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Abstract: The entropic nature of elasticity of long molecular chains and reticulated materials is
discussed concerning the analysis of flows of polymer melts and elastomer deformation in the
framework of Frenkel–Eyring molecular kinetic theory. Deformation curves are calculated in line
with the simple viscoelasticity models where the activation energy of viscous flow depends on the
magnitude of elastic entropic forces of the stretched macromolecules. The interconnections between
deformation processes and the structure of elastomer networks, as well as their mutual influence on
each other, are considered.
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1. Introduction

In the vacancy mechanism of self-diffusion in liquid bodies and deformation of solids
proposed in the early works of Frenkel [1] and Eyring [2,3], a diffusing atom, or a molecule,
moves into neighboring vacancies by jumping due to thermal motion. This process is
described macroscopically by Hooke’s law, relating elastic stresses σ to strains ε, viz.,

σ = Eε (1)

where E is the Young’s modulus describing the relative stiffness of a material, which is
measured by the slope of elastic of a stress and strain graph, and by Newton’s flow law,

τ = η γ̇, (2)

stating that the application of shear stress τ on a liquid leads to the share rate γ̇ in direct
proportion to the amount of stress applied, with the coefficient of (apparent) viscosity η.
Eyring’s absolute rate theory [3], used in chemical kinetics to describe changes in the rate
of chemical reactions against absolute temperature kBT, predicts the following dependence
of dynamic viscosity on shear stress [3–7], viz.,

η = Bτ exp
(
E0 − bτ

kBT

)
(3)

where E0 is the activation energy required for a molecule to jump, B is a pre-exponential
factor, b is Eyring’s coefficient of viscous volume [3], and kB is Boltzmann’s constant. Al-
though most low molecular weight liquids do obey simple Newton’s law (2), the anomalous
behavior of viscosity following from Eyring’s equation (Equation (3)) was observed experi-
mentally in the studies of deformation process [8] where shear stress transferred through a
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system of elastic interatomic bonds may act directly on atoms during their thermal motion.
Viscosity anomalies manifesting themselves in the form of decreasing viscosity against
increasing shear rate and shear stress are well known as well [9,10]. However, when ex-
panding the range of shear rates in experiments with polymers, the observed flow curves
may significantly deviate from those predicted by Eyring’s law (3), and feature another
form of viscosity anomaly. Many attempts have been made to generalize Eyring’s formula
for the different types of molecular kinetic units (MKU) [11] and in various viscous liquid
flows rising the numerous variants of empirical rheological equations in the literature [9,12].
The profound limitation of Eyring’s equation (Equation (3)) in its application to the flows of
polymer melts is that it does not account for a possible influence of reversible, rubber-like
deformations of MKU stretched along the flow [5,13,14].

In our paper, we review and analyze another explanation for viscosity anomalies in
polymer flows, taking into account the entropic nature of elasticity emerging in macro-
molecules. In our approach, activation energy E0 in Eyring’s equation (Equation (3)) takes
into account moving of an entire macromolecule with its valence bonds instead of a jump
of a single atom in thermal motion [14,15]. While in the flow of polymer melts, the macro-
molecule can jump over the potential barrier and take a new equilibrium conformation,
maintaining the chemical structure of the kinetic unit. Furthermore, the macromolecule
might be stretched along the gradient of flow rate due to external forces acting in the fluid
flow [16–18].

Statistical theory of rubber elasticity [19,20] states that stretching would excite the
entropic elastic forces (EEF) acting along the stretched macromolecular chains. For example,
the rotor of a viscometer immersed into polymer melts rotates backward after the engine
shuts down, testifying to highly elastic reversible deformation present in the flow of poly-
mer melts [9,21]. The experimentally observed rubber elasticity increase as the temperature
rises also confirms the entropic nature of elasticity [19,22–24], indicating that the kinetic
effects of catenation and entanglements of molecular chains should be taken into account
while modeling deformation and flowing processes in melted polymers [25–29].

In Section 2, we analyzed a possible effect of chain and network structures of the
polymer melts and elastomers on their kinematic and mechanical properties. Namely,
in Section 2.1, we discuss how stretching a polymer chain in flowing polymer melts may
result in emerging viscosity anomalies due to the effect of entropic elastic forces reducing
the activation energy. In Section 2.2, we discuss an opposite effect when the action of
EEF might increase the activation energy of jumps in elastomer networks. The effect of
these forces in creeping behavior is discussed in Section 2.3. The next section, Section 3, is
devoted to the experimental verification of relations manifesting the effect of EEF discussed
theoretically in Section 2. Namely, in Section 3.1, we discuss the experiments exposing
the entropic nature of viscosity anomaly in the flow of polystyrene. The rubber stretching
experiments revealing a hysteresis effect (the Mullins effect) due to the action of EEF
emerging in deforming elastomers are reported in Section 3.2. An experimental study
of rubber creeping behavior is reported in Section 3.3. In Section 4, we summarize the
experimental observation on the effect of EEF on polymer’s deformation. We conclude in
the last section.

