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Abstract: Based on plasma kinetic theory, the dispersion and Landau damping of Langmuir and
ion-acoustic waves carrying finite orbital angular momentum (OAM) were investigated in the
κ-deformed Kaniadakis distributed plasma system. The results showed that the peculiarities of
the investigated subjects relied on the deformation parameter κ and OAM parameter η. For both
Langmuir and ion-acoustic waves, dispersion was enhanced with increased κ, while the Landau
damping was suppressed. Conversely, both the dispersion and Landau damping were depressed by
OAM. Moreover, the results coincided with the straight propagating plane waves in a Maxwellian
plasma system when κ = 0 and η → ∞. It was expected that the present results would give more
insight into the trapping and transportation of plasma particles and energy.

Keywords: orbital angular momentum; Langmuir waves; ion-acoustic waves; κ-deformed Kaniadakis
distribution function
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1. Introduction

In 1990, Tamm et al. produced a Laguerre–Gaussian (LG)-mode laser beam with
helical wave fronts that can drive molecules and neutral atoms [1]. Allen et al. subsequently
demonstrated that the angular momentum carried by a laser beam with azimuth phase
distribution was unrelated to the state of the polarized photons, and that the missing parts
of the angular momentum of photons are to be found in twisted electromagnetic beams or
optical vortices [2]. It is well recognized that the angular momentum of electromagnetic
radiation has two distinct components. The first is the intrinsic part associated with
wave polarization, or spin; the second is an extrinsic part related to the orbital angular
momentum (OAM) that depends on the spatial radiation distribution [3]. Hence, the laser
beams, as depicted by the LG function that satisfies the basic orthogonal condition, possess
spin and angular momentum as well as OAM, which lays the foundation for numerous
important scientific applications because of its inherent orthogonality and production
techniques that have matured in the laboratory [4–8]. For example, owing to the special
helical phase and hollow light field of the OAM beam, OAM can be applied to micro-control
technologies in the microscopic world, such as optical tweezers and micromotors [9]. As an
independent degree of freedom for wireless and quantum communications, OAM can be
used to achieve a higher communication capacity through the simultaneous transmission
of multiple orthogonal OAM mode vortex beams [10–13]. It has even been suggested that
telescopes equipped with OAM diagnostic instruments can be made to detect rotating black
holes [14,15].

The energy, momentum and angular momentum of laser beams can be transferred
to matter by interacting with it. Moreover, the propagation of an OAM beam in plasma is
associated with the excitation of a plasma wave, which may likewise carry OAM. In recent
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years, related research carried out on OAM in plasma has attracted much attention, and the
significance of collective plasma oscillations with OAM has been recognized in different
contexts. For instance, Mendonça et al. first employed the concepts of photon OAM states
in plasma systems to investigate the stimulated Raman and Brillouin backscattering of
collimated beams [16]. It was shown that the exchange of OAM between electromagnetic
and electrostatic waves occurred in stimulated Raman and Brillouin backscattering, which
implied that plasmon and phonon states carried OAM. The idea opened the door for
various studies on OAM in plasma. By using two fluid models and Ampere’s law in
a magnetized plasma, Shukla indicated that three-dimensional modified-kinetic Alfvén
waves can propagate in the shape of Alfvénic tornadoes featuring plasma density whirls
or magnetic flux ropes with OAM [17]. Vieira et al. confirmed the existence of LG modes
in particle-in-cell (PIC) simulations of intense laser–plasma interactions, and revealed
the mechanism of high OAM harmonic generation and amplification through stimulated
Raman backscattering in plasma [18,19]. Ali et al. calculated the quasistatic axial magnetic
field generated during laser propagation in plasma by taking into account both the spin
and OAM of the laser pulse [20,21]. The fluid theory of electron-acoustic waves in a two-
temperature electron plasma was considered by Shahzad et al., who derived the OAM
density of electron-acoustic waves [22]. Ali et al. subsequently presented dust oscillons
with distinct OAM states in a collisionless unmagnetized self-gravitating dusty plasma [23].

The OAM modes in plasma also introduced other significant effects such as single-
electron level twisted photon emission [24], toroidal shaped plasma turbulence in radio-
pumping [25], and a helical plasma accelerator [26].

