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Abstract: Network alignment (NA) is a popular research field that aims to develop algorithms for
comparing networks. Applications of network alignment span many fields, from biology to social
network analysis. NA comes in two forms: global network alignment (GNA), which aims to find a
global similarity, and LNA, which aims to find local regions of similarity. Recently, there has been an
increasing interest in introducing complex network models such as multilayer networks. Multilayer
networks are common in many application scenarios, such as modelling of relations among people
in a social network or representing the interplay of different molecules in a cell or different cells in
the brain. Consequently, the need to introduce algorithms for the comparison of such multilayer
networks, i.e., local network alignment, arises. Existing algorithms for LNA do not perform well on
multilayer networks since they cannot consider inter-layer edges. Thus, we propose local alignment
of multilayer networks (MultiLoAl), a novel algorithm for the local alignment of multilayer networks.
We define the local alignment of multilayer networks and propose a heuristic for solving it. We present
an extensive assessment indicating the strength of the algorithm. Furthermore, we implemented a
synthetic multilayer network generator to build the data for the algorithm’s evaluation.

Keywords: multilayer network; network alignment; local network alignment

1. Introduction

Network theory is one of the most important frameworks for a meaningful description
and an efficient analysis of many complex systems [1–3]. Most popular analysis algorithms
comprise the mining of a single network, e.g., using community detection algorithms [4].
In parallel, the comparison of networks has led to the introduction of many algorithms for
comparing the structures on both a global and a local scale [5,6] that fall into the class of
network alignment (NA) algorithms. The first class of algorithms, also known as global
network alignment (GNA) algorithms, aims to find the overall similarity among networks.
Differently, algorithms belonging to the second group are called local network alignment
(LNA) algorithms and aim to find (relatively) small regions of similarity. The output of
LNA algorithms is a set of matched regions (or subgraphs) among two graphs given as
the input.

More recently, in many application fields, e.g., mobile and social networks and con-
nectomics and metabolomics studies, the need for introducing models more complex than
traditional networks arises [7,8]. In such contexts, nodes may have different classes of
interactions among them, and such interactions may also be time-varying. In particular,
networks representing multiple different associations among patients can be represented by
a multilayer graph comprised of multiple interdependent graphs, where each graph repre-
sents an aspect or a set of similar interactions [9,10]. Figure 1 represents a simple multilayer
graph with three layers. Each layer is a different graph G. Edges of a multilayer graph can
be intra-layer, i.e., connecting nodes of the same layer, and inter-layer, i.e., connecting nodes
of two different layers [11,12].
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Figure 1. Example of a multilayer network. The figure represents a simple multilayer graph with three
layers. Each layer is a different graph. Edges of a multilayer graph can be intra-layer, i.e., connecting
nodes of the same layer, and inter-layer, i.e., connecting nodes of two different layers.

Formally, a multilayer network graph may be described as a tuple Gml=VL, EintraL ,
EinterLxL, where L = {0, 1, . . . , l} is a set of layers and EinterLxL is a set of edges among layers.
For each layer k, we have a graph Vk, Eintrak (intra-layer edges), and for each pair of layers,
k, h we have a set of edges Eintervxk, which is a set of layers connecting nodes of the layers
v and k [13].

Examples of multilayer networks come from many different fields, from social network
analysis to biological networks. For instance, Figure 2 represents an example of a biological
multilayer network representing the interplay among diseases, genes, and drugs.

Figure 2. Example of a biological multilayer network.

While many efforts have been made to address challenges related to the analysis of
a single network, i.e., community detection in multilayer graphs, there is a need for the
formalization and introduction of algorithms to compare multilayer networks. A simple
strategy is an adaption or the simple use of existing algorithms for LNA. Unfortunately,
this strategy is unsuitable, as previously demonstrated also in heterogeneous networks [14]
because the the current algorithms are not able to manage the difference among layers.

Thus, we propose local alignment of multilayer networks (MultiLoAl), a novel algorithm
for the local alignment of multilayer networks. We define the local alignment of multilayer
networks and propose a heuristic for solving it. MultiLoAl is based on an extension of the
previous L-HetNetAligner [14], so it is based on the following steps, as depicted in Figure 3.
Our algorithm receives two multilayer networks and a set of similarity relationships among
nodes of the same layer in both networks used as the seed to build the alignment.



Entropy 2022, 24, 1272 3 of 18

Figure 3. Local alignment of multilayer networks.

For instance, considering biological networks, similarity relations are represented by
orthologs. The user may find these relations in databases of orthologs (e.g., OrthoMCL, etc.).
It produces a set of multilayer graphs representing single local regions of the alignment.

The algorithm merges two input multilayer graphs into a single one, named the
multilayer alignment graph, a multilayer graph with the same number of layers of the
two inputs, and each layer represents an alignment graph of the same layer of the two
input ones. For each node of a layer k, the alignment graph features pairs of nodes of the
input ones. After building each alignment graph for each layer separately, we analyse
the two input graphs to add inter-layer edges of the multilayer alignment graph. Finally,
the algorithm uses a community detection algorithm suitable for multilayer graphs to
detect communities representing local regions of similarity, i.e., a single region of the
alignment. The result of our algorithm is a list of mappings among a subset of nodes of
two networks, i.e., a set of mapped regions among input graphs.

We also realized a preliminary implementation of our algorithm by using the R pro-
gramming language. We here refined such an implementation even in a high performance
computing (HPC) fashion and provided deeper experimentation on a larger dataset. The
main contributions of this paper are: (i) the implementation of a novel algorithm for the
local alignment of multilayer networks, (ii) the definition of the local alignment of multi-
layer networks, (iii) the solution of a heuristic for solving it, and (iv) the implementation of
a synthetic multilayer network generator to build the data for the algorithm evaluation.