2. Methods: Accounting for Entropic Elastic Forces in Polymer Deformation Processes

In the present section, we discuss a possible change in the jump activation energy
fostered by the effect of EEF reflecting the molecular structure of polymers. The chain and
network molecular structure of polymers manifests in viscosity anomalies registered in
polymer flows, a hysteresis phenomenon of tensile curves in elastomers, and the creeping
behavior in silicon rubber.
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2.1. Viscosity Anomalies in Polymer Flows

Stretching polymer chains from an equilibrium conformation in flowing polymer melts
results in manifestation of the EEF fe [19,22,23] in proportion to the distance, r, between
the ends of a macromolecule (see Appendix A), viz.,

fe =
3kBT
Nl2 r (4)

where N is the number of monomeric links in the chain, and l is the length of each
unit. The emerging entropic force (4) reduces activation energy E0 allowing for the MKU
to jump by a distance λ proportional to the magnitude of EEF in the direction of flow
forces [5,7,14,15,18], viz.,

η = Bτ exp
(
E0 − δγe

kBT

)
, δ =

1
2

λ
3kBT
Nl2 a (5)

where B is a pre-exponential factor, δ is an activation coefficient having the dimension of
energy, a is a coefficient having the dimension of length, and γe is a dimensionless size
of reversible, rubber-like deformations emerging due to chemical bonding between the
monomeric links of a macromolecule [21,23,26]. The value γe can be assessed by measuring
the volume of recoverable deformation in polymer melts after stopping the rotary plane
(cone) in a viscometer [14]. Plugging the expression (5) back into Newton’s formula (2)
and applying the logarithm to the resulting equation, we obtain three linear relationships
between the logarithms of viscosity η, shear stress τ, and share rate γ̇ that might be verified
experimentally (see Section 3.1), viz.,

ln η =

[
ln τ − ln

1
B
+
E0

kBT

]
− δ

kBT
γe, (6)

ln γ̇ =

[
ln

1
B
− E0

kBT

]
+

δ

kBT
γe, (7)

ln τ =

[
ln η + ln

1
B
− E0

kBT

]
+

δ

kBT
γe, (8)

indicating that anomalous viscosity might be considered a manifestation of the EEF reduc-
ing jump activation energy in the flow of polymer melts [5,14,15].

2.2. Dependence of Elastomer Tensile Curves on Elastic Entropic Forces

In Section 2.1, we discussed that the EEF, fe, emerging in the flow of polymer melts
reduces the activation free energy E0 required for the MKU to jump in the direction of
external forces by a magnitude proportional to fe. However, the EEF may cause an opposite
effect as well, increasing the activation energy of jumps in elastomeric networks [5,30].

In the temperature range above the glass transition, the polymer structure turns
viscous, amorphous, or rubbery, so that polymers can be considered as elastomers [22,23].
Special features of deformation processes in elastomers, both in glassy and highly elastic
amorphous states, are associated with their network molecular structures [23,27]. The most
prominent features of the stretching process in elastomers are the accelerated stress growth
up to breaking elongations of material and large elastic deformations self-reversing after
removing the force or load [28,29]. The ability of elastomers to sustain high reversible
deformations is associated with the entropic nature of the stretching behavior of long
macromolecules in a condensed amorphous state [20,30].

Statistical rubber elasticity theory [19,25,31–40], elaborated in its application to elas-
tomer networks, sets out the dependence of the measured stress specific to the initial
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cross-section of a sample, σm, and the specimen current extension ratio, λ = l/l0, with
respect to its initial length l0, in the following form:

σm = E
(

λ− 1
λ2

)
, E = g

ρRT
Mc

(
1− 2Mc

M

)(
2λ2 +

1
λ

)
(9)

where R is the gas constant, T is the absolute temperature, E is the isothermal Young’s
modulus, Mc is the molecular weight of a chain segment characterizing the number of
chemical cross-links in the network, M is the initial molecular weight of the elastomer before
cross-linking, ρ is the density of the rubber, and g is Flory’s correction factor accounting for
the network structural flaws that may affect its deformation behavior [40–42].

Empirically observed tensile curves for rubber fit the behavior predicted by the the-
oretical model (9) only for the uniaxial extensions of λ ≈ 1. Other types of dependence,
including many empirical parameters, were discussed in the literature [43] and designed
to fit the experimental tensile curves better at high elongations. Furthermore, stretching-
induced structural changes in rubber reveal themselves in the effect of mechanical hysteresis
(Mullins’ effect): after a rubber specimen is extended for the first time and then allowed
to recover from the deformation, repeated extension by the same amount requires signif-
icantly lower stress values [28,29,44]. In Figure 1a, we have shown the hysteresis curves
experimentally observed by us in silicone rubber poly(methylvinylsiloxane) (PMVS) subjected
to tensile deformation against the relative strain ε, at 250 mm/min until the stress reached
3.8 MPa. After stretching, the specimen was subjected to the reverse deformation, until
the stress had been completely relaxed [30]. The deformation rounds were then repeated
four times. The first ascending tensile curve shifted toward larger strain values in Figure 1a
indicates the significant softening of the material due to rupture of physical cross-links
during the first round of deformation [5,30].

(a) (b)

Figure 1. (a) The hysteresis curves for a PMVS rubber specimen subjected to repeated forced extension,
and compression at 250 mm/min at room temperature, with the relative strain ε. (b) The standard
linear solid (SLS) mechanical model.

Before explaining the Mullins effect, let us consider the standard linear solid (SLS) model
schematically presented in Figure 1b first. Accordingly the SLS model, the external stress, σ,
applied to a specimen sums of two components: (i.) the stress σe on the spring of stiffness
E, and (ii.) the viscous stress ση manifested by the elastic spring connected in series with
the dashpot in Figure 1b with Hooke’s modulus H associated with the viscous element η.
Assuming that the stress σe takes the form of Hooke’s law (1), σe = Eε, we may express the
viscous stress as ση = σ− Eε accordingly the SLS model.