Moreover, the quasistatic axial magnetic field generated by OAM beams in plasma
also has prospective applications in deep resource exploration, atmospheric science, and
underwater communications [27].

In the study of the interplay between light beams and plasma, wave-particle interaction
plays a pivotal role in particle acceleration, wave mixing, and the nonlinear decay of laser
beams with OAM, for which a kinetic framework is necessary. Relying on the plasma
kinetic description, Mendonça derived the dispersion relation and Landau damping of
helical electron plasma waves with OAM in cylindrical geometry under the paraxial
approximation. It was shown that the vertical velocity component of a helical Langmuir
wave also contributes to Landau resonance [28,29]. Following the work of Mendonça,
Khan et al. extended the theory to ion-acoustic plasma vortices with OAM and indicated
that the azimuthal component of an electric field produces optical torque on the medium,
which results in increased OAM of the plasma vortex [30]. Rehman et al. studied the
propagation characteristics of an electronic acoustic wave in a two-electron component
plasma. The results showed that the electronic acoustic wave carrying OAM was strongly
damped at large and intermediate wavelengths, whereas it was weakly damped at small
wavelengths [31]. Recently, Khan et al. described the helical structure of electrostatic
plasma waves carrying OAM by introducing a variable transformation. The proposed
idea improved the method of accessing wave damping [32]. The kinetic theory for these
OAM-carrying plasma waves were investigated in a Maxwellian distributed plasma system.
However, during solar wind or flares, pulsars and other complex environments, plasma
systems with superheated electrons exhibit energetic tails in particle velocity or energy
distribution; therefore, the Maxwellian distribution is not applicable [33].

To process some emerging physical problems in complex environments, attempts were
made to generalize statistical mechanics on conventional Boltzmann–Gibbs (BG) entropy.
In this context, Rényi proposed the non-extensive generalization of BG entropy [34], which
was later also suggested by Tsallis [35], whose non-extensive entropy was in excellent
agreement [36] with experimental data [37,38]. Afterwards, Kaniadakis put forward a
new so-called κ-deformed distribution in 2001 [39], which has been widely applied to the
kinetics of interaction atoms and photons [40], nonlinear kinetics [41–43], cosmic rays [33],
blackbody radiation [44], quantum entanglement [45], quark–gluon plasma formation [46],
and even financial systems [47,48] and epidemiology [49]. The κ-deformed distribution
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arising from Kaniadakis entropy covers both nonextensive and the classical Maxwell–
Boltzman distributions [39]. In subsequent studies, Beck and Cohen proposed that this
κ-deformed distribution can be regarded as the result of more generalized statistics known
as superstatistics [50]. Ourabah et al. also verified that the nonthermal and suprathermal
empirical distributions can be recovered from Beck–Cohen superstatistics [51]. The κ-
deformed distribution can be represented as a more universal form of the distribution
functions mentioned in the above work. Consequently, many studies have been revisited
under the κ-deformed distribution, such as longitudinal plasma modes [52] and Jeans
gravitational instability [53–55]. The κ-deformed distribution as a generalized statistic may
be able to characterize plasma waves in a fusion device. The power density of the OAM
beam highly localized away from the propagation axis could be an efficient device for
transferring concentrated heating power, which could be used to heat the fusion plasma at
certain locations. The OAM state may also act as a potential plasma diagnostic technique
since it can be modulated by various anisotropic and nonuniform structures in plasma [56].

To explore the effects of OAM and the κ-deformed Kaniadakis distribution function on
the dispersion and Landau damping of longitudinal plasma waves in this paper, longitudi-
nal plasma modes carrying OAM were considered in κ-deformed Kaniadakis distributed
plasmas based on kinetic theory. This manuscript is organized in the following fashion.
In Section 2, linear kinetic theory is employed to derive a dielectric function for the lon-
gitudinal plasma waves in κ-deformed Kaniadakis distributed plasmas. Sections 3 and 4
describe the linear dispersion relation and the damping rate of Langmuir and ion-acoustic
waves, respectively. The numerical results and a brief summary are given in Section 5.

