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Abstract: Identifying the most influential spreaders in online social networks plays a prominent role
in affecting information dissemination and public opinions. Researchers propose many effective
identification methods, such as k-shell. However, these methods are usually validated by simulat-
ing propagation models, such as epidemic-like models, which rarely consider the Push-Republish
mechanism with attenuation characteristic, the unique and widely-existing spreading mechanism
in online social media. To address this issue, we first adopt the Push-Republish (PR) model as the
underlying spreading process to check the performance of identification methods. Then, we find that
the performance of classical identification methods significantly decreases in the PR model compared
to epidemic-like models, especially when identifying the top 10% of superspreaders. Furthermore,
inspired by the local tree-like structure caused by the PR model, we propose a new identification
method, namely the Local-Forest (LF) method, and conduct extensive experiments in four real large
networks to evaluate it. Results highlight that the Local-Forest method has the best performance in
accurately identifying superspreaders compared with the classical methods.

Keywords: complex network; online social network; spreading; influential nodes

1. Introduction

The development of the Internet and Web 2.0 has spawned many online social plat-
forms, usually modeled as online social networks [1–4], which have become the main
underlying platforms of information dissemination [5] and public opinion formation [6]. It
is widely believed that some nodes in social networks have a stronger spreading influence,
which is related to their privileged locations [4,7]. These nodes with outstanding spreading
ability can affect and even dominate the spreading processes. These nodes are called super-
spreaders [8], influencers [4], influential spreaders [9], or influential nodes [10]. Finding
influential nodes has an important impact on many issues related to spreading processes,
such as innovation diffusion [11], viral marketing [12], decision making [13], predicting
popular scientific publications [14], and so on. Therefore, identifying influential nodes is of
practical significance and has attracted extensive attention from scholars.

Nowadays, there have been many methods for superspreader identification, which
have become an important field in network science. The mainly used methods are centrality-
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based heuristic methods [4,15], namely centrality methods. Specifically, these methods
use the ranking of nodes’ centrality measure values to predict their spreading influence
ranking. Here, the spreading influence of a node is generally quantified by the final
propagation range it causes as the source of propagation. The classical measures include
degree centrality (the number of the neighbors of a node) [16], betweenness centrality
(the number of the shortest path through a node) [17], closeness centrality (reciprocal of
the average shortest path distance to a node) [18], PageRank (the probability of accessing
each node when the random walk process on the network reaches the steady state) [19],
ks index generated by the k-shell decomposition (here we call it k-shell centrality) [9],
and so on. Due to the great success of the k-shell method in epidemic-like models, such
as the Susceptible–Infectious–Recovered (SIR) model, there are many follow-up studies,
including improvement based on information entropy [20,21], improvement based on
gravity equation [22,23], the hybrid method [24], improvement based on neighborhood
information [25,26], improved decomposition method [27,28], and so on [29,30]. Moreover,
there are other centrality methods proposed continuously. The node propagation entropy
measure [31] considers the neighbors within two hops and the clustering coefficients of
nodes. The semi-global triangular centrality method [32] uses the triangular patterns
around nodes to identify influential spreaders. The generalized gravity centrality [33]
combines the clustering coefficient and degree to evaluate nodes based on the gravity
formula. The coupling-sensitive centrality [34] identifies the superspreaders on multiplex
networks. Centrality measures can not only be used to identify individual spreaders but
also can be applied to identify multiple spreaders, which is an important problem in social
networks and is also known as the Influence Maximization (IM) problem [1,12,15,35–37].
For example, centrality methods combined with some selection strategies can be directly
used to identify multiple influencers [9,15,38,39]. Other methods for IM problems include
greedy algorithms [35,40], community-based algorithms [37,41], optimization-based meta-
heuristic algorithms [1,42], and so on [43,44].