The differential equation for the SLS model [45], expressing the dynamics of stress–
strain relation for rubber at constant tensile strain rate, ε̇ = const, and constant dashpot
viscosity,

η0 = A exp
(
E0

kBT

)
= const (10)
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where A is some pre-exponential factor, independent of the applied stress σ, and can be
written as follows:

η0[(H + E)ε̇− σ̇] = H(σ− Eε). (11)

As the strain grows linearly over time, ε(t) = ε0 + ε̇t, with a constant strain rate ε̇, the
general solution of the SLS Equation (11) takes the following form:

σSLS(t) = E (ε0 + ε̇t)︸ ︷︷ ︸
ε(t)

+η0 ε̇ + exp
(
− t

η/H

)
(12)

approaching a linear stress–strain relation over the characteristic relaxation time η/H. The
SLS model predicts (12) that when a specimen is stretched at a constant rate, the growth of
strain-dependent stress will gradually slow down and evolve into the linear stress–strain
dependence, as t� η/H, viz.,

σSLS(ε) = Eε + η0 ε̇. (13)

The linear SLS model does not explain the hysteresis phenomena.
The hysteresis behavior in elastomers is entirely due to the action of EEF emerging in

the molecular network undergoing deformation. Namely,

1. With increasing deformation over the stretching phase, the EEF reinforces the resistance
of molecular network against the tensile stress σ, fostering an increase of the jump
activation energy E0 in Eyring’s formula (3) by an amount bSση where bS is a viscous
volume coefficient related to the stretching deformation ση [5,14,30], viz.,

ηS = ASση exp
(E0 + bSση

kBT

)
= AS(σ− Eε) exp

(
E0 + bS(σ− Eε)

kBT

)
(14)

where AS is the pre-exponential factor calculated by absolute reaction rate theory,
and the index S pertains to the stretching phase of deformation.

2. In a retraction phase of deformation, the EEF decreases the jump activation energy E0
by an amount bRση , as the action of EEF coincides with the retraction direction of the
specimen deformation, and, therefore,

ηR = AR(σ− Eε) exp
(
E0 − bR(σ− Eε)

kBT

)
(15)

where the corresponding pre-exponential factor AR and viscous volume coefficient bR
are indexed by R, being related to the retraction phase of deformation.

By equating the expression for viscosity following from the SLS model (11) to Eyring’s
viscosity accounting, for the effect of EEF in the course of deformation ((14)–(15)), we obtain
the following equation introducing the action of EEF into the stress–strain dynamics:

H(σ− Eε)

(H + E)ε̇− σ̇
= AS/R(σ− Eε) exp

(
E0 ± bS/R(σ− Eε)

kBT

)
, (16)

or, after dividing both sides of the latter equation by (σ− Eε) and applying the logarithm
on them, viz.,

− ln((H + E)ε̇− σ̇) = ln
(η0

H

)
± bS/R

kBT
(σ− Eε). (17)

As the first term in the right-hand side of (17) is constant for a given material and
as ε̇ = const, the latter equation predicts the linear relation between the quantity in the
left-hand side of (17), −ln((H + E)ε̇− σ̇), and the viscous stress (σ − Eε) that might be
verified experimentally (see Section 3.2 for details).

As the strain function in (17) changes linearly over time, viz., ε(t) = ε0 + ε̇t, during
the stretching phase, and ε(t) = εmax − ε̇t, during the retraction phase of deformation
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(Figure 2a), the general solutions for Equation (17) can be calculated analytically. Namely,
in the stretching phase, these solutions are as follows:

σS,1(ε) = Eε− kBT
bS

ln(η0 ε̇) (18)

σS,2(ε) = Eε− kBT
bS

ln

 η0 ε̇

1− exp
(

HbS
kBT (ε− ε0)

)
, ε0 < ε. (19)

(a) (b)

Figure 2. (a) The strain dynamics in the case of constant strain rate ±ε̇ over the stretching and
retracting deformations. (b) The model stress–strain curves for the constant strain rate ±ε̇ over the
stretching and retracting deformations.

The first solution (18) predicts a linear stress–strain relation in the stretching phase,
similar to that of the SLS model (13). The second solution (19) does not exist for ε > ε0 (as
producing a negative number under the logarithm), being non-physical, at least, for the
first stretching move: the first tensile curve describing the initial specimen stretching is
linear. However, the solution (19) may become real in the further stretching rounds, as seen
in the forthcoming hysteresis loops (Figure 1a) whenever strain is decreasing, ε < ε0.

In the retraction phase, the Equation (17) has only one admissible solution, as the
formal, linear solution, σR,1(ε) = Eε + kBT/bS × ln(−η0 ε̇), does not exist (due to a negative
number under the logarithm): there is no linear stress–strain relation under retraction
possible. However, the second solution exists in the retraction phase, viz.,

σR,2(ε) = Eε +
kBT
bS

ln

 η0 ε̇

exp
(

HbS
kBT (ε0 − ε)

)
− 1

, ε0 > ε. (20)

The modeling curves representing the analytic solutions (18) and (20) in the first
stretching–retraction round of deformation are shown in Figure 2b.

The analytical solution of the modified SLS model taking into account the EEF effect
predicts a linear stress–strain relation for the first round of specimen stretching, followed
by the non-linear tensile curves for the further rounds of deformation.

The proposed model accounting for the effect of the EEF on elastomer deformation
predicts the linear relation between the value ln((H + E)ε̇− σ̇) and (σ− Eε) that might be
verified experimentally (see Section 3.2).

