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Abstract: We discuss generalized exponentials, whose inverse functions are at the core of generalized
entropy formulas, with respect to particle–hole (KMS) symmetry. The latter is fundamental in field
theory; so, possible statistical generalizations of the Boltzmann formula-based thermal field theory
have to take this property into account. We demonstrate that Kaniadakis’ approach is KMS ready
and discuss possible further generalizations.
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1. Introduction

Remembering when statistical physics passed the “classical” Boltzmann–Gibbs dis-
tribution view of exponential dependence on individual energies, one ought to formulate
a few general statements. Certainly, a generalization [1,2], in addition to including the
original classical formulas in some limits, can be infinite. In physics, however, nature
gives us several clues as to which generalization is more useful, moving beyond a pure
mathematical construction.

Generalizations of entropy formulas replace the logarithm with another function, and the
change from an exponential function in the equilibrium or in other way stationary distributions
to something else are the inverse operation to this. Informatics studies were pioneering
in generalizing the entropy formula of Boltzmann in the 1950s and 1960s [3,4], while the
thermodynamical consequences have been more vividly studied since the 1980s [5–7]. Here
the power-law tailed distribution, originally considered an approximation to the exponential
by Euler and in particle physics by Hagedorn as a “cut power-law”, in the beginning did not
have any physics rationale aside from its aimed application.

Another widespread nonexponential distribution, also extrapolating to power-law
tails is given in the kappa statistics initiated by Kaniadakis. It is motivated by relativistic
kinetics in plasmas, and its most renowned applications are also related to plasmas. While
it can be mapped to an exponential of the rapidity, replacing the energy variable by a
rapidity-like one as the argument, its high energy tail seems to show remarkable success in
application to real world data. A general presentation of kappa statistics basics can be read
in [8]. The relation to special relativity is discussed in [9], and to the Boltzmann equation
in [10]. Fractional statistics in kappa statistics are dealt with in [11], nonlinear kinetics
in [12], and a general review about the physical origins in [13].

In this paper we point out that based on a particular property of the mathematical
formula appearing in kappa statistics, this form is able to reflect particle–hole symmetry,
an important ingredient in field theory and particle physics. The underlying concept in
field theory namely assumes a symmetry between particles and antiparticles, called CPT
symmetry, changing charges, parity, and time direction to its opposites. The physical laws
should not change in an antimatter world relative to the original one. The mathematical
formulation of the time-dependent expectation values for elements of statistical ensembles
in field theory is related to the use of a statistical operator. Whenever the exponential
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function of energy is generalized in the statistics, the corresponding statistical operator
is also no more the Boltzmann–Gibbs exponential of the Hamiltonian operator. Still, the
CPT reflection should not change the physical conclusions. Therefore, it is essential that
the generalization of the exponential function shows similar reflection properties to the
original Euler number-based function.

2. Kaniadakis’ Generalized Exponential

There are several generailzed entropy formulas and corresponding canonical distri-
butions [1–14]. At their core, they can be viewed as the generalization of the logarithm
and exponential functions while keeping their inverse roles. However, the inverse relation
between the exponential of x and −x is, in general, lost.

The Boltzmann–Gibbs energy distribution at a fixed temperature utilizes the Euler
exponential function, which has the property, exp(−x) = 1/ exp(x). Accordingly, its
inverse, the logarithmic function, satisfying both ln(exp(x)) = x and exp(ln(x)) = x,
also satisfies

ln
1
x

= − ln x. (1)

This is important in the use of the Boltzmannian entropy formula [15],

S/kB = ∑
i

pi ln
1
pi

= −〈ln pi〉 (2)

with the probability pi of being in the i-th state, a real number between and including zero
and one. The above formula is valid only if the probability set is normalized, i.e.,

∑
i

pi = 1. (3)

Otherwise, the leading order terms while applying the Stirling formula [16–19] to the
permutation entropy [20–23] would not cancel. These basic features of this construction
lead to an overall nonnegative entropy and to its concavity property [24–28].

