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Abstract: Privacy-preserving machine learning has become an important study at present due to
privacy policies. However, the efficiency gap between the plain-text algorithm and its privacy-
preserving version still exists. In this paper, we focus on designing a novel secret-sharing-based
K-means clustering algorithm. Particularly, we present an efficient privacy-preserving K-means
clustering algorithm based on replicated secret sharing with honest-majority in the semi-honest
model. More concretely, the clustering task is outsourced to three semi-honest computing servers.
Theoretically, the proposed privacy-preserving scheme can be proven with full data privacy. Fur-
thermore, the experimental results demonstrate that our proposed privacy version reaches the same
accuracy as the plain-text one. Compared to the existing privacy-preserving scheme, our proposed
protocol can achieve about 16.5×–25.2× faster computation and 63.8×–68.0× lower communication.
Consequently, the proposed privacy-preserving scheme is suitable for secret-sharing-based secure
outsourced computation.

Keywords: privacy-preserving K-means clustering; secure outsourced computation; replicated secret
sharing; semi-honest model

1. Introduction

With the rapid development of machine learning, Machine Learning as a Service
(MLaaS) has become a popular business. Nowadays, machine learning is also widely
applied in different fields, such as finance, healthcare, image recognition, and so on. Major
companies such as Microsoft, Google, Amazon, etc. are beginning to provide cloud-based
MLaaS. In general, these services allow the machine learning algorithms to be updated and
improved via input data from their users. In order to gain high-precision model, companies
tend to come together and train a common model using their datasets.

However, with the improvement of awareness of privacy, the problems caused by
data privacy leakage have become increasingly prominent. On the one hand, the user,
who uses the MLaaS service, hopes that the service is conducted without revealing any
information of their queries and prediction result. On the other hand, companies want to
train a common model without sharing their dataset. Therefore, it is important to find a
secure way for privacy-preserving machine learning (PPML) to proceed.

Privacy-preserving machine learning can be tracked back to privacy-preserving data
mining, which was firstly introduced by Lindell and Pinkas [1]. Since then, more and more
researchers have put focus on privacy-preserving machine learning.

The dataset can be divided into two main types: labeled data and unlabeled data.
Generally speaking, the former usually uses supervised learning algorithms when training
the model, while the latter unsupervised learning algorithm [2]. In recent years, most
solutions of PPML only consider the supervised learning algorithm, and there is less
consideration of the unsupervised learning algorithm.

As an unsupervised machine learning technique, similar input records are grouped
into clusters while records belonging to different clusters should be maximally different [3].
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In this work, we focus on clustering, which plays an extremely important role in data
processing and analysis. The goal of clustering is to divide given unlabeled data into
several disjoint subsets, such that each subset has similar properties to each other.

The K-means algorithm is one of the most well-known clustering algorithms. A
privacy-preserving K-means clustering, which has full data privacy, allows the parties to cluster
their combined datasets without revealing any other information except for the final centroid [3]. In
other words, the information of intermediate centroids, cluster assignments, and cluster
sizes should be protected in the protocol. Although there are several works for privacy-
preserving K-means clustering at present, only few of them consider both full data privacy
and efficiency. This raises the question:

Could we find a way to achieve both full data privacy for security and efficiency for practicability?
As we will show below, the answer is yes with our replicated secret-sharing-based

K-means clustering protocol.

1.1. Related Work

In general, different algorithms have different privacy-preserving tools. For example,
the chaotic system is a popular tool for image encryption [4]. Privacy-preserving K-means
clustering falls into one of two categories: (i) homomorphic encryption-based and (ii) secure
multiparty computation-based.

Homomorphic encryption (HE) was first proposed by Rivest et al. [5] in 1978. Ho-
momorphic encryption is an encryption scheme where there exists a homomorphism
relationship between operations on the plaintext and operations on the ciphertext, such
that one can operation on the ciphertext can proceed without leaking any information of
plaintext and it obtains the same effect as operation on plaintext after decrypting the result.
HE is also widely applied in secure outsourced computation. HE can be divided into fully
homomorphic encryption (FHE) and partially homomorphic encryption. FHE supports
arbitrary computation on ciphertexts without any limitation. The first feasible FHE scheme
was proposed by Gentry [6] in 2009, but it is inefficient. Instead of using inefficient FHE,
many researchers adopt efficient partially homomorphic encryption, which only supports
homomorphic addition or homomorphic multiplication. For example, RSA [5], Paillier [7],
and ElGamal [8] are common partially homomorphic encryptions.

Generally speaking, an HE-based scheme provides full data privacy, as long as the underlying
HE cryptosystem is secure. The first HE-based K-means clustering scheme was given by
Vaidya and Clifton [9] in 2003, but it does not satisfy full data privacy. In 2007, Bunn
and Ostrovsky [10] presented a two-party privacy-preserving K-means scheme based on
additive homomorphic encryption that guarantees full data privacy in the semi-honest
model. In 2015, Rao et al. [11] proposed a parallelable outsourced distributed clustering pro-
tocol based on Paillier homomorphic encryption in the federated cloud environment, but
their work is inefficient due to its bit-array-based comparison; hence, Kim and Chang [12]
improved it with a new secure comparison protocol. Jäschke and Armknecht [13] proposed
K-means clustering based on FHE over the torus (TFHE) [14], which provides full privacy
guarantees. Cai and Tang [15] proposed their K-means algorithm based on Liu’s homo-
morphic encryption [16], which has been proven insecure [17]. Unfortunately, all of these
schemes do not scale for large datasets due to the heavily homomorphic operations.

