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Abstract: Knowledge of the structural properties of biological neural networks can help in under-
standing how particular responses and actions are generated. Recently, Witvliet et al. published
the connectomes of eight isogenic Caenorhabditis elegans hermaphrodites at different postembryonic
ages, from birth to adulthood. We analyzed the basic structural properties of these biological neural
networks. From birth to adulthood, the asymmetry between in-degrees and out-degrees over the
C. elegans neuronal network increased with age, in addition to an increase in the number of nodes and
edges. The degree distributions were neither Poisson distributions nor pure power-law distributions.
We have proposed a model of network evolution with different initial attractiveness for in-degrees
and out-degrees of nodes and preferential attachment, which reproduces the asymmetry between
in-degrees and out-degrees and similar degree distributions via the tuning of the initial attractiveness
values. In this study, we present the well-preserved structural properties of C. elegans neuronal net-
works across development, and provide some insight into understanding the evolutionary processes
of biological neural networks through a simple network model.

Keywords: biological neural networks; C. elegans connectomes; structural properties; network model;
initial attractiveness; asymmetry

1. Introduction

Understanding wiring diagrams of the brain provides us with insights into how
circuits respond to internal and external cues, and helps us understand how complex
dynamics arise. In the past few decades, connectomes at synaptic resolution have been
reconstructed for the nematode C. elegans [1–4], the central nervous system of a tadpole
larva of Ciona intestinalis (L.) [5], the visual system, olfactory system, mushroom body
(MB), and locomotion circuits of larval Drosophila [6–9], the optic medulla and the central
brain of adult Drosophila [10–13] and the inner plexiform layer in the mouse retina [14].
Recently, Witvliet et al. fully reconstructed the connectomes of eight isogenic C. elegans
hermaphrodites at different postembryonic ages, from hatching (birth) to adulthood, and
investigated how the brain changes with age [4]. C. elegans develops from a fertilized egg
through four larval stages (that is, four molt cycles) to become an adult. Under crowded
conditions or in the absence of food, larvae can choose an alternative developmental
pathway, becoming dauer larvae, which do not feed but can survive adverse conditions
for several months. When living conditions improve and normal development is resumed,
the animals exit the dauer larval stage and develop into the normal fourth larval stage
before becoming adults. The developmental age of each animal was confirmed based on
the described temporal cell division pattern exhibited by wild-type (N2) larva raised at
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25 ◦C [4]. Obviously, there are stable and variable structures in chemical synaptic networks
at different developmental ages.

Some studies have demonstrated that the C. elegans neuronal network has small-
world properties [15–17] and network motifs [18,19]. Its tails of in-degree and out-degree
distributions decay with an exponential, but not a power law [15,20]. However, it is
unknown whether these structural and statistical properties are preserved from birth to
adulthood, mainly due to the lack of connectomes at different developmental time points.
The connectomes of C. elegans across development provide an opportunity for this study.

There are several network models available to study the mechanisms underlying the
evolution of real networks (WWW, actor collaboration network, scientific citation networks,
and social networks), such as the growth and preferential attachment mechanisms [21–24],
initial attractiveness mechanism [23], the fitness mechanism [25,26], aging and cost mecha-
nism [20,27], and the directional attachment and community structure model [28], to name
a few. Berry and Temam proposed a network growth model in a three-dimensional space,
which reproduced most of the structural properties exhibited by the C. elegans neuronal
network, including its small-world structure [15]. In this model, the physical distance
between two neurons was considered. However, they only used the adult C. elegans neu-
ronal network, including the connections formed by gap junctions and chemical synapses.
Fortunately, more connectomes have been reconstructed, providing important insights in
to the design principles of biological neural networks [3–10,12,14]. Furthermore, several
researchers have made use of the structural features found in biological neural networks to
design deep-learning architectures and algorithms for performing approximate-similarity
(or nearest-neighbor) searches in machine learning [29], causal inference for motor estima-
tion [30], natural language processing (NLP) tasks [31], or enabling auditable autonomy
for an autonomous vehicle control system [32]. Therefore, it is meaningful to study the
structural properties of biological neural networks and design a proper network model
that can reproduce these properties.