2. The Longitudinal Dielectric Function

According to plasma kinetic theory, the dispersion relation and Landau damping of
electrostatic waves in an unmagnetized collisionless isotropic plasma are determined by

Re ε l(ω, k) = 0, (1)

and

γ(ω, k) = − Im ε l(ω, k)
∂/∂ω Re ε l(ω, k)

, (2)

respectively, where Re ε l(ω, k) and Im ε l(ω, k) are real and imaginary parts of the plasma
longitudinal dielectric function ε l(ω, k). To investigate the novel properties of finite OAM
carried by electrostatic waves in a κ-deformed Kaniadakis distributed plasma system,
the LG function is used to describe the perturbed electrostatic potential and distribution
function, which followed the same method as mentioned in Refs. [29–31]. Then the
dielectric function was obtained by the linearized Vlasov–Poisson equation [28] given by

ε l

(
ω, qe f f

)
= 1+ ∑

α

ω2
pα

k2

∫ qe f f · ∂ fα/∂v
ω− qe f f · v

dv. (3)

Here, ωpα is the plasma frequency; α represents plasma species (α = i for ion, α = e for
electron, respectively); and qe f f = −iqr êr + lqθ êθ + (k− iqz)êz. More details about the
relevant parameters are given in Refs. [29–31]). The κ-deformed Kaniadakis distribution
function is written as [39]

fα(v) = Aκexpκ

(
− v4

4τ4

)
, (4)

with

expκ(x) =
(√

1 + κ2x2 + κx
) 1

κ , (5)

where τ = kBTα/mα in relation to the thermal velocity vTα =
√

kBTα/mα ; and Aκ is the
normalized constant given by
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Ak =
nα0

(2π)
3
2 τ3
|2κ|

3
2

(
1 +

3
4
|2κ|

) Γ
(

1
|2κ|+

3
4

)
Γ
(

1
|2κ| −

3
4

) . (6)

Compared to the Maxwellian case, the effective temperature of the superstatistics depends
on the deformation parameter κ, which was explicitly given in Ref. [53], as

Tα(e f f ) =
1
|2κ|

1 + 3
4 |2κ|

1 + 5
4 |2κ|

Γ
(

1
|2κ| −

5
4

)
Γ
(

1
|2κ| +

5
4

) Γ
(

1
|2κ| +

3
4

)
Γ
(

1
|2κ| −

3
4

) , (7)

In Equation (6), κ represents the strength of the deformation and the symbol Γ pinpoints
the gamma function. To obtain Ak, the following integral was used [33,57]

∫ ∞

0
xr−1expκ(−x)dx =

|2κ|−r

1 + r|κ|
Γ
(

1
2|κ| −

2
r

)
Γ
(

1
2|κ| +

2
r

)Γ(r). (8)

When κ → 0, it is important to note that the Kaniadakis distribution function is reduced to
the Maxwellian distribution with lim

κ→0
expκ(x) ≡ exp(x) [33].

The use of the κ-deformed Kaniadakis distribution results in the dielectric function of
longitudinal waves carrying OAM which correlated strongly with the azimuthal velocity
contribution, as

ε l(ω, k) = 1 + ∑
α

ω2
pα

Ckk2v2
Tα

[Bk − Z(ξα
z )− Z(ξα

θ )], (9)

where

Bk =
|2κ|−

1
2 Γ
(

1
|2κ| −

1
4

)√
π

1 + 1
4 |2κ|Γ

(
1
|2κ| +

1
4

) ,

Ck =
|2κ|−

3
2 Γ
(

1
|2κ| −

3
4

)√
π

1 + 3
4 |2κ|Γ

(
1
|2κ| +

3
4

) ,

Z(ξα
s ) is the modified plasma dispersion function that includes both axial and azimuthal

contributions with ξα
z = ω/

√
2kvTα and ξα

θ = ω/
√

2lqθvTα, respectively, in the presence of
the κ-deformed Kaniadakis distribution function, which can be written as

Z(ξα
s ) =

∫ ∞

−∞

ξα
s

x− ξα
s

(√
1 + κ2x4 − κx2

) 1
κ dx. (10)

By making use of the Plemelj formula [58] and integrating for Equation (10), one can
obtain the modified dispersion functions under the limitation ξα

z,θ � 1 and ξα
z,θ
� 1, as

Z(ξα
z ) + Z(ξα

θ ) = Bk +
1

2(ξα
z )