Secure two-party computation (2PC) was first presented by Yao [18] in 1982 and
extended to multiparty computation (MPC) by Goldreich et al. [19] in 1987. According to
the parties number, we construct 2PC protocol with Yao’s garbled circuit (GC) [20], while
MPC is done with secret sharing (SS). To further enhance efficiency, t-out-of-n threshold
secret sharing has been applied in recent years. Moreover, the algebraic structure is another
important optimized direction. For example, Shamir’s secret sharing (SSS) is a famous
threshold secret sharing method [21], but it generally works for finite field, such as prime
field Zp, which is inefficient compared with several protocols operating over the-power-
of-two ring Z2` in PPML. This is because the latter takes full advantage of the underlying
CPU architecture.
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In this work, we only focus on SS-based K-means clustering. Doganay et al. [22]
proposed distributed privacy preserving K-means clustering with additive secret sharing
(ASS), but this work reveals the final cluster assignments to parties. Patel et al. [23,24]
proposed their K-means algorithm under different security model. Upmanyu et al. [25]
and Baby and Chandra [26] respectively presented a distributed threshold secret sharing
scheme based on the Chinese remainder theorem (CRT-SS). However, none of them provide
full privacy guarantees as shown in [3]. In 2020, Mohassel et al. [27] presented 2PC K-means
clustering protocol with 2-out-of-2 additive secret sharing, and although it provides full
data privacy, it is inefficient in terms of computation and communication overhead, because
their work heavily relies on garbled circuit and oblivious transfer (OT). Therefore, this
scheme is not practical for large-scale clustering tasks.

As shown above, most of the existing privacy-preserving K-means clustering protocols
take no account of full data privacy. In addition, the gap of efficiency still exists compare
with plaintext training. Algorithm inefficiency also limits its practicality, especially for
large-scale training tasks. In this work, we want to construct privacy-preserving K-means
clustering, which has full data privacy for security and high efficiency for practicality.

1.2. Our Contributions

In this work, we only focus on SS-based K-means clustering schemes. We provide the
comparison with existing SS-based K-means clustering in Table 1. We propose an efficient
three-party computation protocol for privacy-preserving K-means clustering. Concretely,
our contributions are described as follows:

• Our protocol provides full privacy guarantees, which allows different computing
parties to cluster the combined datasets without revealing any other information
except the final centroids.

• Our protocol is based on replicated secret sharing (RSS), which is a 2-out-of-3 threshold
secret sharing proposed by Araki et al. [28] and is suitable for constructing efficient
protocol over Z2` . Our protocol is secure against a single corrupt server under a semi-
honest model. We analyze the security with universal composition framework [29].

• The experimental results demonstrate that our protocol reaches the same accuracy
as the plaintext K-means clustering algorithm. With the fast network, our privacy-
preserving scheme can deal with datasets of million points in an acceptable time.

Table 1. The comparison of different SS-based K-means schemes. ASS: Additive secret sharing,
CRT-SS: Chinese remainder theorem secret sharing, SSS: Shamir’s secret sharing, RSS: Replicated
secret sharing. ZKP: Zero knowledge proof, GC: Garbled circuit. OT: Oblivious transfer. N/A:
Undefined. L1: intermediate centroids, L2: intermediate cluster sizes, L3: other intermediate values
(e.g., intermediate cluster assignments or distance comparison results). 3: no leakage, 7: leakage.
FDP: Full data privacy.

Scheme Security Technology Domain L1 L2 L3 FDP

Doganay et al. [22] Semi-honest ASS N/A 3 3 7 7

Upmanyu et al. [25] Semi-honest CRT-SS Zp 3 7 7 7

Patel et al. [23] Semi-honest SSS Zp 7 7 3 7

Patel et al. [24] Malicious SSS+ZKP Zp 7 7 3 7

Baby and Chandra [26] N/A CRT-SS Zp 7 7 7 7

Mohassel et al. [27] Semi-honest ASS+GC+OT Z2` 3 3 3 3

This work Semi-honest RSS Z2` 3 3 3 3

1.3. Roadmap

The remaining sections are organized as follows. In Section 2, we give the definition of
basic notation, threat model, and security assumption of secure computation, and plaintext
algorithm related to K-means clustering. In Section 3, we give the cryptographic building
blocks. In Section 4, we propose our efficient three-party protocol construction. We give
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detailed security analysis of our protocol in Section 5. Then, we report the experimental
results of our construction in Section 6. Finally, we conclude this paper in Section 7.

2. Preliminaries
2.1. Basic Notation

We denote the party i by Pi for each i ∈ {1, 2, 3}. For simplicity, we define P0 = P3,
and P4 = P1 in the context. x ∈R F is chosen uniformly at random from finite set F. We
write a bold letter v to denote a d-dimension vector. The j-th component of vector v is vj. If
x is a `-bit number, then x[i] is its i-th bit. Let κ be the security parameter. We use [n] to
denote set {1, · · · , n}. Furthermore, we assume all float-point data are encoded as `-bit
fixed-point number with f -bit precision, where f < `.

2.2. Threat Model and Security Assumption

Our protocol follows a static and semi-honest model [30] under the honest-majority
setting, i.e., the adversary A only corrupts a single and fixed party during protocol execut-
ing. In this setting, the corrupted party follows protocol honestly and wants to learn the
input of other parties from received messages. Therefore, the semi-honest model is also
called the passive model. Furthermore, we assume the parties communicate with other
parties through a secure channel and the network is synchronized.

We prove security using a universally composable framework [29] in the ideal–real
paradigm [30]. Let F be the ideal functionality executed by a trusted third party (TTP)
in the ideal world, and Π be the real protocol executed by all parties in the real world.
In the ideal world, there is a simulator Sim that plays as adversary A. Let C be the set
of corrupted parties and xi be Pi’s input. We define the ideal interaction and the real
interaction as follows:

• IdealF ,Sim(κ, C; x1, · · · , xn): Compute (y1, · · · , yn)← F (x1, · · · , xn);
Output Sim(C, {(xi, yi), i ∈ C}), (y1, · · · , yn), where yi is Pi’s output.

• RealΠ,A(κ, C; x1, · · · , xn): Run the protocol Π;
Output {Viewi, i ∈ C}, (y1, · · · , yn), where Viewi is the final view of Pi.