In this study, we analyzed the basic structural properties of the biological neural
networks of C. elegans at different developmental ages. Structural properties such as small-
world properties, asymmetry between in-degrees and out-degrees of nodes, and degree
distributions following neither a Poisson distribution nor a pure power-law distribution,
were found to be well-preserved during development. On the basis of the asymmetry
between in-degrees and out-degrees, we proposed a model of network evolution with
different initial attractiveness for the in-degrees and out-degrees of nodes. According to the
degree distribution of the Barabási–Albert (BA) model without the growth mechanism [21],
we introduced the mechanism of preferential attachment into our model. In other words,
the probability that a node gets a new edge depends on the initial attractiveness and its
in-degree or out-degree. Finally, a network with asymmetry between in-degrees and out-
degrees, as generated by this model, had an average shortest path length and a degree
distribution shape that were similar to those of the biological neural networks of C. elegans.
This was achieved through tuning the initial attractiveness values for in-degrees and
out-degrees of nodes. In this study, we present the well-preserved structural properties
of C. elegans neuronal networks during development, and provide some insights into
understanding the evolutionary processes of biological neural networks through the use of
a simple network model.

2. Materials and Methods
2.1. Biological Neural Networks of C. elegans throughout Development

Witvliet et al. [4] used serial-section electron microscopy to reconstruct the brains of
eight isogenic C. elegans hermaphrodites, specifically, their circumpharyngeal nerve ring
and ventral ganglion, at different postembryonic ages from birth to adulthood. C. elegans
proceeds through four molt cycles before becoming an adult. The first larval stage (L1) is
from hatching (birth) to the first molt; the second larval stage (L2) is from the first molt to
the second molt; the third larval stage (L3) is from the second molt to the third molt; and



Entropy 2023, 25, 51 3 of 17

the fourth larval stage (L4) is from the third molt to the fourth molt. After experiencing the
fourth molt, C. elegans becomes a mature adult.

The developmental ages of the eight samples are listed in Table 1. Connectivity
matrices for the eight datasets are available at https://www.nemanode.org/ or https://
www.nature.com/articles/s41586-021-03778-8#Sec37, and the former includes connections
formed by electrical synapses (gap junctions). A connection or edge is defined as a pair
of cells connected by one or more chemical synapses. Electrical synapses were partially
annotated and incomplete; thus, we used chemical synaptic networks, in which connections
were formed by chemical synapses between neurons, muscles, and glia. Chemical synapses
exhibit clear directionality, and self-loops are rare in these datasets, so we treated these
chemical synaptic networks as directed networks without self-loops. Visualizations of
these biological neural networks of C. elegans are shown in Figure 1b and Appendix A
Figures A1 and A2, in which the cells’ coordinates are roughly the same, with overlapping
cells manually separated.

Table 1. The developmental ages of the eight samples. L1: the first larval stage; L2: the second larval
stage; L3: the third larval stage; L4: the fourth larval stage.

Stages L1 L2 L3 Adult

Dataset 1 2 3 4 5 6 7 8

Developmental age 0 5 8 16 23 27 50 50

L1 L2 L3 L4 Adult

1 2 3 4 5 6 7 8
(a)

(b)

L1
Dataset 1

L1
Dataset 2

L1
Dataset 3

L1
Dataset 4

Adult
Dataset 8

Adult
Dataset 7

L3
Dataset 6

L2
Dataset 5

Sensory neurons

Modulatory neurons

Interneurons
Motor neurons

Muscle
Glia

Figure 1. Visualization of the biological neural networks of C. elegans throughout development.
(a) Developmental timeline of the eight reconstructed C elegans hermaphrodites. (b) Wiring diagrams
for the eight individuals. Each circle represents a cell. Circle color denotes cell type. Circle size is
proportional to the connection number of a cell. Each line represents a connection with at least one
chemical synapse between two cells, and the line width is proportional to the synapse number per
connection. L1: the first larval stage; L2: the second larval stage; L3: the third larval stage; L4: the
fourth larval stage.