The rest of this paper is organized as follows. Section 2 discusses the background
on multilayer networks and multilayer community detection. Section 3 presents the
MultiLoAl algorithm. Section 4 presents and discusses the results. Finally, Section 5
concludes the paper.

2. Related Work
2.1. Alignment of Multilayer Networks

The alignment of networks aims to compare two or more networks [5], and existing
algorithms may be categorised as local or global based on the approach, despite the
existence of other classifications, i.e., algorithms for specific networks such as heterogeneous
or temporal networks. Local network alignment (LNA) algorithms aim to find some similar
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(relatively) small subnetworks, while global network alignment (GNAs) algorithms search
for the best superimposition of the whole compared networks. The literature contains many
algorithms for other classes of networks (see, for instance, [5]). Unfortunately, the existing
algorithms do not perform very well for multilayer networks [11,15].

2.2. Community Detection in Multilayer Networks

Community detection is one of the most popular research areas in various complex sys-
tems, such as biology, sociology, medicine, and transportation systems [16–18]. The reason
is that the community structures, defined as groups of nodes that are more densely con-
nected than the rest of the network, represent significant characteristics for understanding
the functionalities and organisations of complex systems modelled as networks [16]. It is
expected that the communities play significant roles in the structure–function relationship.
For example, in biological networks such as protein–protein interaction (PPI) networks,
the communities represent proteins involved in a similar function; in neuroscience, the com-
munities detected in brain networks mean regions of interest (ROI) that are active during
tasks; in social networks, communities can be groups of friends or colleagues; in the World
Wild Web, the communities represent the web pages sharing the same topic [19]. Thus,
the discovery of communities in these systems has become an interesting approach to
figuring out how network structure relates to system behaviours.

Discovering a community structure in multilayer networks has became a hot research
topic due to the inability of classical community detection methods to deal with the com-
plexity of the multilayer model.

In fact, in multilayer networks, the communities represent groups of well-connected
nodes in all layers. Thus, the detection algorithms should take into account the differences
among layers. Unfortunately, traditional community detection methods are not able to deal
with the complexity of the multilayer networks because (i) they do not enable analysing
subsets of the layers and also (ii) they do not depict the diverse layers, and thus, they
cannot distinguish between different types of multilayer communities [20]. To overcome
these limitations, different community detection algorithms for multilayer networks have
been recently proposed. For example, Infomap [21], a multilayer generalization of [22],
is a method based on random walks. It considers that an entity randomly following the
edges of a network would tend to become captured within communities due to the greater
density of edges between nodes within the same community, moving less frequently from
one community to another. This algorithm tries to identify a partition of vertices and levels
that minimises the equation of the generalised map, which measures the length of the
description of a random walk on the partition.

GenLouvain [23] is a multilayer generalisation of the iterative GenLouvain algorithm.
This algorithm seeks a partition of the nodes and layers that maximises the multilayer
modularity of the network. It searches the global information of the network, finding which
are the edges of the network that contribute to the creation of the community structure;
then, it applies a novel measure of edge centrality, to classify all the edges of the network
concerning their proclivity to propagate information through the network itself.

ABACUS [24] is an algorithm that ensures the mining of multidimensional communi-
ties based on the extraction of frequent closed itemsets from monodimensional community
memberships. At first, ABACUS considers each dimension independently, and it mines
monodimensional communities. After that, it labels each node with a list of pair tags,
i.e., the dimension and community the node belongs to in that dimension. Then, ABACUS
considers each pair of tags as an item, and it applies a frequent-closed-itemset-mining
algorithm. Finally, the multidimensional communities described by the itemsets consist of
frequent closed itemsets.

Multilayer clique percolation [25] is a method that extends the popular clique per-
colation method for simple networks, where dense regions correspond to cliques and
adjacency consists of having common nodes. The algorithm extends this step by searching
cliques by encompassing multiple layers and reformulating adjacency so that both common
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nodes and common layers are expected. Multilayer clique percolation communities are
combinations of adjacent cliques, so all the edges in these cliques can be considered part of
the community.

Multidimensional label propagation (mdlp) [26] is an algorithm based on label propa-
gation. At first, the algorithm assigns a different label to each node, and then, it weights
the contribution of each neighbour based on their similarity with the nodes on the different
layers. In particular, if two nodes are adjacent on all layers and have the same neighbours,
they would have a higher probability of sharing the same label. Finally, the algorithm
gives a score for each pair of nodes, referring to how likely a label should be extended from
one to the other, bringing a common community.

3. MultiLoAl Algorithm

Initially, the algorithm inputs two multilayer networks and a set of similarities among
node pairs of the same layer into the input networks. Then, it builds the alignment by
performing two main steps: (i) construction of the multilayer alignment graph and (ii)
mining of the multilayer alignment graph.

MultiLoAl analyses separately each corresponding pair of the corresponding layers
of the input graphs. Each pair of a network of the same layer builds an alignment graph,
as previously shown in L-HetNetAligner [14]. Then, it analyses the inter-layer edges of
the input networks to add inter-layer edges to the multilayer alignment graph. Once the
alignment graph is built, we use an algorithm for detecting communities in multilayer
networks to uncover relevant modules. Figure 4 shows these steps.

Figure 4. Workflow of the proposed algorithm.

MultiLoAl is a novel algorithm for the local alignment of multilayer networks. Multi-
LoAl builds the alignment on two main steps, as depicted in Figure 3:

• (i) Construction of the multilayer alignment graph;
• (ii) Analysis of the alignment graph.

Step (i) may be subdivided into two substeps: (i.a) adding nodes and intra-layer edges;
(i.b) adding inter-layer edges.
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Let us consider two multilayer input graphs G1 and G2.
Node colours are used to distinguish different types of nodes belonging to two differ-

ent types of layers. For simplicity, two multilayer input networks have the same number
of nodes.