Despite the great progress of the identification methods, we find that the effectiveness
of them is usually validated under the assumption that the spreading dynamic follows
the epidemic-like models. However, this dynamical assumption has some deviations from
spreading processes in online social media. The main difference is the Push-Republish
mechanism with attenuation characteristic, which widely exists when information dif-
fuses [3,45–48]. In short, the Push-Republish mechanism [3,45] is that the online users
receive the messages passively and then may republish the messages depending on how
attractive the message is. In addition, Ruan et al. [47] think that online users decide whether
to spread the information mainly according to its content. This inspires them to propose
an information contagion model where individuals make the final decisions to spread or
not when being exposed to the information for the first time. In other words, unlike the
passive disease infection process, people have the initiative to keep their personal tendency
in the information diffusion. Furthermore, Kempe et al. [46] propose the decreasing cas-
cade model, which sets that people’s probability of spreading information decreases with
repeated stimuli and reflects a ‘marketing-saturated’ phenomenon. Both the model of
Ruan et al. and the model of Kempe et al. portray the special attenuation characteristic in
online spreading processes. Note that the difference between dynamical models can signifi-
cantly affect the effectiveness of identification methods [49]. For example, the previously
well-concerned k-shell method, which performs well under the epidemic-like models, is
not good enough in the rumor dynamics [50]. These naturally raise the following problems:
What is the performance of classical identification methods under the above mechanisms?
Are there new effective methods inspired by the characteristics of the propagations in
online social media?

To solve these problems, we consider the Push-Republish mechanism and Ruan et al.’s
model together to describe the online spreading processes. For the convenience of descrip-
tion, we name the process the Push-Republish (PR) model. We find that, compared to
the case under the SIR model, the classical identification methods have a worse perfor-
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mance when identifying superspreaders under the PR model. Furthermore, inspired by
the features of the PR model, we propose a new centrality measure called the Local-Forest
(LF) measure. To verify its effectiveness, we apply the proposed LF method to four real
online social networks and compare it with the classical methods. Results show that the LF
method performs better.

The outline of the paper is as follows. Section 2 introduces the PR model and shows
the essential difference between the PR model and the SIR model. Section 3 gives a detailed
description of the proposed LF measure. In Section 4, extensive experiments are conducted
to evaluate the performance of the LF method and some classic methods. Finally, Section 5
summarizes the main results of this paper and prospects for future research.

2. Push-Republish Model
2.1. Description of the Push-Republish Model

The information diffusion procedure in online social media can be described as the
following steps [3]: A user releases a message. Then friends of the user will learn of this
message under the notification of the online social site, and this mechanism is called “push”.
Affected by the interesting degree of the message, some friends will comment, cite or reprint
the message. This behavior is called “republish”. The above steps will repeat recursively
for each user who chooses to republish the message. In addition, some dynamical models,
such as the decreasing cascade model [46] and Ruan et al.’s model [47], consider the
attenuation characteristic to describe the influence propagation in social networks. In the
decreasing cascade model, the probability that a node becomes activated decreases as the
times of being stimulated increase. It indicates that the first contact with information is the
most promising to lead to dissemination. Ruan et al. [47] divide nodes into three states:
susceptible, adopted, or immune. In their model, a susceptible node converts its state to
the adopted state or immune state immediately after receiving the information and then
keeps its state. In other words, each node can be activated only when it is exposed to the
information the first time.

The Push-Republish mechanism can directly describe the propagation mechanism
in online social media and is compatible with Ruan et al.’s model, which considers the
attenuation characteristic. Thus, we take the Push-Republish mechanism and Ruan et al.’s
model into consideration and redescribe the above dynamical processes. For convenience,
we name it the Push-Republish model. Online media can naturally be represented by
networks where nodes represent users’ accounts, and edges represent the relationship
between them. We divide all nodes into two states: S (do not know the message) and R
(know the message). Nodes in set It represent those who publish the message at the time t,
i.e., those who can spread the message. Set the initial time t as 0. Choose a single node s as
the origin of the propagation, and obtain I0 = {s}. Set the propagation probability as β.
The PR model is as follows:

1. Step 1: At the time t, for node i in the set It, its neighbors in S state will become R state
(i.e., the “push” mechanism). Meanwhile, such neighbors who receive the message
for the first time will choose to republish the massage with probability β (i.e., the
“republish” behavior). Add the neighbors who choose to republish the message to the
set It+1.