We say the protocol Π securely computes the functionalityF in the semi-honest model,
if the view of simulator in the ideal world is indistinguishable from the view of adversary
in the real world. We refer the reader to [30] for more details.

2.3. The K-Means Clustering Algorithm

Given dataset D = {P1, · · · , Pn} with n data points, each point Pi is a d-dimension
vector (Pi1, · · · , Pid). We form n× d matrix P. A standard K-means clustering algorithm
includes the following steps [10,27]:

1. Cluster centroids initialization: randomly choose K different points as initialized
centroids φ1, · · · , φK for K groups, where φk is d-dimension vector (φk1, · · · , φkd),
k ∈ [K].

2. Repeat the following until the stopping criterion (Lloyd’s steps):

(a) For i ∈ [n], k ∈ [K], compute the Euclidean distance between point Pi and
centroids φk by

Xik =

√√√√ d

∑
j=1

(
Pij − φkj

)2
. (1)

(b) Assign each data point Pi to the closest cluster mi for i ∈ [n]. This can be
done by computing ki ← arg min{Xi1, · · · , XiK} firstly, and then generate a K-
dimension one-hot vector ci where ‘1’ indicates the ki-th component of vector
(Xi1, · · · , XiK). We form K× n matrix C such that the i-th column of C is the
one-hot vector ci. Let mk be the k-th row of C.
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(c) Recalculate the average of the points in each cluster. For each cluster k ∈ [K],
compute new cluster center with

ϕk =
mk · P

Dk
, (2)

where Dk = ∑n
i=1 mki is the point number of k-th cluster.

(d) Check the stopping criterion and update the new cluster center with the aver-
age. For each k ∈ [K], compute the Euclidean distance between ϕk and φk at
first, and then the squared error can be computed by

e =
K

∑
k=1

ek =
K

∑
k=1

√√√√ d

∑
j=1

(ϕkj − φkj)2. (3)

Given a small error ε, if e ≥ ε, then update φk with ϕk. Otherwise, stop the
criterion and output ϕk.

3. Building Blocks

This section gives the building blocks for our privacy-preserving K-means clustering
protocol.

3.1. Correlated Randomness

In order to generate randomness among parties without any interaction, similar
to [28,31,32], correlated randomness is introduced to this work.

Let F : Zκ
2 ×Zκ

2 → Z2` be a secure pseudo-random function (PRF). count is a counter
maintained by the parties and updated after every PRF invocation. All parties run a one-
time setup to establish PRF keys. The one-time setup can be done by letting each Pi choose
a random key ki, and then sending it to Pi−1 for i ∈ [3]. Namely, each Pi has the random
PRF keys ki and ki−1 after the setup. In this way, the parties can generate the following
correlated randomness locally:

• 3-out-of-3 randomness: Pi holds αi = Fki
(count)− Fki−1

(count).
• 2-out-of-3 randomness: Pi holds (αi, αi−1) = (Fki

(count), Fki−1
(count)).

Note that 3-out-of-3 randomness has the property that α1 + α2 + α3 ≡ 0 mod 2`, which
is known as zero sharing.

3.2. Replicated Secret Sharing

Replicated secret sharing (RSS) was first proposed by Ito et al. [33]. In CCS’16, Araki
et al. [28] presented 2-out-of-3 replicated secret sharing scheme, which has high throughput
and low latency. As a famous 3PC framework, ABY3 is also based on this variant over
2-power ring Z2` [31]. Our protocol also builds on ABY3. Let m be a general modulus, and
we describe this replicated secret sharing as follows.

• JxK ← share(x): To share a secret x ∈ Zm, the dealer samples three random values
x1, x2, x3 ∈R Zm under the constraint that x ≡ x1 + x2 + x3 mod m. For i ∈ [3], Pi gets
(xi, xi+1). We write JxK := (x1, x2, x3).

• x ← reconstruct(JxK,P): To reveal JxK to all parties, Pi sends xi to Pi+1, then each
party reconstructs x locally by computing x1, x2, x3 ∈R Zm. To reveal JxK only to Pi,
Pi−1 sends xi−1 to Pi−1 which reconstructs x locally.

In this work, m can be a different modulus. When m = 2`, we call that arithmetic share
and denote it as JxK or JxKA. When m = 2, we call that boolean share and denote it as JxKB.

The linear operation between two shares can be computed locally because of the linear-
ity property. This means that given public constant a, b, c and two shares
JxK = (x1, x2, x3), JyK = (y1, y2, y3), Jax± by± cK can be locally computed as (ax1 ± by1 ±
c, ax2 ± by2, ax3 ± by3). In order to compute the shares of multiplication JzK = JxyK, the



Entropy 2022, 24, 1145 6 of 17

parties generate zero sharing locally at first, and then Pi locally computes 3-out-of-3 share
zi = xiyi + xi+1yi + xiyi+1 + αi for each i ∈ [3]. Finally, resharing is performed by the parties
for 2-out-of-3 sharing semantics; this can be done by Pi that sends zi to Pi+1. It is easy to
see that each party only sends 1 ring element per multiplication. Compare that with ASS in
the 3PC setting, wherein RSS reduces 50% communication overhead. In this context, we
denote RSS multiplication protocol as ΠMul.

If the dealer wants to share a random value r ∈R Z2` for j-th time to all parties, the
PRF key from zero sharing can be used. In particular, Pi lets ri = Fki

(j) and ri−1 = Fki−1
(j).

If P1 wants to share his private input x to all parties, the parties first generate another zero
sharing (β1, β2, β3), then define the share of r as JrK := (β1 + x, β2, β3), and Pi sends x to
Pi−1 in the end.

Note that the appearance of decimals in the computation is unavoidable in the com-
putation, while secret sharing only works on the integer field. To represent a real number
x̄ ∈ R, we use a fixed-point representation with f -bit precision [34]. We scale x̄ by a factor
of 2 f and represent the rounded integer x = b2 f · x̄c as a `-bit signed integer over Z2` .
However, the multiplication result Jz′K between two shares JxK and JyK will have 2 f -bit
precision.

