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S1. The Nosé-Hoover thermostat 
 

𝑁𝑉𝑇 dynamics employ the Nosé-Hoover (NH) chains [1, 2] that introduce k additional degrees of 

freedom 𝜉𝑘 in the 6𝑁-dimensional phase space, thus mimicking the heat transfer from a (large) reservoir, 

or thermal bath, with temperature 𝑇ext.  

The time evolution of a phase space point, 𝚪(𝒓𝑖, 𝒑𝑖 , 𝜉1, … , 𝜉𝑀 , 𝑝𝜉1
, … , 𝑝𝜉𝑀

)
𝑁𝑉𝑇

, is described by the 

following EOM [3], 

�̇�𝑖 =
𝒑𝑖

𝑚𝑖
         𝑖 = 1, … , 𝑁,                                                                 (S1) 

�̇�𝑖 = 𝒇𝑖 −
𝑝𝜉1

𝑄1
 𝒑𝑖 ,                                                                    (S2) 

�̇�𝑘 =
𝑝𝜉𝑘

𝑄𝑘
    𝑘 = 1, … , 𝑀 ,                                                              (S3) 

�̇�𝜉1
= ∑  

𝑁

𝑖=1

𝒑𝑖
2

𝑚𝑖
− (𝑁f + 𝑑2)kB𝑇ext − 𝑝𝜉1

𝑝𝜉2

𝑄2
 ,                                              (S4) 

�̇�𝜉𝑘
= (

𝑝𝜉𝑘−1

𝑄𝑘−1
− kB𝑇ext) − 𝑝𝜉𝑘

𝑝𝜉𝑘+1

𝑄𝑘+1
    for    𝑘 = 2, … , 𝑀 − 1 ,                            (S5) 

Here, 𝑄𝑘 is the “mass” of the 𝑘th thermostat that tunes the fluctuations of the system’s temperature 𝑇 [4]. 

𝑁f is the number of degrees of freedom (=3𝑁), 𝑑 the system’s dimension, 𝑀 the number of NH chains, kB 

is the Boltzmann’s constant, and 𝜉𝑘 and 𝑝𝑘 are, respectively, the thermostat variable (extra 𝑀 degrees of 

freedom) and conjugate momentum of the 𝑘th thermostat. Note that 𝑇 is not a strictly conserved quantity 

in the dynamics but, rather, it is a quantity numerically controlled by an external body (i.e., the heat bath 

modeled by imposing the above degrees of freedom) which fluctuates around the defined value for the 

bath’s temperature 𝑇ext [3].  

It is demonstrated in Ref. [4] that the thermostat masses 𝑄𝑘 should satisfy 𝑄1 = 𝑁fkB𝑇ext/𝜔p
2 and 𝑄𝑘 =

kB𝑇ext/𝜔p
2 (for 𝑘 = 2, … , 𝑀 − 1), where 𝜔p is the frequency at which the particles are thermostatted. Then, 

to evaluate the effect of 𝜔p on the thermostatting properties in our MD indentations, we run additional MD 

simulations of the plastic protocol with NH-thermostatted particles with distinct values of 𝜔p (see Section 

2 of the main text for further details on the computational methodology). Figure S1 shows the resulting 

indentation load and kinetic energy fluctuations under a wide range of thermostat frequencies 𝜔p, varying 

from 𝜔p = 1d𝑡 to 𝜔p = 100,000d𝑡, where d𝑡 = 2 fs. It is observed that low frequencies (𝜔p < 10d𝑡) lead 

to wild fluctuations in both temperature and kinetic energy, while large frequencies (𝜔p > 10,000d𝑡) result 

in roughly constant-energy dynamics due to the poor contribution of the thermostat. In light of these results, 

we adopt 𝜔p = 100d𝑡 for the indentations where the particles are strongly coupled with the bath, whereas 

in the simulations with weak coupling we employ 𝜔p = 100,000d𝑡. Notice that the above quantity 

surpasses the time process of the plastic protocol (𝜏pl = 190 ps, cf. Fig. 1(c) in the main text). 
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Figure S1. Effect of the NH thermostat frequency 𝜔p on the (a) indentation load (𝑃) and (b) kinetic energy fluctuations 

during the plastic protocol with ℎmax = 9.5 Å. The number of NH chains is set to 𝑀 = 3 and the bath’s temperature to 

𝑇ext = 300 K. Large frequencies (i.e., 𝜔p > 10,000d𝑡) lead to a poor contribution of the thermostat in the dynamics. 

On the other hand, fluctuations in the kinetic energy increase by decreasing 𝜔p. Extremely small thermostat 

frequencies (𝜔p < 10 ∆𝑡) undergo unrealistic 𝑁𝑉𝑇 dynamics, where wild kinetic fluctuations appear with 𝜔p = 1 ∆𝑡, 

see (b). 