2. Step 2: Remove i from It.
3. Step 3: Perform steps 1–2 until It = ∅, then perform step 4.
4. Step 4: Update the propagation process to the next time step, i.e., set t = t + 1. If there

is no node in set It, the propagation process ends. Denote the ending time as the
propagation duration T. Otherwise, repeat step 3.

If edges in the network are directed (suppose that the user i follows the user j, then
there is an edge from node i to node j in the network), the neighbors mentioned in the
above PR model refer to the in-neighbors of nodes. We record the number of nodes with
the state R when propagation ends to represent the propagation range. It can be seen that
nodes with the state R in the PR model are the combination of the adopted nodes and
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the immune nodes in Ruan et al.’s model. The PR model has two main characteristics.
First, the PR model introduces the push mechanism, which is consistent with the message
transmission mechanism in online social media. Second, if the node that did not republish
the message meets the message again, it will keep its decision, i.e., different from the
passivity of individuals towards virus infection, individuals have the initiative to choose
whether to spread the information or not, reflecting the attenuation characteristic.

2.2. Comparison between PR Model and SIR Model

We further compare the PR model and the SIR model (see details in Appendix A) from
two aspects: (1) How does information propagate under these two models? (2) How do
the classical degree and k-shell methods (see details in Appendix B) perform under these
two models? The network used in this section is the largest connected component of the
Facebook network [51], which is an undirected network with 63,392 nodes.

We use the distance between the source node and the nodes that republish the message
to compare the characteristic of the two specific propagation processes. Specifically, we
select a fixed node chosen from the inner-most shell (i.e., nodes with the highest ks index)
of the network as the propagation origin and use the PR model and the SIR model as the
propagation model to conduct 10,000 simulations, respectively. To facilitate the comparison
between the PR model and the SIR model, in the PR model, we say nodes in set It are
in state I at time t (thus state I coexists with state R). For each time t, we calculate the
average distance and minimum distance from the nodes in the state I to the source node.
Figure 1 presents the time evolution of the average distance and minimum distance of
the PR model (see Figure 1a) and the SIR model (see Figure 1b). We find that in the PR
model, the minimum distance is not less than 2 when t > 1, while this index is equal to
1 for a long time in the SIR model. This phenomenon can be directly explained by the
dynamic mechanisms. In the PR model, neighbors obtain the message from the source node,
and then if they decide not to republish the message, they will keep their tendency. Thus,
the edges between the neighbors do not participate in the propagation process, and the
potential propagation paths in the neighborhood of the original node form a local tree-like
structure. As a result, the minimum distance is not less than 2 when t > 1. However,
in the SIR model, messages can be delivered among neighbors of the original node, and the
edges between neighbors lead to repetitive stimuli, which promote the propagation. In
reality, the inner k-shell is a cluster of nodes that are closely connected with each other.
Kitsak et al. [9] have pointed out that one of the reasons why the k-shell method performed
well in the SIR model was that the neighborhood of nodes in the high k-shell enabled them
to effectively sustain propagation in the early stage of the propagation process, and then
the epidemic could fully develop. Both the analysis of Kitsak et al. [9] and our experimental
results here indicate the positive effect of closely connected neighbors on the propagation
processes of the SIR model and explain the superiority of the k-shell method. However, due
to the connections between neighbors becoming redundant in the PR model, the recognition
ability of the k-shell method in it might not be as great as the case in the SIR model. The next
experiment will confirm this claim.