To reduce precision from 2 f to f , Mohassel and Rindal [31] introduce two probability
truncation techniques to truncate the f -bit of the result. In this work, we use the second
probability truncation technique. First, the parties generate a random truncation pair
(Js′K, JsK) in the preprocessing phase, where s′ ∈ {0, 1}` with 2 f -bit precision, s ∈ {0, 1} f

with f -bit precision, such that s = s′/2 f . In the online phase, the parties jointly compute
Jz′ − s′K, then compute and open (z′ − s′), which is followed by computing JzK = JsK +
(z′ − s′)/2 f locally. The truncation induces error is only 2− f .

3.3. Oblivious Selection Protocol

As an important part of our privacy-preserving K-means clustering protocol, we define
the oblivious selection functionality FOS, whose functionality takes the arithmetic shares
JxK, JyK and boolean share JbKB as input, and returns JxK if b = 0, and JyK otherwise. Note
that FOS can be explained as f (x, y, b) = (1− b)x + by = x + (y− x)b. It seems that the
parties only need to compute multiplication between (y− x) and b once to implement FOS.
However, this is non-trivial since Jy− xKA is arithmetic share and JbKB is boolean share,
while the RSS multiplication only works for same shares.

A natural idea is to convert JbKB to JbKA by using bit injection protocol ΠB2A from
ABY3 [31], where three-party OT is required. Instead of using OT, we implement conver-
sion with the Beaver trick [35]. Suppose that the parties access the precomputed conversion,
and obtain precomputed random bit share JcKB and JcKA in the preprocessing phase. In
the online phase, the parties compute and reconstruct the bit e = b⊕ c, followed by set-
ting JdKA = J1− cKA if e = 1, and JdKA = JcKA otherwise. Finally, the parties compute
JzKA = J(y− x) · dKA + JxKA, where J(y− x) · dKA can be computed by using RSS multipli-
cation ΠMul between Jy− xKA and JxKA.

Since that random bit JcKB and JcKA are used as the one-time pad, the corrupted
party can not learn any information about b. Even though the parties reveal the masked
value e in the clear, our oblivious selection protocol is still secure. Looking ahead, the
oblivious selection protocol is used to find the index of minimum component from vector
and generate one-hot vector.

3.4. Secure Euclidean Squared Distance Protocol

From Section 2.3, it is important to compute the Euclidean distance between two
points using Equation (1). However, the square root is unfriendly to construct the SS-based
protocol since it is a nonlinear operation and has an expensive communication overhead.
Note that f (x) =

√
x is a monotonically increasing function, which can be replaced with

f (x) = x. This would, however, not affect the results on clustering since the only thing we
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need here is the relationship of size between two values. In this way, we replace Equation (1)
with the following Euclidean squared distance equation:

Xik =
d

∑
j=1

(
Pij − φkj

)2
. (4)

Similarly, Equation (3) can be replaced with the following Equation (5):

e =
K

∑
k=1

ek =
K

∑
k=1

d

∑
j=1

(ϕkj − φkj)
2. (5)

Now, we focus on, given the share of vector x = (x1, · · · , xd) and y = (y1, · · · , yd),
how to compute the share of Euclidean squared distance. We define this functionality as
FESD. Observe that this can be done by first computing z = x− y = (x1− y1, · · · , xd − yd),
and then computing the inner product between z and z. A naive way is for the parties to
invoke RSS multiplication d times for d-dimension, consume d truncation pair to truncate
the result, locally sum the result, and reshare. The communication is O(d) ring elements,
which is dependent on d, the size of vector.

In this work, we use the delay re-share technique [31] to reduce communication com-
plexity for inner product, which is only communication O(1) ring element and independent
of d.

Let (Js′K, JsK) be the shares of truncation pair among the parties, where s′ ∈ {0, 1}`
with 2 f -bit precision, s ∈ {0, 1} f with f -bit precision, such that s = s′/2 f . The delay
re-share technique can be explained as the following Equation (6):

JxK · JyK = reconstruct((
d

∑
j=1

JxjK · JyjK) + Js′K)/2 f − JsK. (6)

In a word, the parties first compute a 3-out-of-3 additive sharing of each JxiKJyiK locally,
then sum together, mask, truncate, and reshare the final result for 2-out-of-3 replicated
sharing semantics. It is easy to see that this would only require communicate 1 ring element
per party, which is independent of d. Furthermore, the truncation-induced error is only
2− f with respect to the overall inner product.

The protocol for secure Euclidean squared distance is described in Figure 1.

3.5. Secure Comparison Protocol

In order to obtain the relationship between two given values, we have to consider
how to implement comparison when the values are shared. We define secure comparison
functionality FLT, which takes JxK and JyK as input, return boolean share JbKB, where bit
b = 1 if x < y, and b = 0 otherwise.

Let a = (x− y), then z can be computed by extracting the most significant bit (MSB)
of a, i.e., b = MSB(a). Instead of using optimized parallel-prefix-adder-based bit extraction
protocol from ABY3 [31], Wagh et al. [32] present a more efficient alternative method.

Recall that JaK := (a1, a2, a3), and a ≡ a1 + a2 + a3 mod 2`, one has

b = MSB(a) = MSB(a1)⊕MSB(a2)⊕MSB(a3)⊕ c, (7)

where c ∈ {0, 1} is a carry bit from (`− 2)-th index and can be computed by Equation (8).

c =

{
1, if 2`−1 ≤ a1 + a2 + a3 < 2`,
0, Otherwise.

(8)

From Equation (7), we observe that Pi can compute MSB(ai) locally; thus, the main
challenge here is how to compute c in a secure way. Note that Equation (8) is also equivalent
to c = ((2a1 + 2a2 + 2a3) ≥? 2`), which can be computed by wrap function. Wagh et al. [32]
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give us a solution for wrap function, denoted as ΠWA. We refer the reader to their work for
correctness and security.