2 Ck +
3

4(ξα
z )

4 Dk +
1

2
(
ξα

θ

)2 Ck +
3

4
(
ξα

θ

)4 Dk

− iπ
[
ξα

z expκ

(
−(ξα

z )
2
)
+ ξα

θ expκ

(
−(ξα

θ )
2
)]

,

(11)

and
Z(ξα

z ) + Z(ξα
θ ) = −i

√
πξα

z − i
√

πξα
θ , (12)

respectively, with

Dk =
|2κ|−

5
2 Γ
(

1
|2κ| −

5
4

)√
π

1 + 5
4 |2κ|Γ

(
1
|2κ| +

5
4

) ,
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which were given by Chen [53].

3. The Disperation and Landau Damping of Langmuir Waves

It is generally acknowledged that the existence of a Langmuir wave requires that
ω
k � vTe, namely, ξe

z,θ � 1, and then from Equations (9) and (11) the real part of the
longitudinal dielectric function for an electron can be given by

Re εe
l(ω, k) = 1− 1

k2λ2
De

k2v2
Te + (lqθ)

2v2
Te

ω2 − 3Dk
Ck

ω2
pe

k2
k4v2

Te + (lqθ)
4v2

Te
ω4 , (13)

which, in combination with Equation (1), gives rise to the dispersion relation for Langmuir
waves with OAM as

ω2 = ω2
pe

(
1 +

1
η2

)
+

3Dk
Ck

k2v2
Te

(
1 + 1

η4

)
(

1 + 1
η2

) . (14)

In the above expression, η = k
lqθ

is the dimensionless parameter showing the helical phase
structure involving the plasma oscillations which are directly associated with OAM. Here,
it was obvious that the kinetic dispersion relation was similar to ordinary plane waves in
form. Nevertheless, it should be pointed out that the dispersion of a Langmuir wave in an
OAM state relies on the deformation parameter κ and OAM parameter η. Moreover, when
the azimuthal wave number approached zero (η → ∞), Equation (14) ultimately recovered
the following plane wave dispersion relation

ω2 = ω2
pe +

3Dk
Ck

k2v2
Te, (15)

which was consistent with the results of Langmuir waves in the κ-deformed Kaniadakis
distributed plasma system studied by Chen [53].

In the limit κ → 0, one has Dk/Ck → 1, and then Equation (14) readily reduces to the
result of the Langmuir waves with OAM derived in Maxwellian plasma [29],

ω2 = ω2
pe

(
1 +

1
η2

)
+ 3k2v2

Te

(
1 + 1

η4

)
(

1 + 1
η2

) . (16)

The expression for the imaginary part of the dielectric function was obtained from
Equations (9) and (11)

Im εe
l(ω, k) =

π

Ckk2λ2
De

[
ξe

zexpκ

(
(ξe

z)
2
)
+ ξe

θexpκ

(
(ξe

θ)
2
)]

. (17)

Then, the Landau damping for Langmuir waves carrying OAM with Equation (2) yielded

γ = − ω4π

2
√

2Ckk3v3
Te

(
1 + 1

η2

)[expκ

(
− ω2

2k2v2
Te

)
+ ηexpκ

(
− ω2η2

2k2v2
Te

)]
. (18)

Here λDe is the electron Debye length. Note that the inclusion of the azimuthal velocity
component led to the existence of an OAM parameterv η. Equation (18) shows that the
Landau damping of Langmuir waves in a κ-deformed Kaniadakis distributed plasma
system was significantly modified by the OAM parameter η and the parameter κ of the
distribution function. Again by setting the OAM parameter η → ∞, the Landau damping
eventually arrived at the simplified expression
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γ = − ω4π

2
√

2Ckk3v3
Te

expκ

(
− ω2

2k2v2
Te

)
, (19)

which was obtained in the absence of the Landau damping OAM in conventional κ-
deformed Kaniadakis distributed electron plasma [53].