Next, we will compare the performance of the classic degree method and k-shell
method in the PR model and the SIR model. By convention, we carry out 1000 times Monte
Carlo propagation simulation experiments in the PR model and the SIR model for each
node in the Facebook network to estimate the real spreading influence of nodes in the two
models, respectively [9,52]. Specifically, we use the average number of the R-state nodes
when the propagation ends over all corresponding simulations to represent the source
node’s real spreading influence. Then, sort all nodes in descending order according to
their spreading influence. In this paper, we use RKPR and RKSIR to represent the sorting of
nodes under the PR model and under the SIR model, respectively.
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Figure 1. (a,b) The average distance and minimum distance from I-state nodes to the source node.
(c) The ranking gap of nodes’ spreading influence between the case in the PR model and that in the
SIR model. (d) The imprecision function of the degree method and the k-shell method under the
PR model and the SIR model, respectively. We set β = 0.012 in (a–d). (e) Schematic diagram of the
Local-Tree measure and the Local-Forest measure.

First, for each node in the inner-most shell (i.e., nodes with the largest ks index), we
compare its ranking of the spreading influence in the PR model and that in the SIR model,
as shown in Figure 1c. The horizon axis means the ranking of the node in the ranking list
RKPR. The vertical axis represents the ranking gap, which is calculated by the ranking of
the node in RKSIR minus the ranking of the node in RKPR. It can be seen that rankings of
these nodes in the SIR model are generally higher (i.e., possess smaller ranking numbers)
than that in the PR model, which means that the k-shell method performs not so well in the
PR model.

Furthermore, we use the imprecision function [9,20,52,53] to measure the difference in
the spreading influence between the top [pN] nodes (p∈[0, 1]) predicted by the recognition
method and the top [pN] most influential nodes given by RKPR or RKSIR. Here p denotes
the ratio of nodes, and N denotes the number of nodes in the network. The imprecision
function [9,52] ε(p) for a given recognition method is defined as the following Equation (1):

ε(p) = 1− M(p)
Me f f (p)

, (1)

where M(p) is the average spreading influence of the top [pN] nodes in the ranking list
RKM (represents the nodes’ rankling list identified by centrality methods), and Me f f (p) is
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the average spreading influence of the top [pN] nodes in sorting RKPR or RKSIR. For each
value of p, the smaller the ε(p), the better the recognition effect of the method. Figure 1d
gives the imprecision function of the degree method and the k-shell method under the PR
model and the SIR model, respectively. It can be seen that the recognition ability of the
k-shell method (solid curves) in the SIR model (green curves) is significantly better than that
of the degree method (dashed curves). However, in the PR model (red curves), the k-shell
method is obviously inferior to the degree method in the small p region. Furthermore,
compared to the case in the SIR model, the performance of the k-shell method decreases in
the PR model, especially when identifying the top 10%.

In summary, the unique Push-Republish mechanism with attenuation feature in online
social networks delivers different evolutionary results from those caused by the classical
epidemic-like models. In addition, the performance of the traditional effective k-shell
method decreases in the PR model. Therefore, a more effective method is necessary.

3. Local-Forest Method

As the simulations in the above section show, in the PR model, messages will not
propagate between neighbors of the source node. To some extent, this leads to a locally
tree-like structure, which is consistent with the reality that the majority of cascades on
online social media are small and are described by a handful of simple tree structures [2].
Specifically, in the PR model, each node only has one choice to decide whether to republish
the message or not and keeps the decision. Such a characteristic indicates that edges
between neighbors of the source node are redundant. Inspired by this thought, we propose
the Local-Tree (LT) measure and the Local-Forest (LF) measure. The LT measure is an
intermediate measure to calculate the LF measure, whose basic idea is to remove the edges
in the neighborhood of nodes that are redundant for propagation. For undirected networks,
the LT centrality of a node is the sum of the degree of its neighbors minus twice the number
of edges between neighbors. The LF centrality of a node is the sum of the LT values of its
neighbors. The LF centrality LF(i) of node i is calculated as:

LT(j) = ∑
w∈N(j)

k(w)− 2m(j), (2)

LF(i) = ∑
j∈N(i)

LT(j), (3)

where N(j) is the set of neighbors of node j, k(w) is the degree centrality of node w,
and m(j) is the number of edges between neighbors of node j. For directed networks, only
the in-neighbors of nodes are considered, and the in-degree of nodes is used to replace the
degree. Moreover, subtract the number of edges itself but not double. This is because one
edge in an undirected network is equivalent to two opposite edges in a directed network.
The summation of neighbors’ LT measure in the LF measure highlights the importance of
the node’s degree and makes use of more information. Calculating m(j) requires two levels
of traversal of j’s neighbors, so the time complexity of calculating the LF centrality for all
nodes in the network is O(N〈k〉2), where N is the number of the nodes in the network and
〈k〉 is the average degree of all of the nodes in the network. Average degree 〈k〉 of sparse
networks is much smaller than N. Thus in large-scale sparse networks, the time complexity
of the LF measure is similar to the degree.