When generalizing, such as in some axiomatic approaches, the properties have to be
saved, while much less attention is paid to the ln(1/x) = − ln x relation. In fact, some of
the suggested extensions to the exponential and logarithm function satisfy such a relation,
others do not. Let us review a few of them.

The Kaniadakis’ κ-exponential [8],

eκ(x) =
(

κx +
√

1 + κ2x2
)1/κ

, (4)

satisfies the relation
eκ(−x) = 1/eκ(x). (5)

On the other hand, the Tsallis q-exponential [5], designed to have a power-law tail relying
on Euler’s approximating formula for the exponential for n = 1/(q− 1),

eq(x) = (1 + (q− 1)x)
1

q−1 , (6)

behaves differently when reflecting the argument:

eq(−x) =
1

e2−q(x)
6= 1

eq(x)
. (7)

Here lim
κ→0

eκ(x) = ex and lim
q→1

eq(x) = ex are the limits leading back to the traditional

exponential.
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It is easy to construct another class of functions based on a symmetric use of the Tsallis
exponentials, which satisfies the product formula searched for in [29].

ẽq(x) =
eq(x/2)

eq(−x/2)
(8)

namely delivers

ẽq(−x) =
eq(−x/2)
eq(x/2)

=
1

ẽq(x)
. (9)

This works only with the halved argument ratio definition.
The above sketched relation between the Kaniadakis’ exponential and a symmetric

ratio of Tsallis exponentials can be generalized. We construct a k-exponential class based on
a general function, fk(x) = ak(x) + kxbk(x), with both ak(x) and bk(x) being even functions
of x. Then,

ek(x) = fk(x)1/k = (ak(x) + kxbk(x))1/k (10)

with its reflected pendant

ek(−x) = (ak(−x)− kxbk(−x))1/k = (ak(x)− kxbk(x))1/k (11)

satisfies
ek(x) · ek(−x) = 1 (12)

only if
a2

k(x) = 1 + k2x2b2
k(x). (13)

Furthermore, having the traditional exponential in the k → 0 limit, both a0 and b0 have
to converge to unity. This leads to the following class of Kaniadakis type of deformed
exponentials:

ek(x) =

(√
1 + k2x2b2

k(x) + kxbk(x)
)1/k

. (14)

For a nontrivial bk(x) even function, we may consider an example:

bk(x) =
1√

1− k2x2
. (15)

In this case, one obtains

ek(x) =

(√
1 + kx
1− kx

)1/k

=
eq(x/2)

eq(−x/2)
, (16)

with a power-law tail for an expression relating to the relativistic Doppler factor. On
the other hand, this is equal to a symmetrized ratio at the half argument of Tsallis type
deformed exponentials exactly with q = 2k + 1. In this interpretation, the bk(x) function is
the Lorentz factor, with kx = v/c = tanh η being a velocity in units of the light speed. At
the same time, ek(x) = eη/k. Hence, the rapidity variable η is additive due to the product of
traditional exponential functions, and therefore, this delivers the mapping to the logarithm
of the formal group: to the additive quantity belonging to the nonadditive rules generated
by the deformed exponentials [22].

This additive variable, η, can also be constructed in the general case. Setting kxbk(x) =
sinh η and kx = g(η) as a general function, one has

bk(x) =
sinh η

g(η)
(17)

leading to ek(x) = eη/k. In our previous example, we had g(η) = tanh η.
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After reviewing examples and generalization paths, we turn to the question of why it
is so important to have the property ek(x) · ek(−x) = 1 in high energy physics and field
theory in the next section. Further applications of Kaniadakis’ exponential [30–32] and a
general approach to group entropy [33] provide the reader with further information on
generalizing the exponential function and its use in data processing and interpretation.