The secure comparison protocol is described in Figure 2. Furthermore, if one of the se-
crets is known to all parties, e.g., y, the share of y can be defined by letting
JyK := (y + α1, α2, α3) without any interaction, where (α1, α2, α3) is zero sharing gener-
ated by PRF keys among the parties. Thus, the secure comparison protocol is also work.
We denote this case as JbKB ← FLT(JxK, y).

JzK← ΠSED(JxK, JyK)

Input: The parties holds two vector shares JxK = (Jx1K, · · · , JxdK) and
JyK = (Jy1K, · · · , JydK) over Z2` .
Output: The parties get share JzK, where z = (x− y) · (x− y) = ∑d

j=1(xj − yj)
2.

Preprocessing:
1. The parties generate random truncation pair (Js′K, JsK) by using (Mohassel and

Rindal, Πtrunc2), where s′ ∈ {0, 1}` with 2 f -bit precision, s ∈ {0, 1} f with f -bit
precision, such that s = s′/2 f .

Online:

1. The parties locally compute the vector shares JzK = (Jz1K, · · · , JzdK), where
JzjK = JxiK− JyjK, j ∈ [d].

2. The parties locally compute the 3-out-of-3 shares Jz′K = ∑d
j=1JzjK · JzjK.

3. The parties locally mask the share Jz′ + s′K = Jz′K+ Js′K.
4. The parties reconstruct (z′ + s′) and then locally compute (z′ + s′)/2 f .
5. The parties reshare and output the 2-out-of-3 shares JzK = (z′ + s′)/2 f − JsK.

Figure 1. Secure Euclidean squared distance protocol [31].

JbKB ← ΠLT(JxK, JyK)

Input: The parties hold the arithmetic shares of x and y over Z2` .
Output: The parties get the boolean share of bit b = (x <? y).
Online:
1. The parties locally compute the shares of a, where a← x− y.
2. The parties compute the boolean share of bit c by invoking (Wagh et al., ΠWA),

where c← ((2a1 + 2a2 + 2a3) ≥? 2`).
3. Each Pi locally computes the boolean share of bit b, where b← MSB(ai)⊕ c.
4. The parties output JbKB.

Figure 2. Secure comparison protocol [32].

3.6. Secure Assignment Protocol

Recall that once the parties obtain the shares of the Euclidean squared distance between
a point and all centorids, the following step is to assign this point to the closest cluster.
This step can be abstracted as the question of, given K-dimension secret shared vector
JvK = (Jv1K, · · · , JvKK), how to compute the secret shared one-hot vector e, where ‘1’
appears in the k-th component, and k = arg min{v1, · · · , vK}. We denote secure assignment
functionality as FAssign. The idea is straightforward. We implement secure assignment
functionality with the following protocol ΠAssign (see Figure 3).
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JeK← ΠAssign(JvK)

Input: The parties hold shares of vector v = (v1, · · · , vK) over Z2` .
Output: The parties get arithmetic shares of one-hot vector ek = (e1, · · · , eK), where
ej = 0 ∀j 6= k and ek = 1, and k = arg min{v1, · · · , vK}.
Online:
1. Set JvminK← Jv1K and JeK← Je1K.
2. For j = {2, 3, · · · , K}, compute as follows:

(a) Compute JbKB ← ΠLT(JvjK, JvminK);
(b) Compute JvminK← ΠOS(JvminK, JvjK, JbKB);
(c) Compute JeK← ΠOS(JeK, JejK, JbKB);

3. Output JeK.

Figure 3. Secure Assignment protocol.

3.7. Secure Division Protocol

As shown in Section 2.3, the parties need to recalculate the average vector of the
points in each cluster in a secure way. Note that the average can be split by computing
addition and division, where addition can be computed locally, hence the key point is to
compute division. If the divisor is known to all parties, then division can be computed
locally. However, observe that the divisor denotes the number of each cluster point and
should be protected since full data privacy is required. Thus, the computation of division
becomes difficult in our scenarios. We define secure division functionality FDiv as follows:
Given secret shared value JaK and JbK with b ∈ Z+, the parties compute the share JcK, such
that c = a/b.

Instead of invoking division garbled circuit protocol, we implement division with
numerical method. The numerical method is one of the most commonly used techniques
for constructing SS-based secure protocol due to its efficiency. In this work, we implement
division using Goldschmidt’s algorithm [36], which approximates the desired operation as
a series of multiplication.

Let w0 be an initial approximation of 1/b, and ε0 := 1− b · w0 be the relative error for
the approximation w0 such that |ε0| < 1. The Goldschmidt algorithm iteratively computes
the following Equation (9):

c =
a
b
= a · 1

b
≈ a · w0(1 + ε0)(1 + ε2

0) · · · (1 + ε2t−1

0 ), (9)

where t is the number of iterations. When t→ +∞, one has c converges to a/b [36]. We set
t = 2, which is sufficient for a close approximation with our choice of fixed-point precision.

Catrina and Saxena [34] give us a good initial approximation of w0 in the interval
[0.5, 1), that is w0 = 2.9142− 2b. However, the major challenge of our work is that b ∈ Z+

does not belong to the interval [0.5, 1). In this work, we use the technique proposed by
Wagh et al. [32]. The key insight here is that b is interpreted as a value with (α + 1)-bit
fixed-point precision but not f -bit precision, where α ∈ Z such that 2α ≤ b < 2α+1. Thus,
one should first extract α. The secure division protocol is described in Figure 4. From step
1 and step 2, we extract and reveal α to all parties, which only leaks the range of b and
nothing else.
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JcK← ΠDiv(JaK, JbK)

Input: The parties hold arithmetic shares of a, b over Z2` .
Output: The parties get the arithmetic share of c = a/b.
Online:
1. Initialize α← 0.
2. For i = {`− 1, · · · , 1, 0}, compute as follows:

(a) Compute JdKB ← ΠLT(JbK, J22i+αK), and reveal d to all parties.
(b) Set α← α + 2i if d = 1.