We consider a small network [9] as an example to illustrate the calculation of the
Local-Tree measure and Local-Forest method (see Figure 1e). We take node 3 in Figure 1e
as an example to calculate the LT centrality and the LF centrality. First calculate LT(3) =
∑w∈N(3) k(w)− 2m(3) = 23− 2× 5 = 13, where N(3) = {1, 2, 4, 5, 6, 11, 14, 15}. It can be
found that when calculating the LT centrality of node 3, the information in the inner-most
shadow area in Figure 1e is used. Subtracting the item 2m(3) is equivalent to deleting
the dotted line edge. Then a local tree structure is formed in the first-order neighborhood
of the node, which is why we call this measure Local-Tree centrality. Next, calculate
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LF(3) = ∑j∈N(3) LT(j) = LT(1) + LT(2) + LT(4) + LT(5) + LT(6) + LT(11) + LT(14) +
LT(15) = 8 + 8 + 19 + 14 + 13 + 13 + 8 + 8 = 91. The red edges in Figure 1e contribute to
the calculation of the LF centrality of node 3. It can be found that the LF measure contains
the information of the node’s second-order neighbors.

Taking each node in the network shown in Figure 1e as the origin of propagation, we
conduct one hundred thousand propagation simulations for each case based on the PR
model. The first row in Table 1 arranges these nodes in descending order according to their
real spreading influence and merges the nodes with equivalent topological positions in
the network into the same column. Table 1 gives the degree centrality, k-shell centrality,
LT centrality, and LF centrality of each node. The LF centralities of nodes in adjacent
columns are significantly different, indicating that the LF measure can better discriminate
the nodes. On the whole, the LF centralities of nodes decrease with the real spreading
influence decreasing, which indicates the excellent performance of the LF method.

Table 1. The effectiveness of different identification methods in the sample of Figure 1e.

Centrality Measure 3 16 4 5 6 11 7 17 1,2 24 9 14,15 18–23 12,13 8 25,26 10

k-shell 3 1 3 3 3 2 2 1 2 1 1 1 1 1 1 1 1
degree 8 8 4 5 4 4 4 2 2 3 2 1 1 1 1 1 1

LT 13 12 19 14 13 13 10 11 8 4 5 8 8 4 4 3 2
LF 91 78 52 68 56 35 36 16 21 17 12 13 12 13 10 4 5

4. Simulation Results
4.1. Experimental Setup

We conduct experiments on four large-scale real online social networks to compare
the LF method with five widely-concerned centrality methods, including the degree [16],
k-shell [9], closeness centrality [18], PageRank [19], and Mixed Degree Decomposition
(MDD) method [27]. We give a brief introduction to these methods in Appendix B. We in-
vestigate the friendship networks gathered from (1) Brightkite [54,55], (2) Facebook [51,54],
(3) DouBan [54,56], and (4) Twitter [54,57]. Twitter is a directed network, and other networks
are undirected networks. Each network used in this paper is obtained by extracting the
largest connected component from the original data set and the largest weakly connected
component for the directed network. To precisely estimate the real spreading influence of
each node, we simulate the propagation process based on the PR model via independent
Monte Carlo experiments. Take the average of the propagation ranges (i.e., the number of
nodes in the state R when propagation ends) of the Monte Carlo experiments as the real
spreading influence of the source node. Still use RKPR to represent the ranking (in descend-
ing order) of nodes based on experiments, and use RKM to represent the ranking list based
on identification methods.