3.1. Step (1.a): Adding Nodes and Intra-Layer Edges to the Alignment Graph

In the first step, the algorithm considers each pair of corresponding layers separately
see Figure 5. For each layer, it builds an alignment graph following the approach proposed
in L-HetNetAligner [14], adapted to the case of one-colour networks, as reported in Figure 6.

Figure 5. The algorithm separates the input networks according to the layer type.

Figure 6. Example of a multilayer network. The nodes represents a set of genes and a set of diseases
that belong to the gene layer and the disease layer.

At this stage, the algorithm, starting from an initial list of seed nodes, builds the
alignment graph by initially constructing two intermediate alignment graphs, which we
call alignment graph layer 1 and alignment graph layer 2, for two networks belonging
to layer 1 and two networks belonging to layer 2. Therefore, we define the alignment
graph Gal=(Val , Eal) as a graph constructed by two initial input graphs G1 = (V1, E1)
and G2 = (V2, E2). Each node val ∈ Val represents the matching of nodes of the input
graphs, so Val ⊆ V1 × V2. The selection of node pairs is guided by the input similarity
relationships. Therefore, each node is matched with the most similar node of the other
network through the use of the input similarity relationships, i.e., seed nodes; each node of
the alignment graph represents a pair of similarities among nodes from the input networks;
see Figure 7.

Once all nodes have been added to the graph, the algorithm builds the edges of the
alignment graphs. For each pair of nodes, the algorithm examines the two input graphs,
and it inserts and weights the edges considering three conditions: match, mismatch, and
gap. Let us consider the nodes of the alignment graphs; in particular, let us consider the pair
of nodes (G1− G1) and (G2− G2) in Figure 6. To determine the presence of an edge, we
consider the edge (G1, G2) ∈ G1 network and (G1, G2) ∈ G2 network. If G1 and G2 contain
these nodes and the nodes are adjacent, there is a match, which we call, for convenience,
a homogeneous match, since the nodes of the two networks are of the same type (see
Figure 8a).
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Figure 7. Building of the alignment graph: node definition. The algorithm takes the two networks
and a subset of node pairs matched according to a similarity function and starts to build the alignment
graph. In this step, the algorithm defines the nodes of the alignment graph represented by the pair of
matched nodes.

Figure 8. Example of homogeneous match, homogeneous mismatch, and homogeneous gap and
building of alignment graph.

Let us consider ∆ = 2 as the node distance, i.e., the length of the shortest connecting
path threshold to discriminate between gaps and mismatches. If G1 and G2 contain these
nodes and the nodes are adjacent only in a single network, there is a mismatch, which we
call a homogeneous mismatch (Figure 8b).

If G1 and G2 contain these nodes, the nodes are adjacent only in a single network,
and they are at a distance less than ∆ (gap threshold) in the other network, there is a gap,
which we call a homogeneous gap (Figure 8c). After the edges of the alignment, graphs
are added, and a weight is assigned to each edge by applying an ad hoc scoring function
F and the gap threshold ∆. The function assigns a high score to the matches than to the
mismatches and gaps. The kind of scoring function has a large significance for the resulting
alignment graph and on the alignment itself. The algorithm enables the user to choose
other values to optimize the quality of the results. In this work, we set the weight assigned
to each edge as follows: homogeneous match equal to 1, homogeneous mismatch equal to
0.5, homogeneous gap equal to 0.2.

3.2. Step (1.b): Adding Inter-Layer Edges

The algorithm adds the inter-layer edges among multilayer alignment graph layer 1
and alignment graph layer 2. For each pair of nodes in the multilayer alignment graphs,
the algorithm examines the corresponding layers of the input graphs. Let us consider
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the pair of nodes (G1) and (D4) in Figure 8. To determine the presence of an edge, we
consider the edge (G1, D4) ∈ G1 network and (G1, D4) ∈ G2 network. The initial graph
contains both edges connecting their internal nodes, and if the nodes are adjacent, there
is a match, which we call, for convenience, a heterogeneous match, since the nodes of the
two networks are of different types; see Figure 9a.

Figure 9. Example of a homogeneous match, mismatch, and gap and building of inter-layer align-
ment graph.

Let us consider the pair of nodes (G5) and (D2) in Figure 8b. To determine the
presence of an edge, we consider the edge (G5, D2) ∈ G1 network and (G5, D2) ∈ G2
network. G1 contains the edge (G5, D2), while nodes G5 and D2 are disconnected in G2
If the initial graph contains both edges connecting their internal nodes and the nodes are
adjacent, there is a match, which we call, for convenience, a heterogeneous match, since
the nodes of the two networks are of different types; see Figure 9a. Therefore, there is a
heterogeneous mismatch (Figure 9b). Then, we set the weight assigned to each edge as
follows: heterogeneous match equal to 0.9, heterogeneous mismatch equal to 0.4.

3.3. Step 2: Detection of Communities on the Alignment Graph

Finally, the final alignment graph is then mined to discover communities by apply-
ing a community detection algorithm by using existing algorithms for multilayer net-
works [27–30], see Figure 10. Our methodology presents a general design, so it is possible
to mine the final alignment graph by applying a different mining method.

Figure 10. Example of community detection extraction on inter-layer alignment graph.

In the current version of MultiLoAl, we applied the Infomap algorithm to mine the
communities on the alignment graph. However, the user can choose which community



Entropy 2022, 24, 1272 9 of 18

detection algorithm to select among Generalized Louvain, ABACUS, clique percolation,
and mdlp. The output consists of a file that contains the extracted communities as a
list of nodes, the weight of the edge, and the string in which it is reported if there is
a homogeneous/heterogeneous match, homogeneous/mismatch, or homogeneous gap
(see an example of the output at https://github.com/mmilano87/MultiLoAl (accessed on
12 August 2022)).