The parties get α in the clear, where 2α ≤ b < 2α+1.
3. Set fixed-point precision as f ′ = α + 1.
4. Compute the shares of w0 ← 2.9142− 2b.
5. Compute the shares of ε0 ← 1− b · w0 and ε1 ← ε2

0.
6. Compute the shares of c← aw0(1 + ε0)(1 + ε1).
7. Output JcK over Z2` with f -bit precision.

Figure 4. Secure division protocol [32].

4. Privacy-Preserving K-Means Clustering

We now give a formal description of our privacy-preserving K-means clustering
protocol, following the basic building blocks outlined above.

4.1. Secret Distribution

Recall that all data are held by the data owners in the secure outsourced scenarios,
thus secret distribution phase is completed by the data owner. This implies that all data
are horizontal partitioned. As an optimized, instead of generating 2-out-of-3 replicated
shares directly, the data owner generates 3-out-of-3 additive shares and then sends to three
computing parties/servers, who reshare the shares and obtain valid 2-out-of-3 replicated
shares. In this way, we reduce communication costs of the data owner by a half.

4.2. Cluster Initialization

As shown in Section 2.3, we need to initialize K centroids before the Lloyd’s steps.
In this work, we assume that the data owner chooses K random points as the initialized
centroids and secret share to three computing parties for simple. In this way, cluster
initialization can be combined with secret distribution.

4.3. Lloyd’s Steps
4.3.1. Approximation of Euclidean Distance

Recall that we replace Euclidean distance with Euclidean squared distance, which is
not affect the final result as we shown in Section 3.4. For i ∈ [n] and k ∈ [K], the parties
first invoke FSED to compute the shares of Euclidean squared distance Xik between data
point Pi and centroid φk, and then form n× K matrix X.

4.3.2. Assigning Data Points to the Closest Cluster

For i ∈ [n], we denote Xi as the i-th row vector of X. In order to assign data point Pi to
the closet cluster, the parties invoke our FAssign protocol as described in Section 3.6. The
one-hot vector output JciK← FAssign(JXiK) indicates which cluster center this data point is
assigned to. We form K× n cluster matrix JCK, such that the i-th column of C is ci.

4.3.3. Recalculating Cluster Centers

Given cluster matrix C, the parties need to recalculate each centroid. Observe that for
each k ∈ [K], the k-th cluster center has Dk = ∑n

i=1 Cki points exactly. Instead of computing
ϕk =

Ck ·P
Dk

separately, one can first compute M = C · P, and then compute ϕk =
Mk
Dk

, where
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Mk is the k-th row of M. Given secret shared matrix JCK, the new centroid matrix ϕ can
be computed by vectorized multiplication technique [31] and secure division protocol (as
described in Section 3.7). Furthermore, the parties also compute the shares of Euclidean
squared distance ek between ϕk and φk for checking the stopping criterion.

4.3.4. Checking the Stopping Criterion and Updating Centroids

In order to check the stopping criterion, the parties first locally compute e = ∑K
k=1 ek,

and then compare with a given small error ε, stop the criterion if e < ε, otherwise update ϕ
and continue next round. This can be done by invoking secure comparison protocol ΠLT.
The only reveal message is b = (e <? ε), which does not affect full data privacy.

4.4. Main Construction

The secure K-means protocol is described in Figure 5. According to the definition of
full data privacy, the information about the intermediate centroids, cluster assignments, and
cluster sizes should be protected. From Figure 5, we can see that the only information we leak
is the range of Dk and nothing else. Therefore, our construction provides full data privacy.

Parameters:
• Number of clusters K; number of data points n; dimension d.
• Ideal FOS,FSED,FLT,FAssign,FDiv primitives.
Secret Distribution:

1. The data owner generates the 3-out-of-3 additive shares of data points matrix
P = (P1, · · · , Pn) with dimension n× d.

2. The data owner sends the shares to three semi-honest computing parties/servers
P1,P2,P3.

3. Each party reshares the shares and obtains valid 2-out-of-3 replicated shares.

Initialization:
1. The data owner chooses K random points as the initialized centroids, forms

K× d centroid matrix φ = (φ1, · · · , φK).
2. The data owner shares φ to three computing parties similar to secret distribution.
Lloyd’s Steps:
For t ∈ [T], the parties repeat the following steps until the stopping criterion.
1. For i ∈ [n], k ∈ [K], the parties compute the shares of the Euclidean squared

distance by invoking JXikK← FSED(JPiK, JφkK). The parties form n× K matrix X.
2. For i ∈ [n], the parties assign point Pi to the closest cluster by invoking

JciK← FAssign(JXiK). The parties forms K× n matrix JCK such that the i-th
column of C is ci.

3. The parties compute the share of matrix multiplication JMK← JCK · JPK by using
RSS vectorized multiplication technique. For k ∈ [K], the parties jointly
recalculate the sharing JϕkK of the new centroid as follows:
(a) Compute the shares of the denominator JDkK← ∑n

i=1JCkiK.
(b) Compute the shares of the average of the points in each cluster by

invoking JϕkK← FDiv(JMkK, JDkK).
(c) Compute the shares of Euclidean squared distance between ϕk and φk by

invoking JekK← FSED(JϕkK, JφkK).
4. The parties update the cluster centroids as follows:

(a) The parties locally compute the sharing of error JeK← ∑K
i=1JekK.

(b) The parties invoke JbKB ← FLT(JeK, ε) and reveal b.
(c) If b = 1, then stop criterion and reveal ϕ. Otherwise, replace JφK with JϕK.

Figure 5. Our Privacy-preserving K-means Protocol.
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5. Security Analyses

Our protocol follows the universally composable framework [29] and provides security
against a single corrupted party under the semi-honest model. The universally compos-
able framework guarantees the security of arbitrary composition of different protocols.
Therefore, we only need to prove the security of individual protocols.