In Equation (18), when κ = 0, the coefficient Ck → π, and the Landau damping for
Langmuir waves with OAM was reduced to the form of a Maxwellian case [29]:

γ = −
√

π

8
ωpe

ω3
pe

k3v3
Te

(
1 +

1
η2

)[
exp

(
−ω2/2k2v2

Te

)
+ η exp

(
−η2ω2/2k2v2

Te

)]
. (20)

4. The Disperation and Landau Damping of Ion-Acoustic Waves

Under the ion-acoustic time scale ξe
z,θ � 1 and ξ i

z,θ � 1, one has the ion-dielectric
function for low-frequency longitudinal modes from Equations (9) and (11),

εi
l(ω, k) = 1−

ω2
pi

Ckk2v2
Ti

[
Ck
2

(
1(

ξ i
z
)2 +

1(
ξ i

θ

)2

)
+

3Dk
4

(
1(

ξ i
z
)4 +

1(
ξ i

θ

)4

)]
+

i
π

Ckk2λ2
Di

[
ξ i

zexpκ

(
−
(

ξ i
z

)2
)

+ξ i
θexpκ

(
−
(

ξ i
θ

)2
)]

.

(21)

Substituting Equations (13) and (21) into the relational expression ε l(ω, k) = 1 +
[
εe

l − 1
]
+[

εi
l − 1

]
along with Equation (1), the dispersion equation yielded

Re ε l = 1 +
ω2

pe

Ckk2v2
Te

Bk −
ω2

pi

Ckk2v2
Ti

[
Ck
2

(
1

(ξ i
z)

2 +
1

(ξ i
θ)

2

)
+ 3Dk

4

(
1

(ξ i
z)

4 +
1

(ξ i
θ)

4

)]
= 0. (22)

Then we arrived at the dispersion relation for ion-acoustic waves carrying OAM, as

ω2 = ω2
pi

(
1 +

1
η2

) k2λ2
De

Ck
Bk

k2λ2
De

Ck
Bk

+ 1
+

3Dk
Ck

k2λ2
Di

1 + 1
η4(

1 + 1
η2

)2

, (23)

where λDi is the ion Debye length. In the limit η → ∞, Ck/Bk → 1, and the Equation (23)
was reduced to the same dispersion relation for planar ion-acoustic waves in the κ-deformed
Kaniadakis distributed plasma system [53], as

ω2 = ω2
pi

k2λ2
DeCk/Bk

k2λ2
DeCk/Bk + 1

. (24)

In addition, the Maxwellian limit of Equation (23) can essentially be recovered by setting
κ = 0:

ω2 = ω2
pi

(
1 +

1
η2

)
k2λ2

De
k2λ2

De + 1
+ 3k2λ2

Di

1 + 1
η4

1 + 1
η2

. (25)

Likewise, according to Equations (2) and (21), the Landau damping for ion-acoustic waves
in an OAM state can easily be derived as follows:

γ =
ω4π

2
√

2Ckk3v3
Ti

(
1 + 1

η2

)[expκ

(
− ω2

2k2v2
Ti

)
+ ηexpκ

(
− ω2η2

2k2v2
Ti

)]
. (26)

Similarly, in Equation (26), by taking η → ∞ and κ = 0, the Landau damping for ion-
acoustic waves carrying OAM was then reduced to the standard result in a Maxwellian
plasma system:
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γ = −
√

π

8
ω

ω3

k3v3
Te

exp
(
−ω2/2k2v2

Ti

)
. (27)

5. Discussion and Conclusions

For graphical illustration, we analyzed the dispersion relation and Landau damping of
Langmuir waves and ion-acoustic waves with OAM in a κ-deformed Kaniadakis distributed
plasma. How the dispersion and the damping rate of Langmuir waves varied with wave
number, for various values of the deformation parameter κ while retaining the OAM
parameter η = 1 are graphically displayed in Figures 1 and 2.

0.0 0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

kλDe

ω
/ω
pe

κ=0

κ=0.15

κ=0.2

κ=0.25

κ=0.35

Figure 1. Variation in the normalized wave frequency ω/ωpe of Langmuir waves with the normalized
wave number kλDe for the deformation parameter κ = 0 (black), κ = 0.15 (dashed blue), κ = 0.20
(dashed green), κ = 0.25 (dashed purple) and κ = 0.35 (solid red), respectively, with the OAM
parameter η = 1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

kλDe

γ
/ω
pe

κ=0

κ=0.1

κ=0.15

κ=0.2

κ=0.3

Figure 2. Variation of the Landau damping rate γ/ωpe of Langmuir waves with the normalized
wave number kλDe for deformation parameter κ = 0 (black), κ = 0.15 (dashed blue), κ = 0.2 (dashed
green), κ = 0.25 (dashed purple) andκ = 0.35 (solid red), respectively, with the OAM parameter
η = 1.