3.4. MultiLoAl vs. L-HetNetAligner

MultiLoAl, despite being based on the previous L-HetNetAligner, presents many dif-
ferent characteristics. First, the algorithms have different scopes: MultiLoAl is a local aligner
of multilayer networks, while L-HetNetAligner works only on heterogeneous networks. In
detail, by analysing the building of local alignment, MultiLoAl and L-HetNetAligner have
two main general steps: (i) construction of the alignment graph; (ii) mining of the alignment
graph. The building of the alignment graph is the first main difference among the two algo-
rithms. In fact, MultiLoAl builds a multilayer alignment graph through two substeps: (i) by
adding nodes and intra-layer edges, following the approach proposed in L-HetNetAligner
adapted to the case of one-colour networks; (ii) by adding inter-layer edges. This last step
represents the main novelty compared to L-HetNetAligner, because MultiLoAl analyses
and adds the edges among different layers of input networks. Otherwise, L-HetNetAligner
builds a heterogeneous alignment graph. Initially, L-HetNetAligner defines the nodes
of the alignment graph as composite nodes representing pairs of nodes matched by the
similarity considerations. The algorithm inserts and weights the edges in the alignment
graph to the nodes for which the edge links have the same colour and according to their
distance in the input network. Finally, once the alignment graph is built, both algorithms
mine the alignment graph to discover modules that represent local alignment. MultiLoAl
applies a community detection algorithm, Infomap, to mine the final alignment. The result
consists of the extracted communities as a list of nodes, the weight of the edge, and the
string in which it is reported if there is a homogeneous/heterogeneous match, homoge-
neous/mismatch, or homogeneous gap. Otherwise, L-HetNetAligner uses the Markov
clustering (MCL) algorithm to cluster the graph. Each extracted module represents a single
region of the alignment. The result of our algorithm is a list of mappings among a subset of
nodes of two networks, i.e., a set of mapped regions among input graphs.

4. Results and Discussion
4.1. Evaluation of the Quality of the Alignment

The evaluation of the quality of the alignment of network is still a matter of debate for
simple networks [5,31,32]. There exist many measures able to evaluate both the correctness
of the alignment, as well as the quality of the obtained alignment [33]. On the other side,
there is no gold standard to benchmark the alignment. Moreover, all the existing measures
need to be extended in the multilayer case. Thus, we first introduce novel measures of
correctness in the multilayer case (to the best of our knowledge, there are not any other
available measures), then we perform an assessment of our methods. We first designed a
proof of concept to show the ability of our algorithm to map correct nodes and edges by
aligning a synthetic network with itself and with some randomised versions.

The correctness of an alignment is usually evaluated by means of the analysis of its
topological quality, i.e., the ability to reconstruct the underlying true node mapping well
(when such a mapping is known) and if it conserves many edges. For simple networks,
F −NC (F-score node correctness) is a measure of node correctness, and it is a combination
of two measures: P −NC and R−NC. P −NC is calculated as M∩N

M , and R−NC is
defined as M∩N

N , where M is the set of node pairs that are mapped under the true node
mapping and N is the set of node pairs that are aligned under an alignment f .

We here extended such a measure in the multilayer case. We first considered in
a separate way each layer, and we calculated the F −NC〉 for each layer 〉. Then, we
computed the multilayer F −NCm as the average of all F −NC〉.

https://github.com/mmilano87/MultiLoAl
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Similarly, the edge correctness in the simple case can be measured by considering NCV-
GS3, which is a combination of two measures: high node coverage (NCV) and generalized
S3 (GS3). NCV is the percentage of nodes from G1 and G2 that are also in G′1 and G′2, and
GS3 measures how well edges are conserved between G′1 and G′2, where G1 and G2 are two
graphs and G′1 and G′2 are subgraphs of G1 and G2 that are induced by the mapping.

We used NCV-GS3 to measure the edge correctness of each layer 〉, then we averaged
the measures of such values for all the layers, and we obtained the multilayer NCV-GS3.

Finally, we should consider the edge correctness for the inter-layer edges. Without loss
of information, we considered all the inter-layer edges as a whole, and we calculated the
correctness of all the inter-layer edges as NCV − GS3〉 \te∇.

4.2. Proof of Concept

As a proof of principle, we present the use of the MultiLoAl dataset consisting of ten
multilayer synthetic networks that we built with the graph generator, implemented ad hoc in
the R code. An example of the multilayer network and R function are available on the web
site of the project (https://github.com/mmilano87/MultiLoAl (accessed on 12 August 2022)).

All the multilayer networks have 30 nodes and 2 layers, whereas the edges are dis-
tributed as depicted in Table 1.

Table 1. Characteristics of the synthetic multilayer networks.

Network Layers Nodes Edges

N1 2 30 90

N2 2 30 96

N3 2 30 84

N4 2 30 78

N5 2 30 95

N6 2 30 88

N7 2 30 93

N8 2 30 83

N9 2 30 94

N10 2 30 96

First, we aligned each network with respect to itself to show the ability to find known
regions of similarity; second, we considered the alignment of the network with respect to
an altered version of the network obtained by adding different levels of noise (5%, 10%,
15%, 20%, and 25%) by randomly removing edges from the network. The aim of the test
was to demonstrate that the alignment algorithms are capable of producing high-quality
alignments with an edge conservation of about 90%. Then, we implemented different
versions of the MultiLoAl algorithm by varying the strategy applied to mine the community
on the alignment graph. We executed the experiments on an Intel Core i5 Processor,
2.9 Ghz, with 4 Gbytes of main memory running the Ubuntu OS ver 18.04. MultiLoAl built
60 alignments, and it completed the whole process of alignment in ten seconds.