Theorem 1. ΠOS, ΠSED, ΠLT, ΠAssign, ΠDiv securely realizes FOS,FSED,FLT,FAssign,FDiv,
respectively, in the presence of one semi-honest corrupt party under the hybrid model.

Proof of Theorem 1. We list the security of those protocols as follows:
Security for ΠOS: This can be reduced to the security of one-time pad and RSS multipli-

cation ΠMul.
Security for ΠSED: This protocol is based on the vectorized multiplication protocol [31],

which has been proven secure under the semi-honest model.
Security for ΠLT: This can be reduced to the security of wrap function protocol, which

has been proven secure in [32].
Security for ΠAssign: This can be reduced to the security of ΠLT and ΠOS.
Security for ΠDiv: This protocol has been proven secure in [32].

Theorem 2. The protocol in Figure 5 securely computes the K-means clustering under the semi-
honest model, given the ideal FSED,FAssign,FMul,FLT, and FDiv functionalities, respectively.

Proof of Theorem 2. We exhibit a simulator Sim for simulating a corrupt party P1. The
simulator for P2 and P3 should be the same as P1.

Sim simulates the view of corrupt P1, which consists of his input/output and received
messages, and proceeds as follows:

1. Calls FSED simulator SimFSED
(JPiK, JφkK) to simulate step 1, then appends its output

to the view;
2. Calls FAssign simulator SimFAssign

(JXiK to simulate step 2, then appends its output to
the view;

3. Calls FMul simulator SimFMul
(JCK, JPK) to simulate step 3, then appends its output to

the view;
4. CallsFDiv simulator SimFDiv

(JMkK, JDkK) to simulate step 3(b), then appends its output
to the view.

5. Calls FLT simulator SimFLT
(JeK, ε) to simulate step 4(b), then appends its output to

the view.

We argue the indistinguishability of the produced transcript from the execution of real
world. At first, we formally show the simulation by proceeding the sequence of hybrid
transcripts T0, T1, T2, T3, T4, T5, where T0 is the real view of A, and T5 is the output of Sim.

Hybrid 1. Let T1 be the same as T0, except the FSED execution is replaced with running
the simulator SimFSED

(JPiK, JφkK). Because ΠSED has been proven secure, thus SimFSED
is

guaranteed to produce output indistinguishable from the execution of real world. Therefore,
T1 and T0 are indistinguishable.

Hybrid 2. Let T2 be the same as T1, except the FAssign execution is replaced with
running the simulator SimFAssign

(JXiK). This functionality outputs the share of the Euclidean
squared distance between Pi and φk, which does not reveal any information about the
result. Moreover, the output of SimFAssign

is indistinguishable from the execution of real
world, thus T2 and T1 are indistinguishable.

Hybrid 3. Let T3 be the same as T2, except the FMul execution is replaced with running
the simulator SimFMul

(JCK, JPK). Because ΠMul has been proven secure, SimFMul
is guaran-

teed to produce output indistinguishable from the execution of the real world. Therefore,
T3 and T2 are indistinguishable.

Hybrid 4. Let T4 be the same as T3, except the FDiv execution is replaced with running
the simulator SimFDiv

(JMkK, JDkK). This is because ΠDiv has been proven secure, and its
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output is the share, which is indistinguishable from the pseudo-randomness. In other
words, the output of SimFDiv

is indistinguishable from the execution of real world. Thus, T4
and T3 are indistinguishable.

Hybrid 5. Let T5 be the same as T4, except the FLT execution is replaced with running
the simulator SimFLT

(JeK, ε). The output is the share, which does not reveal any information
about the data points. In addition, the output of SimFLT

is indistinguishable from the
execution of real world. Thus T5 and T4 are indistinguishable.

In summary, T0 and T5 are indistinguishable, which is end of the proof.

6. Experiments
6.1. Experimental Setup

We implement our privacy-preserving clustering protocol and report the experimental
results in this section. All experiments are executed on Ubuntu 22.04 LTS with Intel(R)
Xeon(R) Gold 5222 CPU @3.41GHz and 256 GB RAM. All parties run in the same network
and the connection is simulated using the Linux tc command. The LAN setting has 0.2 ms
round-trip latency and 5 Gbps network bandwidth, while the WAN setting has 20 ms
round-trip latency and 400 Mbps network bandwidth. We implement our protocol with
the C++ open source framework FALCON (https://github.com/snwagh/falcon-public
(accessed on 18 June 2022)) [32].

In all experiments, we assume the orginal data has been normalized in the same level.
For the public parameters, we set bit-length ` = 64, fixed-point precision f = 13, and the
number of iteration t = 2. Table 2 summarizes the real datasets used in our experiments.
Furthermore, we also compare with Mohassel et al. [27] in the self-generated dataset.

Table 2. Descriptions of the datasets we used in experiments, where n is the number of data points, K
is the number of clusters, and d is the dimension. We also report the accuracy of different datasets, if
the ground truth model of dataset exists.

Dataset n K d Accuracy

Iris 150 3 4 92.67%
arff 1000 4 2 98.20%

Self-generated {10, 000, 100, 000} {2, 5} {5, 10, 15, 20} —

6.2. Accuracy

In order to evaluate the accuracy of clustering classification for the real dataset, we
usually compare it to the ground truth model. We downloaded the ground truth model
of Iris and arff from Github repository (https://github.com/deric/clustering-benchmark
(accessed on 18 June 2022)). Note that the standard K-means clustering is sensitive to
the initialized centroids; thus, we ran the algorithm many times with different initialized
centroids and take the best result as the global optimal solution.

We used 2D dataset arff and 4D dataset Iris for evaluating accuracy and report the
experimental results in Table 2. For a visual comparison, the experimental result of dataset
arff is shown in Figure 6. Compared to the ground truth model of dataset arff, we reached
98.20% accuracy in our privacy-preserving model. For dataset Iris, we reached 92.67%
accuracy in our privacy-preserving model. Both accuracy results are the same as the
plaintext algorithm; hence, our privacy-preserving protocol is feasible.