3. Particle–Hole Symmetry

The Kubo–Martin–Schwinger (KMS) relation is central in thermal field theory [34–36].
Physically, it reflects the reinterpretation of negative energy states of a quantum particle as
the corresponding positive energy state of an antiparticle. A hole in the negative energy
continuum is a positive energy propagating particle with opposite momentum and charges.

In this paper, we briefly review a somewhat generalized version of the KMS rela-
tion, in order to make it clear that its validity extends beyond thermal equilibrium. This
presentation is based on Ref.[37].

Quantum packages of energy and charge do propagate according to field theory as
solutions to the field equation Green functions, i.e., propagators. Such propagators have
a few subtypes according to retarded and advanced options in their causality structure,
reflected in pole positions on the complex energy plane. Since an interacting particle in a
finite time can never have an energy which would exactly follow from the solution of the
classical free field equation, quoted as the dispersion relation between the frequency and
wave number vector, the off-mass-shell behavior is a mirror of its quantum nature. This
deviation from the special relativistic energy–momentum formula for a free point particle
is well comprised in the spectral function.

Spectral functions can be defined and investigated generally among two quantum field
operators, say Â and B̂, in the presence of a statistical operator, ρ̂, by a time-Fourier transform,

SAB(ω) =
∫

dt e−iωtTr
(
ρ̂
[
Â(t), B̂(0)

])
. (18)

The operators are taken in a time distant t from each other, utilizing the Heisenberg
picture in field theory. The above definition tacitly assumes that the statistical operator, the
statistical weight of states related to the Hamiltonian, is stationary. Whenever it contains a
temperature parameter, such as β = 1/T, or further parameters, such as κ or q, the spectral
function will be also parametrized by them.

In a stationary state including but not restricted to thermal equilibrium, the time
reversal and energy reversal properties of the AB-generalized spectral function should be
studied. Indeed, in the definition Equation (18) the time-shift invariance is also assumed,
which is equivalent to the conservation of the total energy. Meanwhile, the operators Â
and B̂ can be evaluated on the observed subsystem, whose spectral function we consider.

When the operators, correlated by the selected spectral function, are also time-shift
invariant and Hermitean, then the following symmetry properties are ensured:

S∗AB(ω) = SB† A†(ω), SAB(−ω) = −SBA(ω). (19)

Both properties utilize the time-shift invariance of the trace,

Tr
(
ρ̂Â(t)B̂(0)

)
= Tr

(
ρ̂Â(0)B̂(−t)

)
. (20)

The Wigner transform of the [A, B] = AB− BA commutator’s statistical expectation value
in a given quantum state shows similar properties. The Wigner function definition

SAB(x, p) =
∫

dq e
i
h̄ p·q 〈

[
Â(x− q/2), B̂(x + q/2)

]
〉, (21)
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extends the above concept from a simple time coordinate to the spacetime coordinates x
and corresponding four-momenta p. The dot in the exponent denotes the Minkowski scalar
product, p · q = Eq0−~p ·~q. Now, in the 8-dimensional phase space, one has the properties:

S∗AB(x, p) = SB† A†(x, p), SAB(x,−p) = −SBA(x, p). (22)

Analogous to the Wigner (spectral) function, a Keldysh function is defined, but it is based
on the symmetric commutator (denoted by {A, B} = AB + BA):

iKAB(x, p) =
1
2

∫
dq e

i
h̄ p·q 〈{Â(x− q/2), B̂(x + q/2)}〉. (23)

As a consequence, the Keldysh function properties by inverting the energy and momentum
in its argument are as follows:

iK∗AB(x, p) = −iKB† A†(x, p), iKAB(x,−p) = iKBA(x, p). (24)

The behavior of the statistical expectation values of the number of particles, which is a
particular case of using the creation and annihilation operators instead of A and B, follows
some rules derived from the above. Considering bosons, for example, one uses Hermitean
and scalar operators, B = B† = A = A†, twice. We commonly denote them by Φ. In
this case,

S∗ΦΦ(x, p) = SΦΦ(x, p), SΦΦ(x,−p) = −SΦΦ(x, p). (25)

So, the spectral Wigner function is real and antisymmetric for the change in the sign of the
four-momentum. This quantity counts negative energy states as minus.