Table 2 lists some basic characteristics of the networks and the parameters in the
experiments. N is the number of nodes in the network, M is the number of edges in
the network, and 〈k〉 is the average degree of nodes in the network. MC is the number
of Monte Carlo experiments for each node. Related works in recent years usually set
MC as 100 [32–34,53] or 1000 [23,31,39,52]. A relatively small MC (i.e., 100) is acceptable
for large networks (i.e., with N > 10,000) [32]. Here, we set larger MC parameters for
each network as far as possible within the range of the computational power. β is the
propagation probability in the PR model. Note that the position of the source node makes
no difference in the final propagation size under a large value of β. Thus, complying with
previous studies, we also select the value of β around its threshold. Considering that
the PR model has no corresponding threshold, here we select a β slightly larger than the
threshold of the SIR model (βth). Here, the threshold of the SIR model is calculated as
βth = 〈k〉/〈k2〉 [26], where 〈k〉 is the average degree, and 〈k2〉 is the second-order average
degree. Under this parameter setting, the proportion of propagations with duration 1 (i.e.,
with T = 1) in all propagation simulations in each network (PT=1 in Table 2) is 78–92%.
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This is in line with the characteristic of propagation flow on social networks described
by Goel et al. [2], i.e., across seven online domains they investigated, in which 73% to
95% of instances show no diffusion. Here the propagation duration is the time when the
propagation ends. For example, when there no neighbor of the source node republishes the
message, the propagation duration is recorded as 1.

Table 2. Networks attributes, experimental settings, and some statistics for simulation results.

Network N M 〈k〉 MC βth β PT=1

Brightkite 56,739 425,890 7.506 1000 0.015618 0.016 90.9%
Facebook 63,392 816,831 25.771 1000 0.011358 0.012 78.9%
DouBan 154,908 654,324 4.224 500 0.027100 0.028 91.8%
Twitter 465,017 834,797 1.795 200 0.116572 0.120 82.6%

4.2. Methods Evaluation

Based on the experiments introduced above, we use three indicators [8,9,27,52] to
analyze and compare the recognition ability of each method, including the imprecision
function, the recognition rate, and the Kendall coefficient.

4.2.1. Imprecision Function

The definition of the imprecision function ε(p) is shown as Equation (1) in Section 2.
For any value of p, the smaller the value of the imprecision function, the better the recogni-
tion effect of the method. Figure 2 presents the imprecision function of each method, with p
ranging from 0.01 to 0.5, and each subplot corresponds to a real online network. We can
observe that our LF method, represented by the red curve in all subplots, has the smallest
value of the imprecision function, which indicates the great performance of our method.
In particular, when identifying the top 10% of superspreaders, our LF method significantly
improves the efficiency of identification compared to other classical methods. The closeness
method has a good performance, which is near the LF method in the DouBan network and
the Twitter network, but the time complexity of the closeness measure is higher [15,18].
In the other two networks, our LF method has a significant advantage in the efficiency of
identification. We conducted the experiments on Ubuntu Linux 18.04 LTS equipped with
Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz, and the algorithms were implemented in
Python 3.8.5. The average consumed time of the 10 runs for each method on the four large
networks is shown in Table 3. The results show that the time complexity of the LF method
is the second-smallest among these methods (only larger than that of the degree method).
Considering both the performance and time complexity, our LF method is the best choice
among these methods.

Table 3. The consumed time of the LF method and other classical methods in the four real networks.

Network Degree k-Shell Closeness PageRank MDD LF

Brightkite 0.04799 1.73308 11,845.25111 14.45678 28.02683 0.95804
Facebook 0.03003 2.15947 24,302.80110 29.29709 44.02255 1.19346
DouBan 0.12007 1.50177 59,277.99047 27.76005 50.87384 1.72524
Twitter 0.24067 4.83157 1813.34151 14.19303 192.96852 2.10739
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Figure 2. The imprecision function of the LF method and other classical methods under different p in
four real networks, including (a) Brightkite, (b) Facebook, (c) DouBan, and (d) Twitter. Curves with
different colors correspond to different methods: closeness (grey), PageRank (cyan), degree (pink),
k-shell (green), MDD (yellow), and LF (red).