In Figure 1, the dashed blue, green, purple and solid red curves correspond to κ = 0.15,
κ = 0.20, κ = 0.25 and κ = 0.35, respectively, and were acquired through solving Equa-
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tion (14) numerically, whereas the solid black curve corresponding to κ = 0 was obtained
by solving the analytically derived Equation (16). It is clear that as the κ increased, so did
the phase velocity, which indicated that increasing the deformation parameter κ enhanced
Langmuir wave dispersion.

In Figure 2, the dashed blue, green, purple and solid red curves, corresponding
to κ = 0.15, κ = 0.20, κ = 0.25 and κ = 0.35, respectively, were obtained by solving
Equation (20), whereas the solid black curve corresponding to κ = 0 was acquired through
the numerical solution of Equation (18). Interestingly, the amplitude of the Landau damping
declined drastically as κ increased, which demonstrated that the Landau damping was
intensely depressed in the κ-deformed Kaniadakis distributed plasma system compared to
the Maxwellian.

Next, to illustrate the effect of OAM on the Langmuir waves, we showed the dispersion
variation and Landau damping with different values of the OAM parameter η while
keeping κ fixed. The results are shown in Figures 3 and 4. From Figure 3, it cqn be seen
that the Langmuir wave dispersion shrank as the curves moved away from each other
for higher wave number values. In addition, Figure 3 shows that increasing values of
η resulted in a narrowing of Langmuir wave dispersion. In particular, the dispersion
was very sensitive to the OAM parameter values that varied in the range 0.4 ≤ η ≤ 1
while there was little change beyond 1. This behavior was realized by looking at the term
1 + 1/η2 in Equation (14), which increased sharply in the range 0 ≤ η ≤ 1. In Figure 4,
as η increased within the range 0.4 ≤ η ≤ 1, the Landau damping diminished. Conversely,
when η increased within the range 1 ≤ η ≤ ∞, the Landau damping was enhanced at
small and diminished at large wave numbers. Similarly, it was enhanced with the increased
value of 1 + 1/η2 as the wave number gradually increased, which can be understood more
naturally from Equation (18).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

kλDe

ω
/ω
pe

η=0.4

η=0.5

η=0.7

η=1

η=∞

Figure 3. Variation of the normalized wave frequency ω/ωpe of Langmuir waves with the normalized
wave number kλDe for OAM parameter η = 0.4 (solid red), η = 0.5 (dashed blue), η = 0.7 (dashed
green), η = 1 (dashed purple), and η = ∞ (solid black), with the deformation parameter κ = 0.2.

With the value of the OAM parameter η fixed, the dispersion variation and Landau
damping of ion-acoustic waves with varying values of the deformation parameter κ are
illustrated in Figures 5 and 6. We solved Equation (23) numerically and plotted the Figure 5
with dashed blue, green, purple, and solid red curves corresponding to κ = 0.15, κ = 0.20,
κ = 0.25 and κ = 0.35, respectively, while the solid black line corresponded to κ = 0
according to the numerical solution to Equation (25).
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.4

-0.3

-0.2

-0.1

0.0

kλDe

γ
/ω
pe η=0.4

η=0.5

η=0.7

η=1

η=∞

Figure 4. Variation of the Landau damping rate γ/ωpe of Langmuir waves with the normalized
wave number kλDe for OAM parameter η = 0.4 (solid red), η = 0.5 (dashed blue), η = 0.7 (dashed
green), η = 1 (dashed purple) and η = ∞ (solid black) with the deformation parameter κ = 0.2.
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κ = 0.2 (dashed green), κ = 0.25 (dashed purple) and κ = 0.35 (soild red) with OAM parameter
η = 1.