https://www.nemanode.org/
https://www.nature.com/articles/s41586-021-03778-8#Sec37
https://www.nature.com/articles/s41586-021-03778-8#Sec37
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2.2. Network Structure Analysis

The common structural characteristics of a network, aside from the number of nodes,
the number of edges, and the network density, include the average degree, average shortest
path length, average clustering coefficient, and degree distribution. The average shortest
path length and average clustering coefficient are two key features used to determine
whether a network has small-world properties. A network has small-world properties if it
has a comparable average shortest path length and a higher average clustering coefficient
with regard to a random network. The in-degree kin

i or out-degree kout
i of the node i is the

number of edges pointing to or pointing out of node i. The degree ki of node i is the sum of
kin

i and kout
i . The average in-degree < kin > or average out-degree < kout > is the average

of the kin
i s or kout

i s over all nodes in the network. For a directed network, the average degree
is the average in-degree or out-degree. p(k) is the probability density function of kin or
kout. Furthermore, the asymmetry index between the in-degrees and out-degrees of a node
is an indicator used to express the tendency of the node to have unbalanced out-degrees
and in-degrees. Our calculation of the asymmetry index was modified from that presented
in [15]. The following is the formula used for the calculation of these parameters.

The density ρ of a directed network is calculated by

ρ =
M

N(N − 1)
, (1)

where N is the number of nodes and M is the number of edges in the network.
The average in-degree < kin > or out-degree < kout > of the network is equal to the

number of edges of the network M divided by the number of nodes N, which is

< kin >=< kout >=
M
N

. (2)

The average shortest path length L is

L =
1

N(N − 1) ∑
i,j,i 6=j

dij, (3)

where dij is the shortest path length between node i and j.
The clustering coefficient Ci of a node i with ki neighbors is defined by

Ci =
2Ei

ki(ki − 1)
, (4)

where Ei is the number of edges among the ki neighbors of node i, excluding the edges
between the neighbors and node i itself. The average clustering coefficient <C> is

< C >=
1
N ∑i Ci. (5)

We used the quantitative metric of “small-world-ness” defined by [33]. Let Crand
and Lrand be the corresponding values obtained by averaging over a set of randomized
networks. S is the ratio of C/Crand to L/Lrand, which is

S =
< C > Lrand

CrandL
. (6)

The criterion for “small worldness” is S > 1, indicating that the network has a higher aver-
age clustering coefficient when compared to randomized networks, while still maintaining
the average shortest path length, as found in random networks.
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For the degree distribution, the probability density function p(k) is equal to the number
of nodes with k divided by the number of total nodes N, which is

p(k) =
N(k)

N
, (7)

where N(k) is the number of nodes with k, and k refers to either the in-degree kin or the
out-degree kout in our study. The cumulative distribution function P(k) is defined by

P(k) = P(x ≥ k) = ∑
x≥k

p(x). (8)

The asymmetry index αi of node i is defined by

αi =
kin

i − kout
i

kin
i + kout

i
. (9)

The value of αi is greater than 0 when the node i has a larger in-degree value than the
out-degree value. The αi is less than 0 when the node i has a smaller in-degree value than
the out-degree value. The αi is equal to 0 when the node i has the same in-degree value as
the out-degree value. The average value of the αis throughout the network, <α>, is

< α >=
1
n ∑i αi. (10)

2.3. Generation of Randomized Networks

In the analysis of small-world properties, the values of real networks need to be
compared with those of randomized networks. We used two random network models. The
Erdös–Rényi random model generates randomized networks with the same number of
nodes and edges as a real network through randomly choosing M edges from [N(N− 1)]/2
(undirected) or N(N − 1) (directed) possible edges, where N is the number of nodes and
M is the number of edges in the real network. The degree-preserving randomization
(DPR) model keeps the degree of nodes in the network unchanged, that is, it generates
randomized networks with the given degree sequence (also known as the first-order null
model). Starting with a real network, we randomly chose two existing edges (u1, v1) and
(u2, v2) every time (u1, v1, u2, and v2 are nodes), and deleted the two edges (u1, v1) and
(u2, v2), followed by adding two new edges, (u1, v2) and (u2, v1). Switching was prohibited
if either of the edges (u1, v2) or (u2, v1) already existed or the node u1 was v2 or v1 was u2.
This process was repeated until the network was well randomized. Through the use of this
rewiring algorithm, the generated randomized networks had the same degree sequence,
without parallel edges or self-loops.