2.3. Entropic Elastic Forces for Creeping Prediction

Creeping reflects the tendency of a material to deform plastically over time at any
level of compressive, tensile, and shear mechanical stress applied. The creep behavior of
elastomers subjected to the total stress σ can be described by the simple Kelvin–Voigt model
(KVM), viz.,

σ = σe + ση = Eε + ηε̇ (21)

where σe = Eε is the elastic component of stress (1), ε is strain, ε̇ is the strain rate, and
ση = ηε̇ represents stress on the dashpot according to Newton’s law (2). Expressing the



Entropy 2022, 24, 1260 7 of 17

viscosity parameter from (21) as η = (σ− Eε)/ε̇, equating it to the viscosity equation for a
stretching phase (14), and dividing the resulting equation by the common factor (σ− Eε),
we obtain the Kelvin–Voigt differential equation (KVDE) describing strain dynamics in the
stretching phase, viz.,

1
ε̇

= AS exp
(
E0 + b(σ− Eε)

kBT

)
. (22)

Applying logarithm on the latter equation, we obtain the linear relation between ln ε̇
and strain ε that can be verified in experiments (see Section 3.3), viz.,

− ln ε̇ = ln AS +
E0 + bσ

kBT
− E

kBT
ε. (23)

The general analytic solution of the KVDE Equation (22) is given by the following
logarithmic function of time:

ε(t) = E0 +
σ

E
+

kBT
E

ln
(

1
AS

Eb(t− t0)

kBT

)
. (24)

In Figure 3a, we show a particular solution curve (24) of the KVDE (22) for t0 = 0.
The experimental curves of creeping behavior in silicon rubber were studied experimen-
tally under various loads and temperatures (Figure 3b) matching the analytic solution
curve perfectly.

(a) (b)

Figure 3. (a) A particular solution (24) of the KVDE (22) for t0 = 0. (b) The experimental creep curves
for silicon rubber under the initial stress σ0 = 6.4947 MPa, at the temperatures−80.3 ◦C (solid curve 1),
−80.6 ◦C (triangles, curve 2), and another time at −80.6 ◦C (crosses, curve 3) for reproducibility.

The analytic solution (24) of the KVDE (22) enables a simple prediction of creep curves.
In particular, this solution makes it possible to determine the expected time required to
reach the maximum creep values for given load and temperature, limiting the exploitation
of a product made of rubber. Solving (24) for the time variable, we obtain the following
formula for the remaining useful life (RUL), estimating the amount of time the product of
rubber is likely to operate before it requires repair or replacement, viz.,

(t− t0) = AS
kBT
Eb

exp
(
−E(E0 − ε) + σ

kBT

)
. (25)

The linear dependence of ln ε̇ on strain ε makes it possible to predict the time of
reaching a scheduled deformation by extrapolation of this linear dependence under con-
stant loads.

3. Results: Experimental Verification of Entropic Elastic Forces

In the present section, we report on the experimental verification of the EEF-related
effects on non-Newtonian fluids, deforming polymers, and creeping silicon rubber.

3.1. Experimental Verification of the Entropic Nature of Viscosity Anomaly

The linear and log-linear relationships predicted by ((6)–(8)) between the logarithms
of viscosity η, shear stress τ, and share rate γ̇ have been confirmed experimentally for
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the flow of polystyrene, PSC 1540 (AS) Crystal Polystyrene (Total S.A, Paris, France),
with a melt flow index 12 g/10 min (200 ◦C–5 kg, ASTM D1238G), using a Rheometer
RHEOTEST®RN4 (Rheotest Medingen GmbH, Germany) as a rotational viscometer. The
viscosity measurements were carried out using a cone and plate system with the cone
diameter 36 mm and angle 5◦. The temperature during measurements was maintained
with an accuracy of 0.1 ◦C. The shear rate was set constant in the range from 0.01 s−1

to 10 s−1. The rotation time before stopping varied from 30 s at high rotation rates to
30 min at low rates of shear deformation. The shear deformation value at a constant shear
rate varied from tens to a hundred shear units. After stopping the rotor and its release
from external forces, the observation time of backward rotation was typically 300 s. The
measurements of viscous flow of melted polymer were carried out at 10 ◦C intervals, from
180 ◦C to 220 ◦C. The observed curves are shown in Figures 4 and 5.

(a) (b)

Figure 4. (a) The recovery of reversible deformation, γe, over time after rotation shut down in
polystyrene melts at 190 ◦C, with shear rate γ̇ = 0.012 s−1, shear stress τ = 114.3 Pa, and the total
value of reversible deformation γ = 1.135. (b) The value of ln(η/τ) as a function of share stress τ for
polystyrene melts at 180 ◦C, for the stretching rates ranging from 0.0648 s−1 to 2 s−1.

For the low shear rates, after the application of default shear stress on melted polystyrene,
the reversible deformation of 5.2% was observed after reaching the state of equilibrium
recovery (Figure 4a). The logarithmic trend line describing the relation between share stress τ
and the value of ln(η/τ) in Figure 4b is also a manifestation of EEF, reducing the activation
energy of the MKU in the flow of polymer melts.

To verify the relationships (6)–(8), following from a theoretical model, the values of
reversible deformation, γe, were measured at a constant shear rate, γ̇e (Figure 5a); shear
stresses τ were measured for the same shear rates (Figure 5b); finally, the value of ln(η/τ)
was measured as a function of reversible deformation γe (Figure 5c).