To translate this result to the particle number (occupation number) quantities, we
utilize the general relation between the commutator and anti-commutator. In the special
case of A = a† and B = a fulfilling elementary commutation relations, we have for the
bosons 2iK ∼ {a†, a} = 2n̂ + 1 and S ∼ [a†, a] = 1, while for the fermions, we have 2iK ∼ 1
and S ∼ 2n̂− 1. Based on this, we generalize the definition of occupation numbers by
the relations

iKAB(x, p) =

(
nAB(x, p)± 1

2

)±1
SAB(x, p). (26)

with the plus sign for bosons and the minus sign for fermions. One obtains the sought
relation between the quantum field occupations of negative and positive energy states
based on this as follows:

nAB(x,−p) = ∓1− nBA(x, p). (27)

This is the particle–hole symmetry for bosons (upper sign) and fermions (lower sign).
Complex conjugation leads to another relation,

n∗AB(x, p) = nB† A†(x, p). (28)

This defined occupation number is real as long as (AB)† = B† A† = AB, i.e., the operator
product AB is Hermitean. For the traditional quantum counting operator, A = a†, B = a,
this is the case.

When the two operators coincide, A = B, then the particle–hole symmetry is expressed
by containing the same quantity on the left and right hand side of the equation:

nAA(x,−p) = ∓1− nAA(x, p). (29)

The antiparticle numbers are defined accordingly as

nAB(x, p) = ∓nBA(x,−p), (30)

in order to interpret the negative energy states.
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Now comes the statistical part: we associate an exponential, eventually a generalized
exponential function, to the ratio of particle and hole (antiparticle) states. The argument of
the generalized exponential in a kinetic approach is usually the β · p = βuµ pµ Minkowski
product for relativistic systems. The Jüttner distribution is generalized then by the ratio of
our generalized occupation numbers:

nAB(x, p)
nAB(x, p)

=
nAB(x, p)

1± nAB(x, p)
= ek(−β · p). (31)

On the other hand, applying the same relation to a negative energy and opposite momen-
tum state, the above formula by replacing pµ with −pµ reads as

nAB(x,−p)
nAB(x,−p)

=
1± nBA(x, p)

nBA(x, p)
= ek(+β · p). (32)

For the case A = B, self-correlation of an operator, this is only possible if

ek(−β · p) ek(β · p) = 1. (33)

From Equation (31), it follows a given generalization of the Bose and Fermi distributions:

nAB(x, p) =
ek(−β · p)

1∓ ek(−β · p) . (34)

From its energy-momentum mirrored version, Equation (32), it follows another:

nBA(x, p) =
1

ek(β · p)∓ 1
. (35)

Again, these definitions coincide only if the deformed exponential, which is used to replace
the original exponential function, fulfills the special product rule Equation (33).

This result underlines the fact that the particle–hole (in the vacuum particle–antiparticle)
symmetry applies not only to the Boltzmannian statistics but is also a basic requirement
for the generalized occupation number functions of energy, describing the statistics of
elementary particles or other types of quantum excitations.

In conclusion, we selected a very particular property of Kaniadakis’ generalized
exponential function, namely its reciprocial property upon reflection of its argument,
Equation (33), and emphasized its relation to the particle–hole symmetry, known in quan-
tum field theory and reflected in the KMS relation. We also presented a generalization of
this function class maintaining this special property and related it to another construction
based on the Tsallis type generalization of the exponential function. By doing so, a slight
generalization of the phase space occupation number density statistics revealed that more
general correlation functions also satisfy a KMS-type relation, when taking into account
the change in the order of non-identical operators.
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