2.4. Data Analysis or Statistical Analysis

Visualizations of the biological neural networks of C. elegans throughout development
were generated using Gephi 0.9 software. We used the NetworkX package in python 3.7.6 to
analyze the structural properties of networks, such as their small-world properties, degree
distribution, and numerical simulations.

3. Results
3.1. Small-World Properties, Asymmetry between In-Degrees and Out-Degrees of C. Elegans
Neural Networks throughout Development

The structural properties of the adult C. elegans neuronal network have been stud-
ied previously, such as small-network properties [16,17,34], the asymmetry between in-
degrees and out-degrees [15], self-similar and fractal properties [17], and higher-order
clustering [35]. Witvliet et al. [4] reconstructed the brains of eight isogenic C. elegans indi-
viduals across postnatal stages, and observed non-uniform synapse addition, stereotyped
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and variable connections, stable interneuron connections, increase in feedforward signaling
and discernible modularity during maturation. Moreover, there may be other statistical
and structural changes with age.

Some studies have indicated that the adult C. elegans neuronal network has small-
world properties [16,17,34]. However, it is not clear whether these biological neural net-
works of C. elegans throughout development have small-world attributes. Thus, we first
calculated the average shortest path length L and the average clustering coefficient <C>,
referring to Equations (3)–(5). We used the quantitative metric S of “small worldness”
defined by [33]. As shown in Table 2, compared to the values obtained by averaging over
1000 randomized networks with the same number of nodes N and the number of edges M,
as generated by the Erdös–Rényi random model or the degree-preserving randomization
(DPR) model, these biological neural networks of C. elegans had a much higher <C> while
maintaining a comparable L and S > 1, indicating that these C. elegans neuronal networks
across development possessed small-world properties. Furthermore, from birth to adult-
hood, there were many more new edges generated due to new synapse formation than
new nodes generated via neurogenesis (an approximately 17% increase in nodes, and an
approximately 182% increase in edges; see Figure 2a,b). The average clustering coefficient
<C> slightly increased over time. The asymmetry between in-degrees and out-degrees over
the C. elegans neuronal network increased with age (Table 2 and Figure 2c), suggesting
that the neuronal networks of C. elegans increased their ability to integrate information
during development.

Table 2. Structural properties of biological neural networks of C. elegans throughout development. C:
average clustering coefficient, the average probability that two nodes that are connected to the same
third node are also connected to each other; L: average shortest path length, the average minimum
number of edges separating any two nodes; < C >ER, LER, < C >DPR, LDPR: the corresponding
values obtained by averaging over 1000 randomized networks generated by the Erdös–Rényi (ER)
model or degree-preserving randomization (DPR) model; SER, SDPR: the ratio of < C > / < C >ER

to L/LER or the ratio of < C > / < C >DPR to L/LDPR. The quantitative criteria for “small
worldness” is SER > 1 [33].

Stages L1 L2 L3 Adult

Dataset 1 2 3 4 5 6 7 8

N 187 193 198 203 210 216 221 219
M 775 986 1012 1136 1515 1525 2191 2186
ρ 0.022 0.027 0.026 0.028 0.035 0.033 0.045 0.046

< k > 4.144 5.109 5.111 5.596 7.214 7.060 9.914 9.982
< C > 0.109 0.125 0.122 0.120 0.154 0.153 0.184 0.190

L 2.536 2.356 2.387 2.365 2.418 2.201 2.069 2.058
< C >ER 0.022 0.027 0.026 0.028 0.035 0.033 0.045 0.046

LER 3.669 3.347 3.363 3.242 2.910 2.952 2.598 2.588
< C >DPR 0.038 0.047 0.045 0.047 0.057 0.058 0.075 0.074

LDPR 2.249 2.265 2.188 2.203 2.043 1.988 1.855 1.840
SER 7.17 6.58 6.61 5.87 5.30 6.22 5.13 5.19

SDPR 2.54 2.56 2.49 2.38 2.28 2.38 2.20 2.30
< α > 0.028 0.073 0.089 0.115 0.126 0.133 0.144 0.138