(a) (b) (c)

Figure 5. (a) The linear relationship between the value of reversible deformation, γe, and the
logarithm of shear rate, ln γ̇, for polystyrene melts at 190 ◦C, measured sequentially at the following
shear rates: 0.100 s−1, 0.113 s−1, 0.150 s−1, 0.150 s−1, 0.201 s−1, 0.201 s−1, 0.299 s−1, 0.300 s−1,
0.500 s−1, 0.500 s−1, 1.00 s−1, and 2.00 s−1. (b) The linear relationship between the reversible
deformation, γe, and logarithm of shear stress ln τ for polystyrene melts at 190 ◦C measured at
the constant shear rates, as specified in (a). (c) The value of ln(η/τ) plotted against the volume of
reversible deformation, γe, measured in polystyrene melts at 180 ◦C, for the stretching rates ranging
from 0.0648 s−1 to 2 s−1.

All empirically observed patterns presented in Figure 5 have linear trend lines, as pre-
dicted by (6)–(8), accounting for the entropic nature of elasticity in polymers. The reported
experimental results confirm that the activation energy in polymer melts decreases by an
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amount proportional to the magnitude of EEF, and by the volume of reversible elastic defor-
mation of molecular chains stretched by the flow. Measuring the slopes of trend lines shown
in Figure 5, we can estimate the activation coefficient δ = 6.016 kJ/mol = 1.44 kKal/mol,
and activation energy E0 = 100.92 kJ/mol = 24.1 kKal/mol for polystyrene.

3.2. Experimental Verification of the Effect of Elastic Entropic Forces on Elastomer Tensile Curves

Rubber stretching experiments were carried out on a Zwick-Z 010 testing machine (the
ZwickRoell Group, ZwickRoell GmbH & Co., KG, Germany) equipped with a MultiXtens
extensometer pursuant to DIN EN ISO 527-2/S2. The dumbbell-shaped specimen of a
silicone PMVS rubber (ISO 527-2) used in the experiment had rectangular sections that
were 2 mm thick, 4 mm wide, with a rectangular narrow section length of 43 mm. The test
length of a specimen measured with the extensometer was 15 mm. The molecular weight of
a chain segment used to calculate Young’s modulus E in (9) was taken as Mc = 8× 104. The
average molecular weight for the PMVS rubber specimen was assessed as M = 6× 105.

Hooke’s modulus, H = 1793 MPa, was calculated as the limiting modulus for the
glassy state of silicon rubber (in accordance with Table II,3 of Tobolsky’s monograph [25]).
The series of hysteresis curve measurements were performed repeatedly (through 5 rounds
of tensile deformation) at the extension rates of 250 mm/min and 25 mm/min at room
temperature. Other series of measurements were performed at 50 ◦C (2 series), at 75 ◦C
(3 series), and at 100 ◦C (2 series), respectively—all at an extension rate of 25 mm/min.
Deformation of specimens was terminated at the stress reading of ca. 3.8 MPa. Then, each
tensile strain was immediately followed by a reverse compressive strain at a contraction
rate of the specimen equal to the tensile rate used before, until the stress reading returned
to its original value of 0.1 MPa, after which the specimen was immediately stretched again.

The dependence of true stress, taking into account the change in cross-sectional area
of the specimen as it is stretched versus applied strain, is shown in Figure 6a for the first
(1) and second (2) hysteresis loops, shown in Figure 1a. In Figure 6b, a crossover behavior
is observed in the tensile curve, as the stress exceeds ση = 0.714 (which corresponds to
the strain values over ε = 20%): a decrease in the rate of stress growth with increasing
albeit small strains is flipped to a rapidly accelerating stress for stronger strains. A possible
explanation for the observed crossover phenomenon is that the plastic flow characterized
by a decrease in the activation energy at small deformations of the material gets overturned
by the deformation resistance of the main elastomer network when the EEF comes into
play as the tensile process continues [30].

(a) (b)

Figure 6. (a) True stress vs. strain dependence for silicone rubber at room temperature at a tensile rate
of 250 mm/min for the first (dashed line 1) and second (solid line 2) hysteresis cycles. (b) Dependence
of the value −ln((H + E)ε̇− σ̇) vs. ση ≡ (σ− Eε) for the ascending strain curve shoulder of the first
hysteresis cycle (dashed line 1) and the second hysteresis cycle (solid line 2).

The linear dependence between the values of − ln((H + E)ε̇− σ̇) and ση as predicted
in (16) in the framework of the modified SLS model, for the ascending and descending
segments of hysteresis curves, allows for estimating Flory’s correction factor, g, calculated
over the maximum correlation of linear regression (with the coefficient of determination
R2) in the observed stress versus strain dependence data. The derived assessments of
Flory’s correction factor for the different strain intervals are summarized in Table 1 for the
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linear segments of increasing deformations of the first hysteresis cycle (dashed line) and the
second hysteresis cycle (solid line). Table 1 also represents the coefficient of determination
R2, which measures how well the proposed linear regression model fits the data. In Table 2,
we show the same data for the experimental reverse strain curves describing the first (1)
and second (2) hysteresis cycles.

Table 1. Flory’s correction factor g estimated over the linear segments of hysteresis curves as predicted
in (16), in the framework of the modified SLS model, for the stretching deformation in hysteresis
cycles shown in Figure 6a.

Hysteresis Cycle Ascending Strain Interval g Determination, R2 Tensile Slope, b/kBT

1 ε ∈ [1.8–20%] 24 0.9956 −0.0037
1 ε ∈ [21–170%] 0.6 0.9960 +0.0003
2 ε ∈ [21–56%] 10 0.9907 −0.004
2 ε ∈ [65–164%] 4.5 0.9975 +0.0019
2 ε ∈ [166–179%] 0.1 0.9512 −0.0012

Table 2. Flory’s correction factor g estimated over the main and final descending segments of the
reverse strain curves in hysteresis cycles shown in Figure 6a.