4.2.2. Recognition Rate

The recognition rate reflects the ability of methods to find important nodes. Here we
use Pei et al.’s [8] definition of the recognition rate r(p), which reads as:

r(p) =
|Ip ∩ Pp|
|Ip|

, (4)

where Ip is the set of nodes ranking in the top p fraction of the RKPR, Pp is the set of nodes
ranking in the top p fraction of the RKM, and |Ip| is the number of nodes in Ip. For any
value of p, the greater the recognition rate r(p), the higher the accuracy of the method for
influential node recognition. Figure 3 shows the curves of the recognition rate of different
methods in the four real networks, with p ranging from 0.01 to 0.5. It can be seen that the
red curve corresponding to the LF method is higher than other curves, which indicates that
the LF method has better recognition accuracy in terms of identifying specific nodes than
other methods.
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Figure 3. The recognition rate of the LF method and other classical methods under different p in
four real networks, including (a) Brightkite, (b) Facebook, (c) DouBan, and (d) Twitter. Curves with
different colors correspond to different methods: closeness (grey), PageRank (cyan), degree (pink),
k-shell (green), MDD (yellow), and LF (red).

4.2.3. Kendall Correlation Coefficient

Kendall’s tau correlation coefficient [58] is a statistic that measures the rank correlation
of two random variables. We use it to quantify the rank correlation between the measure
and the real spreading influence obtained from Monte Carlo experiments. There are three
calculation forms of Kendall’s tau coefficient. Considering that the number of values of
the spreading influence (i.e., an average of propagation ranges) is more than that of the
centrality measures, we use τc [59,60] in our paper. For each node i, record its centrality xi
and its real spreading influence yi as (xi, yi). For any pair of (xi, yi) and (xj, yj), they are said
to be concordant if sgn((xi − xj)× (yi − yj)) = 1, discordant if sgn((xi − xj)× (yi − yj)) =
−1. If sgn((xi − xj) × (yi − yj)) = 0, they are neither concordant nor discordant. τc is
defined as:

τc =
2(nc − nd)

n2 m−1
m

, (5)

where nc is the number of concordant pairs, nd is the number of discordant pairs, r and c
are numbers of the values of the x and y respectively, and m = min(r, c). Clearly, the higher
the τc, the higher the ranking correlation between the two variables. Briefly speaking,
the above imprecision function evaluates the method in terms of the real spreading range,
the recognition rate evaluates methods from the aspect of the specific nodes, and here,
the τc gives a concise quantification of the ranking correlation between the measures and
the real spreading influence of the nodes from a global aspect. Table 4 gives Kendall’s τc
correlation coefficient between each measure and the real spreading influence. Apparently,
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the LF measure we proposed has the highest τc in each network considered, which means
that it has the highest correlation with the real spreading influence of nodes.

Table 4. τc between centrality measures and real spreading influence in four real networks. The best
value is in bold (higher is better).

Network Degree k-Shell Closeness PageRank MDD LF

Brightkite 0.42768 0.45701 0.68762 0.22887 0.42658 0.69770
Facebook 0.79352 0.83248 0.80367 0.55818 0.80476 0.90089
DouBan 0.65134 0.65002 0.72248 0.45388 0.65896 0.78665
Twitter 0.34802 0.35625 0.63684 0.17299 0.34434 0.70861

5. Discussion

Identifying superspreaders is of great significance in dealing with many real prob-
lems, especially related to the spreading processes [61,62], such as promoting innovation
diffusion and controlling rumor spreading. Nowadays, a large number of identification
methods have been proven to be effective on epidemic-like propagation models. However,
these propagation models rarely consider the Push-Republish dynamics with attenuation
characteristics, which exist widely in online spreading processes. This naturally leads to
the question of whether classical identification methods perform well when considering
the new dynamics. In addition, proposing new effective identification methods is always a
meaningful and challenging problem.