To measure the performance of the alignments built with different versions of Mul-
tiLoAl, we evaluated the quality of the results by considering the topological aspects of
alignments and the number of communities found. At first, the results were evaluated by
the topological quality.

We computed the NCV-GS3 and F-NC measures for all alignment networks by con-
sidering the intra-layer and inter-layer edges. Tables 2–5 report the results. Tables 6–9
report the mean and standard deviation values of the NCV-GS3 and F-NC measures for
each synthetic network aligned with its noisy counterpart.

https://github.com/mmilano87/MultiLoAl
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Table 2. NCV-GS3 values computed on intra-layer edges for all the alignments by applying Infomap,
Generalized Louvain, ABACUS, clique percolation, and mdlp community detection algorithms.

Network Noise
NCV-GS3

with
Infomap

NCV-GS3 with
Generalized
Louvain

NCV-GS3

with
ABACUS

NCV-GS3

with Clique
Percolation

NCV-GS3

with mdlp

N1

0 0.99 0.999 0.975 0.966 0.955
5 0.976 0.968 0.947 0.966 0.954
10 0.96 0.92 0.925 0.942 0.95
15 0.926 0.907 0.918 0.887 0.911
20 0.914 0.891 0.903 0.887 0.906
25 0.903 0.879 0.901 0.877 0.896

N2

0 0.995 0.996 0.951 0.966 0.976
5 0.964 0.992 0.843 0.912 0.829
10 0.943 0.98 0.788 0.872 0.783
15 0.941 0.953 0.773 0.862 0.708
20 0.89 0.945 0.767 0.802 0.666
25 0.881 0.894 0.766 0.792 0.615

N3

0 0.995 0.989 0.977 0.914 0.845
5 0.972 0.982 0.952 0.881 0.839
10 0.961 0.956 0.883 0.815 0.836
15 0.937 0.949 0.855 0.814 0.771
20 0.933 0.923 0.801 0.73 0.754
25 0.929 0.881 0.782 0.726 0.657

N4

0 0.979 0.999 0.976 0.854 0.809
5 0.979 0.97 0.959 0.849 0.744
10 0.962 0.938 0.892 0.827 0.742
15 0.915 0.914 0.844 0.82 0.698
20 0.887 0.886 0.797 0.815 0.694
25 0.881 0.885 0.788 0.721 0.691

N5

0 0.99 0.992 0.932 0.921 0.839
5 0.968 0.97 0.921 0.896 0.822
10 0.957 0.963 0.881 0.89 0.756
15 0.952 0.937 0.866 0.881 0.718
20 0.935 0.92 0.845 0.817 0.717
25 0.901 0.903 0.795 0.741 0.683

N6

0 0.994 0.966 0.969 0.872 0.968
5 0.968 0.943 0.968 0.81 0.913
10 0.942 0.941 0.938 0.796 0.884
15 0.932 0.936 0.836 0.765 0.834
20 0.916 0.917 0.835 0.751 0.808
25 0.891 0.909 0.76 0.741 0.665

N7

0 0.966 0.989 0.938 0.86 0.98
5 0.966 0.987 0.932 0.816 0.978
10 0.956 0.959 0.855 0.807 0.9
15 0.943 0.942 0.846 0.795 0.892
20 0.941 0.898 0.841 0.765 0.87
25 0.887 0.897 0.84 0.728 0.683

N8

0 0.997 0.96 0.969 0.954 0.969
5 0.98 0.957 0.955 0.839 0.812
10 0.966 0.953 0.892 0.836 0.803
15 0.956 0.951 0.837 0.825 0.791
20 0.953 0.943 0.782 0.79 0.765
25 0.922 0.895 0.772 0.726 0.764

N9

0 0.997 0.987 0.97 0.956 0.95
5 0.936 0.967 0.969 0.937 0.916
10 0.923 0.967 0.95 0.93 0.786
15 0.909 0.934 0.915 0.923 0.726
20 0.882 0.928 0.8 0.874 0.635
25 0.879 0.905 0.767 0.743 0.616

N10

0 0.991 0.986 0.948 0.972 0.839
5 0.982 0.958 0.872 0.959 0.825
10 0.944 0.957 0.853 0.936 0.75
15 0.938 0.943 0.839 0.871 0.689
20 0.905 0.938 0.838 0.843 0.623
25 0.904 0.911 0.811 0.757 0.603
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Table 3. NCV-GS3 values computed on inter-layer edges for all the alignments by applying Infomap,
Generalized Louvain, ABACUS, clique percolation, and mdlp community detection algorithms.

Network Noise
NCV-GS3

with
Infomap

NCV-GS3 with
Generalized
Louvain

NCV-GS3

with
ABACUS

NCV-GS3

with Clique
Percolation

NCV-GS3

with mdlp

N1

0 0.76 0.76 0.745 0.711 0.576
5 0.727 0.727 0.691 0.706 0.571
10 0.68 0.68 0.676 0.701 0.551
15 0.641 0.641 0.664 0.678 0.537
20 0.624 0.624 0.598 0.644 0.513
25 0.617 0.617 0.567 0.599 0.506

N2

0 0.757 0.782 0.725 0.733 0.579
5 0.716 0.728 0.72 0.665 0.578
10 0.709 0.711 0.714 0.662 0.555
15 0.686 0.639 0.705 0.613 0.551
20 0.672 0.63 0.701 0.598 0.505
25 0.639 0.596 0.595 0.553 0.492

N3

0 0.735 0.771 0.727 0.707 0.6
5 0.734 0.693 0.725 0.705 0.592
10 0.717 0.662 0.627 0.678 0.592
15 0.676 0.656 0.61 0.638 0.532
20 0.663 0.602 0.594 0.611 0.516
25 0.618 0.589 0.578 0.595 0.504