Hysteresis Cycle Ascending Strain Interval g Determination, R2 Tensile Slope, b/kBT

1 ε ∈ [173–103%] 7 0.9985 −0.0042
1 ε ∈ [65–25%] 70 0.9993 +0.0005
2 ε ∈ [178–81%] 5.65 0.9971 −0.0038
2 ε ∈ [70–29%] 81 0.9984 +0.0005

A gradual decrease of structure resistance in a response to sequentially applied external
stress is observed in repeating hysteresis cycles. The decreasing of structural resistance over
the deformation process manifests itself in the emergence of a third segment in the ascending
tensile curves shown in Figure 6a. Correspondingly, three linear segments—the initial,
main, and final—approximating the second hysteresis round are shown in Figure 7a–c.
For calculating the modulus E, the selection of correction factor g was made using the
maximum value of the correlation coefficient between the linear relation predicted in (16).

(a) (b) (c)

Figure 7. Approximation of the second hysteresis loop in the framework of linear relations (16) in the
framework of the modified SLS model requires three linear segments: the initial (a), main (b), and
final (c) segments of the ascending tensile curves.

The subsequent hysteresis loops are deformed increasingly, round after round. More
linear segments following the relations (16), with different values of Flory’s correction
factors, may be introduced for the reliable approximation of experimental tensile curves.

3.3. Experimental Study of Creeping Behavior in Silicon Rubber

The creeping behavior in silicone rubber was studied on a testing stand equipped with
a mechanism to load a silicon rubber (PMVS) specimen smoothly at a given rate, in a testing
chamber with temperatures ranging from room temperature up to 120 ◦C. Deformation
in silicon rubber was measured with the help of a mechanical optoelectronic device, with an
accuracy of 0.39 mm and the total deformation of up to 300 mm. Tested specimens were
cut out from a 2 mm thick rubber plate, herewith the working part of the specimen had
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a length of 43 mm and width of 3 mm. The initial stress σ0 applied to a rubber specimen
was calculated by dividing the load by the cross-sectional area of the specimen before
loading. The creep curves measured under the same loads for three different time periods
are exemplified in Figure 8b for the creep curves taken at different temperatures and initial
stress values, as specified in the figure caption.

In Figure 8a, we have presented the PMVS creep curves and their approximation
according to the KV model (22) at an initial stress of 6.4947 MPa. As seen from the plots in
Figure 8b, showing the dependence of deformation over time, the creep curves coincide for
the same values of initial stress, for two initial stresses tested, as well as at four different
temperatures when two temperature values were tested for each load.

(a) (b)

Figure 8. (a) The creep curves (PMVS) and their approximation according to the KV model (22) taken
for an initial stress of 6.4947 MPa. (b) The creep curves (PMVS) observed at the value of initial stress
8.1633 MPa, at temperatures of 26.2 ◦C (curve 1) and 54.8 ◦C (curve 2), as well as at the initial stress
value of 6.495 MPa at temperatures of 80.3 ◦C (curve 3) and 106.5 ◦C (curve 4).

The creep curves shown in Figure 8b have been calculated theoretically for the specified
data (for two different values of stresses, at four different temperatures for each stress
value), in the framework of the KV model (22). The theoretical results were juxtaposed
with the empirical measurements in Figure 9a, showing a perfect match. The latter graph
demonstrates convincingly that the linear relation between − ln ε̇ and (σ− Eε) does exist,
as predicted by the KV model (22). The linear relation following from the KV model has
been verified extensively, for the different values of initial stress and at various temperatures
(see Figure 9b). All experimental observations justify the applicability of the KV model
based on Eyring’s concept of the influence of stresses on the deformation activation energy
and show the reliability of theoretical predictions for a wide range of initial stresses and
temperatures in silicon rubber.

(a) (b)

Figure 9. (a) Approximation of the creep curves shown in Figure 8b in the framework of the KV
model (22). The descriptions of the lines are the same as in Figure 8b. (b) Linearity of the − ln ε̇ value
against (σ− Eε) as predicted by the KV model (22) has been verified for PMVS rubber, for a variety
of initial stresses and at various temperatures: at 25 ◦C (shown by solid lines), for the following initial
stress values—8.835 MPa (curve 1), 8.163 MPa (curve 2), 3.365 MPa (curve 3), 2.428 MPa (curve 4), and
1.722 MPa (curve 5); at 55 ◦C (shown by crosses), for the following initial stress values—8.163 MPa
(curve 6) and 7.228 MPa (curve 7); at 55 ◦C (shown by dashed lines): 7.037 MPa (curve 8) and
6.495 MPa (curve 9); at 100 ◦C (shown by points)—5.679 MPa (curve 10) and 6.909 MPa (curve 11).

The slopes of creep curves, ln η0 = ln A + E0/kBT, shown in Figure 9b appear close to
each other if taken at the same initial stress, even though there were significant temperature
differences. To verify the dependence of these slopes upon the values of initial stress
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applied to the rubber specimen, in Figure 10a, we have shown the values of slopes, against
the values of applied stress, σ0. Accordingly, the data about stress and temperature are
given in the caption of Figure 9b. Analogously, the viscous volume coefficient b/kBT
depends upon the initial stress values σ0, as shown in Figure 10b.

(a) (b)

Figure 10. (a) The slopes of creep curves, ln η0 = ln A + E0/kBT, shown in Figure 9b against the
values of initial stress. (b) The viscous volume coefficient b/kBT shown against the values of initial
stress σ0, with the stress and temperature data specified in Figure 9b.