To address these issues, we use the Push-Republish model to describe the message
propagation process in online social media based on the work of Zhao et al. [3] and
Ruan et al. [47]. In this model, the message is pushed to users passively, and users keep
their spreading decision. Through model simulations, we find that a local tree-like spread-
ing structure in the neighborhood of the source node occurs and that the vast majority of
information diffusion will end in one step, which is consistent with the previous discov-
ery [2]. These phenomena indicate that the edges between neighbors of the source node
may be redundant, i.e., make no difference in diffusion. Then, we test the performance
of some classical identification methods by simulating our PR model. Results show the
poorer performance of the widely concerned k-shell method when identifying the top 10%
of superspreaders. Considering the redundant edges and tree-like structure, we define the
Local-Tree measure and propose the Local-Forest method to identify superspreaders in
online social media. We apply our LF method and other classical identification methods to
four real large networks. Through comparison, we highlight that the LF method performs
the best in all networks from the aspect of all indicators, including imprecision function,
recognition rate, and Kendall’s correlation.

The LF method is not limited to the PR model because it is proposed based on the
consideration of the redundant edges and tree-like structure, which are common features
in various domains such as spreading processes. It indicates that the LF method has the
potential to accurately identify superspreaders in other domains with the above features.
In the future, we will explore the extension of our method in these fields. Moreover,
the combination of the LF measure and the research about multi-source node identification
is worth studying.
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Appendix A. SIR Model

There are three states in the SIR model, including S (susceptible), I (infectious), and R
(recovered). Initially, only the source node is in the state I, and all the other nodes are in
the susceptible state (S). At each time step, nodes in the state I infect their neighbors in the
state S with probability β, and they enter the R state at the next time step. Nodes with state
R cannot be infected again.

Appendix B. Classic Centrality Measures

1. Degree.
The degree (denoted as k) of a node is the number of nodes connected to it. For a
directed network, the in-degree (denoted as kin) of a node is the number of nodes
pointing to it (such nodes are called in-neighbor), and the out-degree (denoted as kout)
is the number of nodes pointed by it.

2. K-shell centrality.
In k-shell decomposition, firstly, remove all nodes with degree k = 1 (set k = kin + kout
for directed networks). Then, there may appear nodes with k = 1 again. Continue
to remove all nodes with degree k = 1 iteratively until there is no node with k = 1.
The ks index of the removed nodes is 1, and here we define the k-shell centrality of
these nodes as ks = 1. We say the nodes with ks = 1 are in the 1-shell. Iteratively,
remove the nodes with k = 2 in a similar way and obtain the 2-shell. Continue the
removing process to obtain higher-k shells until there is no more node in the network.
Finally, the k-shell centrality of each node is clarified, and the network can be viewed
as the union of all shells. Nodes in the inner-most shell possess the highest k-shell
centrality (i.e., highest ks index).

3. Closeness centrality.
The closeness centrality of node i is defined as

c(i) =
1

∑j∈V dij
, (A1)

where V is the set of all the nodes in the network and dij is the distance between node
i and node j.

4. PageRank.
The PageRank value of node i is calculated iteratively. The PageRank value of node i
in step t is calculated as:

PRt(i) = α ∑
j∈N(i)

PRt−1(j)
kout(j)

+
1− α

N
, (A2)

where N(i) is the set of the neighbors of node i, kout(j) is the out-degree of node j,
α is a constant, and N is the number of the nodes in the network. Conventionally,
set PR0(i) = 1 for each node i, and α = 0.85. Finally, the PRt(i) converges to PR(i),
which is the PageRank centrality of node i.

5. Mixed degree decomposition (MDD).

Use the mixed degree k(m) = k(r) + λ ∗ k(e)i to replace the degree k to decompose
the network in the same way as the k-shell decomposition, where k(r) is the residual
degree (number of links connecting to the remaining nodes) and k(e) is the exhausted
degree (number of links connecting to the removed nodes). λ is a constant, which is
set as 0.7 commonly.
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