 

S2. The Langevin thermostat 
 

Langevin dynamics assume that the particles suffer collisions with much lighter ones, which 

effectively represent the interaction with a heat bath at 𝑇ext [5]. This approach mimics the conditions in 

which the system’s particles interact with a background implicit solvent [6]. The collisions are then 

described by a friction term, − 𝒑𝑖/𝛾L, and a stochastic random force, 𝜼(𝑡). The Hamiltonian equations of 

motion (EOM) [7] are coupled to the Langevin equation for the Brownian motion [8], thus leading to the 

EOM of Langevin dynamics 

�̇�𝑖 =
𝒑𝑖

𝑚𝑖
          𝑖 = 1, … , 𝑁,                                                          (S6) 

and 

𝑚𝑖�̈�𝑖 = 𝒇𝑖 −
𝑚𝑖

𝛾L
�̇�𝑖 + 𝜼(𝑡) .                                                       (S7) 

Here, 𝒇𝑖 is the conservative force computed via the usual interparticle interactions. The friction term is a 

frictional drag or viscous damping term proportional to the velocity of particle i, �̇�𝑖. The proportionality 

constant for each atom is computed as 𝑚𝑖/𝛾L, where 𝛾L is the Langevin damping factor in units of reciprocal 

time. 𝜼(𝑡) is a stochastic force due to solvent atoms at temperature 𝑇ext that randomly bump into the particle 

i, and whose magnitude is proportional to 𝜼(𝑡) ∝ √(𝑚𝑖kB𝑇ext)/(𝛾Ld𝑡)  [8], as derived from the 

fluctuation/dissipation theorem [9]. Langevin dynamics allows the system’s temperature to be controlled 

similarly to the NH thermostat, where the probability distribution also approximates the canonical 

distribution. Notice in Eq. (S7) that the larger the damping coefficient 𝛾L, the faster the kinetic energy of 

the system is effectively reduced. In other words, 𝛾L determines how rapidly the temperature is relaxed.  

We then assess the effect of 𝛾L on the thermostatting properties in our MD indentations by performing 

additional MD simulations of the plastic protocol with Langevin-thermostatted particles with distinct values 
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of 𝛾 (see Section 2 of the main text for further details on the computational methodology). Figure S2 shows 

the indentation load and kinetic energy fluctuations from these simulations under varying values of the 

damping factor 𝛾L, ranging from 𝛾L = 0.01 ps−1 to 𝛾L = 10,000 ps−1. Given these results, we adopt for 

our simulations with Langevin-thermostatted particles analyzed in the main text a damping factor of 𝛾L =

1 ps−1, which produces a coupling (of the particles with the thermal bath) similar to that produced by the 

NH thermostat under 𝜔p = 100d𝑡; compare the 𝐾tot fluctuations in Figs. S1(b) and S2(b). 

 

 

 

Figure S2. The effect of the damping factor 𝛾L on (a) the load (𝑃)-penetration (ℎ) curves and on (b) the time evolution 

of the kinetic energy of the system, 𝐾tot. The simulations were carried out following the plastic protocol with             

ℎmax = 9.5 Å.   
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S3. Reversible vs. non-reversible deformations in our crystal indentations 
 

 

 

Figure S3.  Atomistic snapshots captured during the elastic protocol (ℎmax = 3.5 Å) with NH-thermostatted particles 

(𝜔p = 100d𝑡). Atomistic visualization was conducted in the OVITO software [10], whereas the common neighbor 

analysis (CNA) algorithm [11] was employed to calculate the local crystalline structure around the constituent atoms. 

Note that the uncoordinated (gray) atoms at the top and bottom of the MD cell represent free surfaces. The perturbation 

during loading leads to the formation of an elastic imprint on the indented surface, which is fully recovered upon 

unloading.  
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Figure S4. Atomistic snapshots captured during the plastic protocol (ℎmax = 9.5 Å) with NH-thermostatted particles 

(𝜔p = 100d𝑡). Atomistic visualization was conducted in the OVITO software [10], whereas the common neighbor 

analysis (CNA) algorithm [11] was employed to calculate the local crystalline structure around the constituent atoms, 

which allows for the detection of crystalline defects in the Ta BCC crystal associated with uncoordinated (gray) atoms. 

Note that the uncoordinated atoms at the top and bottom of the MD cell represent free surfaces. In the plastic protocol, 

the perturbation during loading leads to the generation of crystalline defect at the inception of plasticity at (𝑃c, ℎc )‒

see Fig. 4(a) in the main text. With increasing indenter-tip penetrations, the nucleated defects evolve to form a defect 

structure beneath the indented surface. A plastic imprint is formed during loading that remains in the crystal’s surface 

upon unloading. Similar crystalline processes are observed in the MD indentations with unthermostatted and 

Langevin-thermostatted particles. 
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