In Figure 11a, the values of Flory’s correction factor, g, for the creep curves with initial
stresses from 1.7275 MPa to 8.635 MPa at four various temperatures are shown. In our
experiments, the Flory factors, reflecting the reaction of current physical and chemical
structure of the material to the particular conditions of the creep process, did not depend
on creep temperature, but instead depended on initial stress: g has high values at low
initial stress, but low at high stress. Apparently, a large number of physical cross-links
characterized by long relaxation times are not destroyed during deformation under low
loads in elastomers. In Figure 11b, we present the experimentally observed linear relations
between ln ε̇ versus strain ε, for creep curves at the different values of temperature and
initial stress as specified in the figure caption.

(a) (b)

Figure 11. (a) Values of Flory’s correction factor g against the initial stress values σ0 in the measure-
ments with stress and temperature specified in Figure 9b. (b) The values of − ln ε̇ against strain ε

measured at a variety of initial stress values and at various temperatures. Solid lines are for mea-
surements taken at 25 ◦C, for the following stress values: 8.835 MPa (curve 1), 8.163 MPa (curve 2),
3.365 MPa (curve 3), 2.428 MPa (curve 4), and 1.722 MPa (curve 5). Crosses show the measurements
taken at 55 ◦C, for the following stress values: 8.163 MPa (curve 6) and 7.228 MPa (curve 7). Dashed
lines show the measurements taken at 80 ◦C, for the following stress values: 7.037 MPa (curve 8) and
6.495 MPa (curve 9). Points stay for the measurements taken at 100 ◦C, for the following stress values:
5.679 MPa (curve 10) and 6.909 MPa (curve 11).

4. Discussion

From the analysis of experimental data reported in Section 3 on the hysteresis curves
(Section 3.2) and the calculations of Flory’s correction factors (Section 3.3), the following
conclusions can be drawn:

1. The experimentally recorded values of the Flory correction coefficient g depend on
neither temperature nor stretching rate. We, therefore, assume that the value of g may
characterize the tendency of polymers to maintain a stable structure in mechanical
deformation.

2. Flory’s corrections measured for the repeated hysteresis loops were close to each other.
Only the first hysteresis round seems to differ substantially from the others, as also
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predicted by the analytic solutions of the model Equations (18)–(20). The prominent
distinction between the first stretching of the specimen and the subsequent rounds
indicates an irreversible change that occurs in the polymer structure due to the rupture
of weak structural constituents, after which the system acquires a more deformation
resistible structure, as manifested by the Mullins effect. The specimen acquires a slight
residual deformation, which changes a little during subsequent hysteresis cycles (see
Figure 1a)

3. Up to five stable segments can be identified visually on the experimental hysteresis
curves. In particular, there are three regions of increasing deformation and two
regions of reversible deformation. The measured values of Flory corrections exhibited
sufficient reproducibility for all tested samples. For the tested PMVA specimen,
the recorded Flory correction factor was 5–7 units.

4. A quantitative description of elastomer deformation can be obtained, using the basic
equations of the statistical theory of rubber elasticity and Eyring’s equation modified
to take into account the entropic nature of deformation in polymers. For the stretching
phase of rubber deformation, the elastic forces increase the activation energy, while
they decrease during the retraction deformation.

5. The small segments at the beginning and at the end of tensile curves (denoted as the
initial and final segments of hysteresis cycles) show a stress growth slowdown, which
may be associated with a decrease in the activation energy. There was a significant
change in the values of Flory corrections in these segments at the same time. The final
section of the return hysteresis curve has a particularly sharp increase in the Flory
correction factor. This can be interpreted as a result of a strong increase in the number
of physical cross-links at the final stage of the elastomer chain folding process.

The elastomer molecular structure is a major factor influencing the deformation behav-
ior, as it determines how much and how quickly stress increases, as well as how strong the
macromolecules would resist the external force when stretched. The molecular structure of
a network formed by chemical and physical bonds changes under tensile and compressive
strain, forming a reproducible pattern of deformation behavior that is consistently repeated
in a series of measurements of the hysteresis loops in elastomer. The sequential hystere-
sis rounds are expressed in the consecutive decrease and increase of the jump activation
energy required for the migration of MKU into vacancies over material deformation. The
changes in energy barriers manifest an increase and decrease in the viscosity of the material
during stretching and plastic flow. The anomalous viscosity affects the slowing down and
acceleration of stress growth observed in the stretching and contraction curves measured
in elastomers.

We profoundly thank our reviewer for the inspiring questions about extending our
model to branched macromolecules. One of us (V.K.) considered the possibility of evaluat-
ing the rheological behavior of melts of linear polymers under the influence of EEFs on the
activation energy decrease during the folding of macromolecules in the course of plastic
flow. This process is easily observable when the rheometer’s rotor stops, i.e., when it is free
from the engine and rotates backward due to the reversing flow of the polymer melt [14].
In this case, we observed a decrease in viscosity with an increase in shear rate or stress,
i.e., the well-known viscosity anomaly.

For branched (but not chemically cross-linked) polymers, it would be very interesting
to study the flow processes in rheometers. We would expect to observe a decrease in
viscosity with increasing flow speed or shear stress. However, due to the action of physical
cross-links between the entangling sufficiently long branches of chains that are associated
with the main chain, the possible deviations towards increasing viscosity at the flow onset,
as well as at the end of the flow, should be observed. When stretching branched polymers
at a given rate on tensile machines, the dependence of stress on strain should have a
large plastic flow region, with growing initial and final sections of the stretching curve (as
exemplified schematically by a schematic curve shown in Figure 12).
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Figure 12. A schematic representation of a possible tensile curve for stretching branched polymers.