From Figure 5, a very slight change was seen in the dispersion of ion-acoustic waves
carrying OAM with increased κ, but the dispersion increased overall. The Landau damping
of ion-acoustic waves with OAM was calculated primarily from Equation (26). In Figure 6,
the dashed blue curve for κ = 0.15 is clearly above the solid black line where κ = 0
(Maxwellian case). Therefore, it was evident from the figure that the Landau damping
rate of the non-Maxwellian ion-acoustic waves was smaller compared to the Maxwellian.
The Figures 7 and 8 show how the dispersion relation and the damping rate of ion-acoustic
waves were affected by the presence of the OAM parameter η while keeping κ fixed.
In Figure 7, the dispersion of ion-acoustic waves diminished as the OAM parameter η
increased. From Figure 8, the Landau damping rate for ion-acoustic waves shifted to
smaller negative values with increased η. In the case of the fixed deformation parameter κ,
both dispersion and damping for ion-acoustic waves were suppressed by the OAM effect.
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Figure 6. Variation of the Landau damping rate γ/ωpi of ion-acoustic waves with the normalized
wave number kλDe for deformation parameter κ = 0 (solid black), κ = 0.15 (dashed blue), κ = 0.2
(dashed green), κ = 0.25 (dashed purple) and κ = 0.35 (solid red) with OAM parameter η = 1.

Physically, the thermal motion of particles gave rise to the dispersion of the longi-
tudinal plasmon collective mode; the Landau damping was attributed to the resonance
interaction between the plasma wave and the particles that had a velocity close to the
phase velocity; therefore, the damping rate depended on the number of resonant particles.
When the value of η was fixed, owing to Equations (14) and (23), the dispersion of Lang-
muir waves and ion-acoustic waves was viewed as being approximately proportional to√

Te f f /me and
√

Te f f /mi, respectively. From Figure 1 of Ref. [53], as the κ increased, so
did the effective temperature of the κ-deformed Kaniadakis distributed plasma system.
Since me � mi, the significant enhancement of Langmuir wave dispersion and the slight
enhancement of ion-acoustic wave dispersion with increasing κ in Figures 1 and 5 can
be explained. Gougam showed that in the κ-deformed Kaniadakis distributed plasma
system, the presence of high-energy states became more plausible as κ increased [57],
which indicated an increase in the number of fast particles or a decrease in the number of
slow particles with respect to the Maxwellian case. As a result, with increasing κ for both
Langmuir and ion-acoustic waves, the phase velocity was skewed toward the trailing part
of the distribution function; thus, the Landau damping amplitude diminished. When the κ
value was fixed, the decline in η, namely, the rise in 1 + 1/η2, provoked the dissipation of
Langmuir and ion-acoustic waves, the intensity of which was related to the magnitude of
the OAM. This was due to the participation of partially resonant particles in the resonance
of the wave OAM, which allowed a relative increase in the number of resonances obtaining
energy from the wave, thereby leading to enhanced wave damping.

To summarize, electrostatic waves carrying OAM were first considered in a κ-deformed
Kaniadakis plasma system by keeping kinetic theory in view. Statistically, the κ-deformed
Kaniadakis distribution function was the product of superstatistics, which are perceived as
a more generalized statistic in contrast to non-generalized and the traditional Boltzman–
Gibbs statistics. Because it served the same purpose as the κ of the suprathermal distribution
and the parameter q of the non-extensive distribution, the parameter κ of the κ-deformed
Kaniadakis distribution function also measured the derivation from the Maxwellian dis-
tribution function, so the collective mode features of the associated plasma system were
modified. The analytical expressions were derived for the dispersion relation and the
Landau damping of both the Langmuir and ion-acoustic waves. It was shown that the
presence of the κ-deformed Kaniadakis distribution function and OAM modified the prop-
agation properties of the Langmuir and ion-acoustic waves. For both, the dispersion was
enhanced with increased κ, while Landau damping was suppressed. Conversely, both the
dispersion and Landau damping were depressed by the OAM effect. As expected, when
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κ = 0 and η → ∞, the results coincided with the straight propagating plane waves in
a Maxwellian plasma system. It was also expected that the results of this study would
offer more insight into the trapping and transportation of plasma particles and energy in
a κ-deformed Kaniadakis distributed plasma system. In addition, the results may also
provide a reference for studying its nonlinearity.
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(dashed green), η = 2 (dashed purple) and η = ∞ (solid black) with deformation parameter κ = 0.2.
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