N4

0 0.666 0.788 0.652 0.71 0.591
5 0.654 0.679 0.642 0.703 0.579
10 0.645 0.588 0.632 0.683 0.528
15 0.643 0.587 0.616 0.652 0.527
20 0.638 0.586 0.6 0.583 0.509
25 0.605 0.584 0.588 0.576 0.497

N5

0 0.791 0.781 0.713 0.711 0.591
5 0.759 0.778 0.703 0.711 0.587
10 0.721 0.664 0.67 0.666 0.57
15 0.721 0.607 0.643 0.626 0.529
20 0.636 0.588 0.634 0.588 0.524
25 0.636 0.585 0.573 0.564 0.518

N6

0 0.799 0.76 0.685 0.739 0.596
5 0.794 0.754 0.671 0.708 0.558
10 0.79 0.729 0.605 0.698 0.538
15 0.728 0.685 0.604 0.691 0.53
20 0.719 0.651 0.571 0.552 0.518
25 0.659 0.636 0.558 0.551 0.51

N7

0 0.754 0.73 0.703 0.629 0.59
5 0.728 0.697 0.675 0.613 0.571
10 0.712 0.681 0.654 0.607 0.565
15 0.706 0.651 0.631 0.57 0.56
20 0.674 0.617 0.572 0.565 0.502
25 0.639 0.592 0.563 0.56 0.499

N8

0 0.789 0.783 0.738 0.722 0.584
5 0.717 0.659 0.666 0.685 0.548
10 0.684 0.623 0.589 0.639 0.54
15 0.666 0.622 0.583 0.63 0.515
20 0.618 0.621 0.576 0.627 0.509
25 0.615 0.586 0.567 0.62 0.505

N9

0 0.767 0.77 0.727 0.728 0.588
5 0.75 0.749 0.722 0.674 0.584
10 0.697 0.748 0.603 0.646 0.574
15 0.67 0.729 0.575 0.637 0.547
20 0.662 0.669 0.562 0.616 0.518
25 0.609 0.584 0.553 0.564 0.504

N10

0 0.783 0.775 0.745 0.737 0.597
5 0.744 0.761 0.678 0.725 0.586
10 0.721 0.741 0.666 0.654 0.574
15 0.703 0.666 0.664 0.653 0.541
20 0.649 0.654 0.607 0.59 0.528
25 0.643 0.648 0.598 0.57 0.508
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Table 4. F-NC values computed on intra-layer edges for all the alignments by applying Infomap,
Generalized Louvain, ABACUS, clique percolation, and mdlp community detection algorithms.

Network Noise F-NC with
Infomap

F-NC with
Generalized
Louvain

F-NC with
ABACUS

F-NC with
Clique
Percolation

F-NC with
mdlp

N1

0 0.626 0.575 0.591 0.53 0.568
5 0.62 0.566 0.573 0.518 0.54
10 0.608 0.556 0.558 0.511 0.528
15 0.601 0.549 0.528 0.502 0.512
20 0.599 0.528 0.505 0.501 0.504
25 0.568 0.524 0.501 0.492 0.479

N2

0 0.643 0.605 0.571 0.555 0.552
5 0.643 0.603 0.566 0.55 0.506
10 0.619 0.598 0.565 0.537 0.5
15 0.61 0.596 0.542 0.528 0.483
20 0.605 0.581 0.534 0.521 0.461
25 0.587 0.523 0.53 0.51 0.452

N3

0 0.648 0.609 0.58 0.576 0.546
5 0.609 0.603 0.542 0.556 0.532
10 0.599 0.598 0.541 0.553 0.532
15 0.58 0.592 0.516 0.516 0.502
20 0.578 0.59 0.516 0.516 0.473
25 0.577 0.57 0.507 0.507 0.47

N4

0 0.628 0.608 0.584 0.576 0.552
5 0.626 0.592 0.567 0.573 0.54
10 0.612 0.581 0.558 0.553 0.537
15 0.57 0.557 0.557 0.544 0.528
20 0.565 0.53 0.497 0.536 0.509
25 0.559 0.517 0.495 0.521 0.473

N5

0 0.649 0.601 0.6 0.559 0.531
5 0.648 0.557 0.592 0.526 0.516
10 0.637 0.555 0.578 0.483 0.511
15 0.635 0.542 0.55 0.482 0.485
20 0.626 0.541 0.547 0.472 0.474
25 0.618 0.539 0.503 0.471 0.451

N6

0 0.636 0.578 0.587 0.566 0.525
5 0.633 0.577 0.572 0.56 0.516
10 0.587 0.546 0.539 0.553 0.499
15 0.58 0.532 0.527 0.545 0.482
20 0.568 0.528 0.519 0.507 0.468
25 0.561 0.514 0.49 0.483 0.467

N7

0 0.642 0.608 0.572 0.567 0.542
5 0.634 0.606 0.568 0.547 0.537
10 0.597 0.573 0.543 0.502 0.536
15 0.597 0.568 0.521 0.491 0.507
20 0.565 0.511 0.505 0.49 0.501
25 0.554 0.51 0.499 0.488 0.47

N8

0 0.625 0.59 0.585 0.571 0.551
5 0.601 0.555 0.565 0.504 0.537
10 0.591 0.554 0.547 0.492 0.515
15 0.583 0.541 0.545 0.486 0.514
20 0.552 0.522 0.54 0.483 0.508
25 0.551 0.52 0.533 0.472 0.466

N9

0 0.639 0.605 0.594 0.568 0.563
5 0.632 0.596 0.583 0.56 0.523
10 0.607 0.574 0.579 0.554 0.513
15 0.582 0.561 0.555 0.53 0.498
20 0.575 0.542 0.54 0.512 0.456
25 0.574 0.523 0.507 0.509 0.455

N10

0 0.641 0.597 0.581 0.57 0.505
5 0.614 0.579 0.554 0.52 0.492
10 0.603 0.558 0.522 0.51 0.478
15 0.557 0.526 0.519 0.494 0.47
20 0.552 0.526 0.509 0.491 0.469
25 0.551 0.513 0.491 0.484 0.461
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Table 5. F-NC values computed on inter-layer edges for all the alignments by applying Infomap,
Generalized Louvain, ABACUS, clique percolation, and mdlp community detection algorithms.