A similar graph is shown in a recent article [46] kindly pointed to us by our reviewer.
In the same article, an increase in viscosity with increasing flow time is indicated. This
may indicate that branching promotes the formation of physical cross-links, increasing the
resistance to flow instead of decreasing the value of activation energy.

It is worth mentioning that the applicability of molecular models to the flow processes
in polymer melts is wide, including not only measuring the properties of flows in rheome-
ters, but also in capillary viscometers, including simplified measurements of the melt flow
index (MFI). Instruments for MFI measurements are often used by industry technologists.
Moreover, this approach can also be used for measuring the viscosity of melts of the rod
extruded from the production extruder when obtaining polymer granules.

Further research is needed to focus on possible applications of the molecular models
to the MFI measurements.

We also profoundly thank another reviewer for pointing us at the potential problem of
irreversible entropy production (IEP) [47] in polymer deformation. It is worth mentioning
that the viscous flows and deformation of polymers exhibit reversible properties under me-
chanical stress (pertaining to zero entropy production), in contrast to low-molecular solids
and liquids with an atomic or low-molecular structure. However, polymers, of course,
exhibit irreversible deformation as well, resulting in violation of their initial structure.
Therefore, the irreversible deformation processes discussed in our work should be inti-
mately tied with the IEP processes, although a unifying theory of entropy production
that is valid for general thermodynamic processes, especially describing deformations
in different media, has not yet been formulated [47]. Indeed, the formulation of such an
entropy production problem cannot be universal, as it ultimately depends on the underlying
physical system and its governing dynamical laws [47]. Present works on the IEP in the
course of deformations (in metals) are purely theoretical [48] and do not concern any exper-
imental verification. Our present work is centered around interpreting ongoing experimental
observations in the framework of experimentally mastered statistical mechanics focused at
possible corrections close to equilibrium—and it is a natural “constructive” limitation of
our approach, indeed.

Further decades of intensive experimental research will be needed to adopt the rela-
tively novel theoretical concepts of irreversible entropy production [49,50] to the realm of
experimentally measurable quantities demanded by industry.

5. Conclusions

In our work, we study the relations between the mechanical properties of elastomers
and their molecular network structure. Based on the basic equations of the classical
statistical theory of rubber elasticity, we have shown that it is possible to quantify the effects
of labile physical bonds on the deformation behavior in elastomers.

The role of physical bonds in rubber deformations was evaluated based on the Flory
correction factor, which takes into account how bonding defects in polymers can affect the
course of the deformation process in hysteresis.

The use of Eyring’s equation, considered in the spirit of Frenkel’s ideas about the
vacancy mechanism of flow in condensed media, made it possible to eliminate the primary
inconsistency found in the previous quantitative descriptions of tensile curves for rubber,
especially at large strains. The conceptual improvement was achieved by modifying the
exponential viscous flow equation for polymers to take into account the decrease or increase



Entropy 2022, 24, 1260 15 of 17

in the activation energy of deformation by an amount proportional to the entropic elasticity
force excited by macromolecule structures subjected to tensile stress.

When macromolecular materials, such as synthetic polymers, natural plants, or other
biological materials are exposed to external stress, the entropic nature of viscosity should
always be taken into account as follows:

η = A fe exp
E0 ± b fe

kBT
(26)

where η is the flow viscosity coefficient, fe is the magnitude of the EEF, E0 is the activation
energy required to overcome the jump potential barrier, and finally, A and b are the
parameters calculated in accordance with the theory of Eyring et al.

A modified SLS model was used for quantifying the stress–strain dependence and
calculating the isothermal Young’s modulus. The value of Flory’s correction factor was
included in the equations as a measure of the number of physical bonds that influences the
deformation behavior in elastomers. The study of consecutive hysteresis loops revealed
distinctive, consistently repeating segmentation patterns in the deformation behavior of
silicone rubber. The data obtained showed good reproducibility for the numerical values
of Flory corrections proportional to the number of possible physical cross-links present in
reticulated elastomeric materials when they are subjected to mechanical stress.

Our study suggests that the network structure of polymers is coherent with their
mechanical properties and deformation mechanisms.

Author Contributions: Conceptualization, V.I.K.; methodology, V.I.K. and D.V.; writing—original
draft preparation, V.I.K. and D.V.; writing—review and editing, D.V.; project administration, D.V.;
funding acquisition, D.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to the Texas Tech University and The Society of Sciences
& Engineering “KIW-Gesellschaft e.V.”, Dresden, Germany for the administrative and technical
support. The authors express their sincere gratitude to B. Voigt and K. Schneider for their help in
carrying out experimental measurements of rubber hysteresis. The authors thank Yu. Tsoglin for
support and discussion of the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
EEF Elastic Entropic Force
IEP Irreversible Entropy Production
KVDE Kelvin–Voigt Differential Equation
KVM Kelvin–Voigt Model
MFI Melt Flow Index
MKU Molecular Kinetic Units
PMVS Polymethylvinylsiloxane (rubber)
RUL Remaining Useful Life
SLS Standard Linear Solid

Appendix A. Entropic Force of Elasticity

The most likely distance r between the ends of a chain of N units, in which the length of
each unit is l, equals to r =

√
2/3Nl2. Assuming that all conformations of a free chain are



Entropy 2022, 24, 1260 16 of 17

equiprobable, and therefore its entropy S0 is maximal, the entropy value of a conformation
characterized by the distance between the ends of chain r reads as follows [32]:

S = S0 −
3
2

kBr2

Nl2 . (A1)

As the distance r changes, the following entropic elastic force emerges along the
molecular chain:

fe ≡ −T
dS
dr

=
3kBT
2Nl2 r (A2)

where T is temperature.
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