We also analyzed the statistical property of in-degrees and out-degrees for these bio-
logical neural networks of C. elegans during development, namely, the degree distribution.
Linear–linear plots of the probability density function of in-degrees and out-degrees, as
well as linear–log plots and log–log plots of the cumulative distribution of in-degrees
and out-degrees for biological neural networks of C. elegans throughout development are
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displayed in Figures 3, A3 and A4, respectively. Unlike Poisson distributions or power-law
distributions, there was a left-skewed peak around the average in-degree <kin> or out-
degree <kout> in the linear–linear plots of the probability density function of in-degrees and
out-degrees (Figure 3), and the maximum in-degree or out-degree value of each develop-
mental stage increased with age. Compared with the pure power-law distribution, which
falls on a straight line in a log–log plot, the distributions could be better approximated by
exponential decay (Figures A3 and A4), which is in agreement with the results obtained in
the adult C. elegans neuronal network [20].
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Figure 2. In the developing C. elegans brain, the number of edges and asymmetry between in-degrees
and out-degrees increased with age. (a) The number of nodes (cells) in each dataset. (b) The number
of edges (connections) in each dataset. (c) Index reflecting the asymmetry between in-degrees and
out-degrees in each dataset. (d) The number of adding or pruning edges from an earlier connectome
to the subsequent one. An edge was considered to be added when it was absent from the earlier
connectome (such as dataset 6) and present in the subsequent one (such as in dataset 7 and dataset 8);
an edge was considered to be pruned when it was present in the earlier connectome (such as dataset
6) and absent from the subsequent one (such as in dataset 7 and dataset 8).

From birth to adulthood, in addition to an increase in the number of nodes and edges,
synapse pruning is a hallmark of early development in mammals [4,36]. An edge is deemed
to be added when it is absent from the earlier connectome (such as in dataset 1) and present
in the subsequent one (such as dataset 2). An edge is deemed to be pruned or removed
when it is present in the earlier connectome (such as in dataset 6) and absent from the
subsequent one (such as dataset 7 or 8). Comparing dataset 7 and dataset 8, both of which
were adult connectomes, they had 1469 common edges, whereas dataset 7 had 722 edges
that were not shared by dataset 8, and dataset 8 had 717 edges that were not shared by
dataset 7. This suggests connectivity differences between individuals. From the earlier age
to the subsequent one (such as 2-1 and 5-4 in Figure 2d), old edges (present in the earlier
dataset) were removed, as new edges were added. Furthermore, edges with five synapses
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were absent from stage L3 to adulthood. Therefore, some edges were removed, despite the
connectivity differences between individuals and rare pruning in the C. elegans brain.
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Figure 3. Linear–linear plot of the probability density function p(k) of in-degrees and out-degrees for
biological neural networks of C. elegans throughout development. Red plus signs represent in-degree
data and blue dots represent out-degree data.

3.2. A Model of Network Evolution with Different Initial Attractiveness for In-Degrees or
Out-Degrees

The biological neural networks of C. elegans across development revealed some es-
sential characteristics that underlie brain evolution, such as, the addition of more edges
compared to the change in the node number, the asymmetry between in-degrees and out-
degrees, as well as the fact that the degree distribution did not exhibit a Poisson distribution
or a pure power-law distribution. Moreover, the C. elegans neuronal networks at each devel-
opmental time point exhibited a comparable number of nodes and edges. Based on these
characteristics, we proposed a network evolution model with different initial attractiveness
for the in-degrees and out-degrees of nodes, which could be used to generate a random
network with N nodes and M edges. The different initial attractiveness for in-degrees and
out-degrees contributes to the asymmetry between in-degrees and out-degrees of nodes.

In the model, we start with N isolated nodes, of which the initial attractiveness is a for
in-degrees and b for out-degrees, and at each time step we perform one of the following
two steps (see Figure 4).