Network Noise F-NC with
Infomap

F-NC with
Generalized
Louvain

F-NC with
ABACUS

F-NC with
Clique
Percolation

F-NC with
mdlp

N1

0 0.566 0.577 0.555 0.548 0.465
5 0.55 0.573 0.509 0.543 0.462
10 0.545 0.539 0.496 0.533 0.46
15 0.533 0.519 0.474 0.493 0.448
20 0.531 0.516 0.472 0.473 0.441
25 0.501 0.482 0.467 0.471 0.429

N2

0 0.591 0.566 0.548 0.539 0.485
5 0.568 0.545 0.548 0.498 0.478
10 0.522 0.532 0.524 0.497 0.461
15 0.512 0.517 0.504 0.477 0.452
20 0.506 0.506 0.483 0.471 0.402
25 0.503 0.499 0.471 0.455 0.401

N3

0 0.561 0.576 0.553 0.548 0.476
5 0.559 0.548 0.511 0.548 0.469
10 0.553 0.547 0.505 0.511 0.447
15 0.55 0.543 0.489 0.496 0.446
20 0.531 0.496 0.483 0.467 0.425
25 0.502 0.485 0.483 0.463 0.425

N4

0 0.596 0.577 0.534 0.543 0.467
5 0.561 0.574 0.529 0.516 0.465
10 0.547 0.568 0.513 0.51 0.446
15 0.53 0.531 0.511 0.49 0.442
20 0.528 0.505 0.505 0.482 0.44
25 0.512 0.482 0.462 0.458 0.402

N5

0 0.588 0.569 0.538 0.52 0.47
5 0.585 0.524 0.527 0.52 0.45
10 0.585 0.5 0.524 0.512 0.412
15 0.565 0.486 0.499 0.472 0.403
20 0.516 0.485 0.492 0.463 0.403
25 0.507 0.485 0.475 0.455 0.401

N6

0 0.578 0.564 0.543 0.539 0.481
5 0.565 0.554 0.541 0.533 0.471
10 0.554 0.542 0.536 0.498 0.466
15 0.552 0.539 0.525 0.493 0.457
20 0.536 0.533 0.513 0.492 0.412
25 0.518 0.518 0.496 0.481 0.41

N7

0 0.587 0.525 0.545 0.548 0.488
5 0.573 0.513 0.502 0.522 0.479
10 0.555 0.51 0.495 0.52 0.476
15 0.529 0.507 0.483 0.514 0.465
20 0.529 0.496 0.48 0.491 0.462
25 0.508 0.482 0.471 0.454 0.419

N8

0 0.598 0.579 0.553 0.52 0.486
5 0.59 0.563 0.532 0.511 0.473
10 0.578 0.563 0.517 0.494 0.439
15 0.56 0.561 0.512 0.481 0.437
20 0.535 0.549 0.478 0.48 0.413
25 0.524 0.48 0.461 0.478 0.41

N9

0 0.597 0.56 0.538 0.55 0.479
5 0.59 0.54 0.522 0.537 0.472
10 0.578 0.538 0.497 0.497 0.469
15 0.545 0.535 0.496 0.476 0.461
20 0.54 0.509 0.479 0.466 0.456
25 0.515 0.501 0.464 0.465 0.41

N10

0 0.598 0.541 0.539 0.532 0.475
5 0.566 0.54 0.505 0.531 0.473
10 0.561 0.527 0.471 0.53 0.471
15 0.56 0.509 0.47 0.475 0.448
20 0.55 0.495 0.468 0.456 0.418
25 0.546 0.487 0.466 0.451 0.414
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Table 6. NCV-GS3 mean and standard deviation values computed on intra-layer edges for all the
alignments by applying Infomap, Generalized Louvain, ABACUS, clique percolation, and mdlp
community detection algorithms.

Network Measure
NCV-GS3

with
Infomap

NCV-GS3 with
Generalized
Louvain

NCV-GS3

with
ABACUS

NCV-GS3

with Clique
Percolation

NCV-GS3

with mdlp

N1 mean 0.945 0.927 0.928 0.921 0.929
sd 0.035 0.047 0.028 0.042 0.027

N2 mean 0.936 0.960 0.815 0.868 0.763
sd 0.044 0.038 0.073 0.066 0.130

N3 mean 0.955 0.947 0.875 0.813 0.784
sd 0.026 0.040 0.079 0.077 0.073

N4 mean 0.934 0.932 0.876 0.814 0.730
sd 0.045 0.046 0.080 0.048 0.046

N5 mean 0.951 0.948 0.873 0.858 0.756
sd 0.030 0.033 0.051 0.067 0.063

N6 mean 0.941 0.935 0.884 0.789 0.845
sd 0.037 0.020 0.086 0.048 0.105

N7 mean 0.943 0.945 0.875 0.795 0.884
sd 0.030 0.041 0.047 0.045 0.109

N8 mean 0.962 0.943 0.868 0.828 0.817
sd 0.026 0.024 0.085 0.075 0.077

N9 mean 0.921 0.948 0.895 0.894 0.772
sd 0.043 0.031 0.089 0.079 0.140

N10 mean 0.944 0.949 0.860 0.890 0.722
sd 0.037 0.025 0.047 0.082 0.100

Table 7. NCV-GS3 mean and standard deviation values computed on inter-layer edges for all the
alignments by applying Infomap, Generalized Louvain, ABACUS, clique percolation, and mdlp
community detection algorithms.