Recall that our secure division protocol adopts the numerical method and the result of
the secure multiplication protocol needs to be truncated; thus, the privacy-preserving result
ϕ is only approximate to the plain result but not the exact result. In fact, our experiment
shows that the relative error is about 10−2, which means this part has a negligible impact
on model accuracy compare with the plaintext algorithm. In other words, our privacy-
preserving protocol is feasible, even if ϕ is only approximate to the truth value. For the
large-scale dataset, we argue that the relative error can be improved by taking bigger public
parameters `, f , and t. However, it will require more runtime and communication cost.

https://github.com/snwagh/falcon-public
https://github.com/deric/clustering-benchmark
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There is a trade-off between runtime and accuracy of the division. We do not consider the
accuracy of experiment in the following section.

(a) Ground Truth Model (b) Plaintext and Privacy-preserving Model

Figure 6. Comparison of accuracy for ground truth, plaintext, and privacy-preserving model for 2D
dataset arff. Our privacy-preserving model reaches the same accuracy as the plaintext model. The
accuracy is 98.20% compared to the ground truth model.

6.3. Runtime and Communication

In this section, we focus on the total communication cost and runtime of our privacy-
preserving protocol. We ran each experiment five times and computed the average of wall
clock runtime as the reported runtime. We report the experimental results in Table 3. Note
that iteration T depends on the initialized clustering centroids; hence, we set it to a fixed
value in this experiment (say, T = 10).

Table 3. The comparison of wall clock runtime and communication cost with different dimensions in
the self-generated dataset both with LAN and WAN setting, where n is the number of data points, K
is the number of clusters, d is the dimension, and the iteration T = 10.

Parameters Runtime
Comm. (MB)

n K d LAN (s) WAN (min)

10,000

2
5 63.8160 134.3737 37.1516

10 63.8020 134.3832 37.2976
20 63.6132 134.3962 37.5896

5
5 160.9406 336.0150 134.2790

10 161.2164 336.1254 134.6440
20 161.3586 336.2652 135.3740

100,000 2
5 474.7150 1336.1333 370.1520

10 473.9687 1336.1968 370.2980
20 475.1037 1336.2415 370.5900

As shown in Table 3, the runtime and communication overhead are independent from
the dimension d; this is because we enjoy the benefit from the vectorized multiplication
and delay re-share technique [31].

Even though n = 100, 000, our scheme lasted less than 8 min and communicated less
than 400 MB in total under the LAN setting. Although the overall communication cost
is low, we observe that the runtime of our scheme is not good at the WAN setting. The
reason for this is because WAN has low-bandwidth and high-latency, while the secret-
sharing-based schemes usually have much communication rounds that is bad for this
setting. Thus, we argue that our privacy-preserving scheme is practical when the network
is fast, high-bandwidth, and low-latency. We estimate that our privacy-preserving protocol
can be used to deal with datasets of million points in an acceptable time (for example,
within 2 h for clustering one million points to 2 groups in the LAN setting).
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6.4. Comparison with Mohassel et al. [27]

Recall that Mohassel et al. [27] also provides full data privacy guarantees (see Table 1);
thus, we also compare to their work with the self-generated dataset in our experiment
environment. We downloaded the code of Mohassel et al. [27] from their Github repository
(https://github.com/osu-crypto/secure-kmean-clustering (accessed on 18 June 2022)). In
order to save time, all experiments are only considered under the localhost setting, which
has 0.027ms round-trip latency and 41.1Gbps network bandwidth. We ran each protocol
five times and report the average of wall clock runtime and communication costs. Instead
of running the code of Mohassel et al. [27] in every iteration, we measured its runtime for
one round iteration and multiplied by the number of iterations T to save time.

Table 4 presents the computation cost and communication cost of our protocol com-
pared with [27]. Our experimental results demonstrate that the computation costs of
our protocol is about 16.5×–25.2× faster than [27], and the communication cost is about
63.8×–68.0× less than [27]. This is because their construction relies heavily on garbled
circuit and oblivious transfer, while our scheme is only based on replicated secret sharing.

Table 4. Comparison with Mohassel et al. [27] in large-scale self-generated datasets under the
localhost setting, where n is the number of data points, K is the number of clusters, and dimension
d = 2.

Parameters Runtime (min) Communication (MB)

n K T [27] This
Work

Improved
Factor [27] This

Work
Improved

Factor

104
2 10 1.77 0.09 19.5× 2377 37 64.1×

20 3.36 0.19 17.9× 4733 74 63.8×

5 10 4.69 0.28 16.5× 9121 134 68.0×
20 9.46 0.56 16.9× 18220 268 68.0×

105
2 10 15.33 0.74 20.8× 23731 370 64.1×

20 29.74 1.15 20.4× 47262 740 63.9×

5 10 46.51 1.85 25.2× 91128 1339 68.0×
20 91.61 3.65 25.1× 181867 2678 67.9×

7. Conclusions and Future Work

In this work, we presented an efficient RSS-based privacy-preserving K-means cluster-
ing scheme over Z2` under the semi-honest model. Our scheme provides full data privacy.
The experiment report shows that our protocol is highly efficient and practical, as well as
suitable for large-scale clustering tasks when the network is fast. Therefore, we argue that
our scheme is suitable for secret-sharing-based secure outsourced computation.

The next direction of future work can extend our scheme to the malicious adversarial
setting, which will be a non-trivial problem. This is because malicious adversary may
not follow protocol specifying and deviate arbitrarily in any phase. For example, the
adversary makes the corrupted party sends incorrect messages, such that it can break the
correctness of protocol. Therefore, we should ensure that the sending message of the parties
are correct. A promising direction for this case is to introduce the SPDZ protocol [37], where
the correctness of the sending message can be protected by using message authentication
codes (MACs).
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