(1) With a probability of p(p < 0.5), we randomly remove an edge from the network.
For this, there must be at least one edge in the network.

(2) With a probability of 1− p, we add a new edge. The probability that a node i will
increase its in-degree (or out-degree) depends on kin

i (or kout
i ) and the initial attractiveness,

a (or b). The new edge eij is added from node i to node j, and nodes i and j are selected
with a probability of

∏iout =
kout

i + b

∑x kout
x + b

, (11)

and

∏jin =
kin

i + a

∑x kin
x + a

, (12)
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respectively, where a and b are the initial attractiveness for the in-degrees and out-degrees
of nodes in the network, respectively.

p (p < 0.5)

1-p

Add an edge
Remove an edge

Figure 4. Schematic illustration of the model for N = 20, M = 40, a = 2, b = 3, and p = 0.1.
Starting with N isolated nodes, at each time step, we perform one of the following operations. With a
probability of 1− p, a new directed edge is added to the the network using preferential attachment.
With probability p (p < 0.5), we randomly select an edge and remove it, if the network has edges.
Self-loops and duplicate edges are forbidden.

According to the continuum theory mentioned in [22], we take the change in the
in-degree kin

i of node i as an example, and the probability ∏kin
i

can be interpreted as the

rate at which kin
i increases. Therefore, the change in kin

i consists of the following two steps.
(1) The removal of an edge with probability p:

∂kin
i

∂t (1)
= −p

1
E

, (13)

where E is the number of edges in the network at time t.
(2) The addition of a new edge with probability 1− p:

∂kin
i

∂t (2)
= (1− p)

kin
i + a

∑j kin
j + a

. (14)

By adding the contributions of the two processes, we obtain

∂kin
i

∂t
= (1− p)

kin
i + a

∑j kin
j + a

− p
1
E

. (15)

In the rate equation above, the number of edges E varies with time t as E(t) = (1− 2p)t,
and ∑j kin

j + a = (1− 2p)t + Na. Using as an initial condition, the in-degree of a node i

added at time ti, kin
i (ti) = 1, the solution of the equation above for kin

i (t) has the form

kin
i (t) = −a + C0(A + Bt)

1
B − (A + Bt)

1
B

∫ p
(1− 2p)t

(A + Bt)
1
B dt, (16)

where A = Na
(1−2p)t and B = 1−2p

1−p , C0 is a constant related to kin
i (ti) = 1.
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Given a special case where p is small enough to reach zero, the third term on the left
side of Equation (16) is negligible; thus

kin
i (t) = (1 + a)

Na + t
Na + ti

− a (t ≥ ti). (17)

In this case, when t is large, the in-degree of each node increases linearly with time t.
The above procedure can also be applied to analyze the change in node out-degrees

over time, except for the case in which the initial attractiveness for out-degrees is b.

3.3. Simulation
3.3.1. The Asymmetry between In-Degrees and Out-Degrees of Nodes in a Network Is
Closely Related to the Initial Attractiveness of In-Degrees and Out-Degrees

The networks generated by the above model with different initial attractiveness values
for in-degrees and out-degrees exhibit asymmetry between in-degrees and out-degrees. If
the initial attractiveness of the in-degrees, a, is larger than that of the out-degrees, b, the
asymmetry index <α> will be greater than zero, and vice versa. <α> will be close to zero if
a is equal to b.

