially supported by the Program for Probability and Statistics: Theory and Application (No. IRTL1704) and the program for innovative research team in science and technology in Fujian province university (No. IRTSTEJ).

Acknowledgments: The authors are gratedful to the anonymous reviewers for their valuable comments.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fuglede, B. Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal. 1974, 16, 101-121. [CrossRef]
2. Jorgensen, P.; Pedersen, S. Dense analytic subspaces in fractal L^{2}-spaces. J. Anal. Math. 1998, 75, 185-228. [CrossRef]
3. Łaba, I.; Wang, Y. On spectral Cantor measures. J. Funct. Anal. 2002, 193, 409-420.
4. An L.; Fu, X.; Lai, C.K. On spectral Cantor-Moran measures and a variant of Bourgain's sum of sine problem. Adv. Math. 2019, 349, 84-124. [CrossRef]
5. An, L.X.; He, X.G.; Lau, K. Spectrality of a class of infinite convolutions. Adv. Math. 2015, 283, 362-376. [CrossRef]
6. Chen, M.L.; Liu, J.C.; Wang, X.Y. Spectrality of a class of self-affine measures on \mathbb{R}^{2}. Nonlinearity 2021, 34, 7446-7469. [CrossRef]
7. Dai, X.R. Spectra of Cantor measures. Math. Ann. 2016, 366, 1621-1647. [CrossRef]
8. Dai, X.R.; He, X.G.; Lai, C.K. Spectral property of Cantor measures with consecutive digits. Adv. Math. 2013, 242, 187-208. [CrossRef]
9. Dai, X.R.; He, X.G.; Lau, K.S. On spectral N-Bernoulli measures. Adv. Math. 2014, 259, 511-531. [CrossRef]
10. Deng, Q.R. On the spectra of Sierpinski-type self-affine measures. J. Funct. Anal. 2016, 270, 4426-4442. [CrossRef]
11. Deng, Q.R.; Dong, X.H.; Li, M.T. Tree structure of spectra of spectral self-affine measures. J. Funct. Anal. 2019, 277, 937-957. [CrossRef]
12. Deng, Q.R.; Li, M.T. Spectrality of Moran-type self-similar measures on R. J. Math. Anal. Appl. 2022, 506, 125547. [CrossRef]
13. Dutkay, D.; Haussermann, J.; Lai, C.K. Hadamard triples generate self-affine spectral measures. Trans. Am. Math. Soc. 2019, 371, 1439-1481. [CrossRef]
14. Dutkay, D.E.; Jorgensen, P. Fourier series on fractals: A parallel with wavelet theory. Radon Transform. Geom. Wavelets 2008, 464, 75-101.
15. Fu, Y.S.; Tang, M.W. An extension of Łaba-Wang's theorem. J. Math. Anal. Appl. 2020, 491, 124380. [CrossRef]
16. Li, J.L. Spectral self-affine measures in \mathbb{R}^{N}. Proc. Edinb. Math. Soc. 2007, 50, 197-215. [CrossRef]
17. Li, J.L. Spectral self-affine measures on the planar Sierpinski family. Sci. China Math. 2013, 56, 1619-1628. [CrossRef]
18. Li, J.L. Sufficient conditions for the spectrality of self-affine measures with prime determinant. Stud. Math. 2014, 220, 73-86. [CrossRef]
19. Li, J.L. Extensions of Laba-Wang's condition for spectral pairs. Math. Nachr. 2015, 288, 412-419. [CrossRef]
20. Li, J.L. Spectrality of self-affine measures and generalized compatible pairs. Monatsh. Math. 2017, 184, 611-625. [CrossRef]
21. Liu, J.C.; Zhang, Y.; Wang, Z.Y.; Chen, M.L. Spectrality of generalized Sierpinski-type self-affine measures. Appl. Comput. Harmon. Anal. 2021, 55, 129-148. [CrossRef]
22. Falconer, K. Techniques in Fractal Geometry; John Wiley and Sons, Ltd.: Chichester, UK, 1997.
23. Hutchinson, J.E. Fractals and self-similarity. Indiana Univ. Math. J. 1981, 30, 713-747. [CrossRef]
24. Strichartz, R.S. Mock Fourier series and transforms associated with certain Cantor measures. J. Anal. Math. 2000, 81, 209-238. [CrossRef]