Network Measure
NCV-GS3

with
Infomap

NCV-GS3 with
Generalized
Louvain

NCV-GS3

with
ABACUS

NCV-GS3

with Clique
Percolation

NCV-GS3

with mdlp

N1 mean 0.675 0.675 0.657 0.673 0.542
sd 0.058 0.058 0.065 0.044 0.029

N2 mean 0.697 0.681 0.693 0.637 0.543
sd 0.041 0.071 0.049 0.063 0.037

N3 mean 0.691 0.662 0.644 0.656 0.556
sd 0.046 0.066 0.066 0.048 0.043

N4 mean 0.642 0.635 0.622 0.651 0.539
sd 0.021 0.083 0.025 0.059 0.038

N5 mean 0.711 0.667 0.656 0.644 0.553
sd 0.063 0.092 0.051 0.062 0.033

N6 mean 0.748 0.703 0.616 0.657 0.542
sd 0.056 0.053 0.052 0.083 0.031

N7 mean 0.702 0.661 0.633 0.591 0.548
sd 0.041 0.051 0.056 0.029 0.038

N8 mean 0.682 0.649 0.620 0.654 0.534
sd 0.066 0.070 0.068 0.041 0.030

N9 mean 0.693 0.708 0.624 0.644 0.553
sd 0.059 0.070 0.080 0.055 0.035

N10 mean 0.707 0.708 0.660 0.655 0.556
sd 0.054 0.058 0.053 0.068 0.035
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Table 8. F-NC mean and standard deviation values computed on intra-layer edges for all the
alignments by applying Infomap, Generalized Louvain, ABACUS, clique percolation, and mdlp
community detection algorithms.

Network Measure F-NC with
Infomap

F-NC with
Generalized
Louvain

F-NC with
ABACUS

F-NC with
Clique
Percolation

F-NC with
mdlp

N1 mean 0.604 0.550 0.543 0.509 0.522
sd 0.020 0.020 0.037 0.014 0.031

N2 mean 0.618 0.584 0.551 0.534 0.492
sd 0.022 0.031 0.018 0.017 0.036

N3 mean 0.599 0.594 0.534 0.537 0.509
sd 0.028 0.014 0.027 0.028 0.033

N4 mean 0.593 0.564 0.543 0.551 0.523
sd 0.032 0.036 0.038 0.021 0.028

N5 mean 0.636 0.556 0.562 0.499 0.495
sd 0.012 0.023 0.036 0.036 0.030

N6 mean 0.594 0.546 0.539 0.536 0.493
sd 0.033 0.027 0.036 0.033 0.025

N7 mean 0.598 0.563 0.535 0.514 0.516
sd 0.035 0.044 0.031 0.034 0.028

N8 mean 0.584 0.547 0.553 0.501 0.515
sd 0.029 0.026 0.019 0.036 0.029

N9 mean 0.602 0.567 0.560 0.539 0.501
sd 0.029 0.031 0.032 0.025 0.042

N10 mean 0.586 0.550 0.529 0.512 0.479
sd 0.038 0.034 0.033 0.032 0.016

Table 9. F-NC mean and standard deviation values computed on inter-layer edges for all the
alignments by applying Infomap, Generalized Louvain, ABACUS, clique percolation, and mdlp
community detection algorithms.

Network Measure F-NC with
Infomap

F-NC with
Generalized
Louvain

F-NC with
ABACUS

F-NC with
Clique
Percolation

F-NC with
mdlp

N1 mean 0.538 0.534 0.496 0.510 0.451
sd 0.022 0.036 0.033 0.035 0.014

N2 mean 0.534 0.528 0.513 0.490 0.447
sd 0.037 0.025 0.033 0.029 0.037

N3 mean 0.543 0.533 0.504 0.506 0.448
sd 0.023 0.035 0.027 0.037 0.021

N4 mean 0.546 0.540 0.509 0.500 0.444
sd 0.030 0.040 0.026 0.030 0.023

N5 mean 0.543 0.533 0.504 0.506 0.448
sd 0.023 0.035 0.027 0.037 0.021

N6 mean 0.558 0.508 0.509 0.490 0.423
sd 0.037 0.033 0.024 0.030 0.029

N7 mean 0.547 0.506 0.496 0.508 0.465
sd 0.030 0.015 0.026 0.032 0.024

N8 mean 0.564 0.549 0.509 0.494 0.443
sd 0.030 0.035 0.034 0.018 0.031

N9 mean 0.561 0.531 0.499 0.499 0.458
sd 0.032 0.022 0.027 0.037 0.025

N10 mean 0.564 0.517 0.487 0.496 0.450
sd 0.018 0.023 0.030 0.039 0.028
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The results show that the quality of the alignment was greater when Infomap was
applied to mine the community. Furthermore, increasing the noise level from 5% to 25% in
the original networks caused NCV-GS3 and F-NC to decrease.

5. Conclusions

Recently, the applications of multilayer networks in social network analysis, in finance,
and in biology have been increasing. Multilayer networks can be seen as a set of networks
(each network is a distinct layer) connected by inter-layer links. We here focused on
the problem of comparing two multilayer networks, highlighting small local regions of
similarity. Since existing algorithms for simple networks do not perform well on multilayer
networks, we proposed Local Alignment of Multilayer Networks (MultiLoAl), a novel
algorithm for the local alignment of multilayer networks. We proposed a heuristic for
solving it. Furthermore, we performed an extensive evaluation to reveal the strength of the
algorithm. Since we presented the use of MultiLoAl on multilayer synthetic networks, we
plan to extend the application to real biological networks.
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