We investigated the impact of a and b on the asymmetry between in-degrees and
out-degrees of nodes in a network (Figure 5). We found that the asymmetry index <α>
increased with the ratio of a to b (Figure 5a). When the ratio of a and b was fixed, the
asymmetry index <α> dramatically decreased with the increase in b. Similarly, when the
difference between a and b was fixed, the asymmetry index <α> decreased with the increase
in b (Figure 5b). Note, however, that for b values greater than 1, or even a/b = 10, the
asymmetry index was less than 0.100. Therefore, a proper asymmetry index for a modeling
network is obtained by tuning the ratio or the difference of the initial attractiveness a for
in-degrees and b for out-degrees.
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Figure 5. Numerical simulations investigating the impact of the initial attractiveness of in-degrees
and out-degrees of nodes on the asymmetry between in-degrees and out-degrees of a network.
(a) The asymmetry index increases with the ratio of the initial attractiveness a of in-degrees to the
initial attractiveness b of out-degrees. The symbols correspond to b = 1 (circles), b = 2 (squares),
b = 4 (diamonds). We used N = 300, M = 3000 and p = 0.1. The asymmetry index decreases with
the increase in b for out-degrees when the ratio is fixed. (b) The asymmetry index <α> decreases with
b for out-degrees, when the difference between a and b is fixed. The symbols correspond to a− b = 2
(circles), a− b = 4 (squares), a− b = 8 (diamonds). We used N = 300, M = 3000 and p = 0.1. The
greater the difference between a and b, the greater the asymmetry index <α>.
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3.3.2. The Shape of the Degree Distribution Changes with the Initial Attractiveness of
In-Degrees and Out-Degrees

In model B of the scale-free model [21], which keeps preferential attachment and
eliminates the growth mechanism, the shape of the degree distribution changes with the
number of edges when the number of nodes is fixed. After a transient period, the node
degrees converge to the average degree, and the degree develops a peak. Furthermore, in
the extended BA model [22], the degree distribution develops an exponential tail as the
rewiring probability q→ 1. Our proposed model incorporates preferential attachment and
the initial attractiveness of in-degrees and out-degrees, enabling us to generate a directed
network with N nodes and M edges. Here, we investigated how the shape of the degree
distribution varied by performing numerical simulations. We observed that the initial
attractiveness for in-degrees and out-degrees could lead to changes in the shape of degree
distribution. We identified three cases: (1) When the initial attractiveness of in-degrees
and out-degrees is equal to 1, that is, a = b = 1, p(k) decays exponentially (Figure 6a,d).
(2) When the initial attractiveness of in-degrees and out-degrees is greater than 1 and less
than the average degree, p(k) has a peak at the left of the average degree (Figure 6b,e).
(3) When the initial attractiveness of in-degrees and out-degrees is equal to or greater than
the average degree, p(k) has a peak at the average degree (Figure 6c,f). Moreover, the
initial attractiveness also affects the maximum in-degree or out-degree of nodes, which
is explained by Equations (11) and (12). Accordingly, for a network with N nodes and
M edges, we can obtain various shapes for the degree distribution by tuning the initial
attractiveness values.
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Figure 6. Numerical simulations investigating the impact of the initial attractiveness of the in-degrees
and out-degrees of nodes on the degree distribution of a network. (a–c) The probability density
function p(k) of networks with N = 300, M = 3000, and p = 0.1. The initial attractiveness a for
in-degrees and b for out-degrees were a = b = 1, a = 10, b = 5 and a = 40, b = 20, respectively.
(d–f) The probability density function p(k) of networks with N = 300, M = 6000, and p = 0.1. The
initial attractiveness a for in-degrees and b for out-degrees were a = b = 1, a = 20, b = 10 and
a = 40, b = 20, respectively. The initial attractiveness for in-degrees and out-degrees can vary the
shape of the degree distribution. Results for the model were averaged over 100 realizations.
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The degree distributions of these C. elegans biological neural networks exhibited a
peak around the average degree and an exponential tail. Therefore, we plotted the degree
distribution of networks generated by our model for the corresponding C. elegans neuronal
networks (Figure 7). Based on the maximum in-degree and out-degree and the location
of the peak, a and b were selected as a = 12 and b = 5, respectively. We reproduced
a similar-shaped degree distribution for the corresponding C. elegans neuronal network.
Nevertheless, there was a large difference when the out-degree was zero. This was due
to the fact that most sensory neurons in the C. elegans neuronal networks only have out-
degrees, which is closely related to the function of neurons.
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Figure 7. The probability density function p(k) of the degree distribution for networks generated
using our model matching C. elegans neuronal networks. Based on the maximum in-degree and
out-degree and the location of the peak in the C. elegans neuronal networks, the initial attractiveness
values for in-degrees and out-degrees were a = 12 and b = 5, respectively. The results for the model
were averaged over 100 realizations.

4. Discussion

Wiring diagrams of the brain provide a structural basis for understanding their func-
tion and dynamics, but little is known about the common structural properties of biological
neural networks during development. In this study, we first analyzed the structural prop-
erties of the biological neural networks of C. elegans across development to investigate
the changes in these structures with age. Second, based on the structural properties of
these C. elegans neuronal networks, we proposed a simple network model to reproduce
properties of these biological neural networks. Third, we applied the proposed model to
simulate the impact of initial attractiveness on the asymmetry between the in-degrees and
out-degrees of nodes and the degree distribution. Our findings indicated that biological
neural networks preserve several structural properties during development, and provided
some insight into understanding the evolutionary processes of biological neural networks
through the use of a simple network model.

From birth to adulthood, some changes occurred in the biological neural networks
of C. elegans, including increase in the number of neurons and connections, stereotyped
and variable connections. However, they retained some structural properties that played
an important role in circuit dynamics and brain function. For example, the small-world
properties indicated the efficient processing of information in the brain. The asymmetry
between in-degrees and out-degrees of nodes showed that various types of cells (neurons,
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glia, or muscle cells) in the brain had different connections and functions. We speculate that
such well-preserved structural properties found in C. elegans neuronal networks throughout
development are conserved in other biological neural networks, and may be applied in the
design of architectures and algorithms in artificial neural networks.

A statistical characteristic of a network is the probability density function p(k) of the
degree distribution, which represents the fraction of the number of nodes that have k edges
in the network. We showed that the degree distribution of C. elegans neuronal networks
throughout development did not follow a Poisson distribution or a purely power-law
distribution. In these biological neural networks, there was a left-skewed peak around the
average in-degree or out-degree of the degree distribution, and the cumulative distribution
decayed exponentially. In the extended BA model [22], as q → 1, where the rewiring
process is dominant, p(k) develops an exponential tail. For this reason, we proposed a
directed network model with initial attractiveness and preferential attachment, in order
to generate a network with N nodes and M edges. By tuning the initial attractiveness
values of the in-degrees and out-degrees of nodes, we reproduced the asymmetry and
a similar degree distribution to that of the C. elegans neuronal network. However, the
average clustering coefficient of the network generated by this model was much smaller
than that of the real network, and the asymmetry index was relatively small, although it
was larger than zero. This is because our proposed model did not take other constraints into
account. For example, the initial attractiveness values of different types of cells (sensory
neurons, interneurons, motor neurons, glia, and muscle cells) were different. Neurons that
execute the same function tend to have similar connections, referring to the duplication-
divergence model of protein interaction networks [37]. We did not classify the types and
functions of nodes in our model. We could reproduce more similar structural properties of
biological neural networks if more constraints on the model were considered. The proposed
model provides the basis for understanding the evolution of biological neural networks
during maturation.

Further research will improve this model by taking more constraints into account,
and investigate the application of these modeled neural networks to deep learning or
machine learning.

5. Conclusions

During maturation, the biological neural network of C. elegans retains some structural
properties that are essential for brain dynamics and functions. We proposed a network
model that reproduced some structural properties of biological neural networks, such as the
asymmetry between in-degrees and out-degrees of nodes and the degree distribution, which
may provide some insight into understanding the evolutionary processes of biological
neural networks.
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Figure A1. Closeup of a larval brain connectome at L1 stages (dataset 1). Each circle represents a cell.
Circle colour denotes cell type. Circle size is proportional to the connection number of a cell. Each
line represents a connection with at least one chemical synapse between two cells, and line width is
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Figure A3. Linear–log plot of the cumulative distribution P(x ≥ k) of in-degrees or out-degrees
for biological neural networks of C. elegans across development. If the distribution would have a
exponential tail, then it would fall on a straight line in a linear–log plot. Red plus signs represent
in-degree data and blue dots represent out-degree data.
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Figure A4. Log–log plots of the cumulative distribution P(x ≥ k) of in-degrees or out-degrees for
biological neural networks of C. elegans across development. If the distribution would have a power-
law tail, then it would fall on a straight line in a log–log plot. Red plus signs represent in-degree data
and blue dots represent out-degree data.
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