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Abstract: Quantum chaos is reviewed from the viewpoint of “what is molecule?”, particularly placing
emphasis on their dynamics. Molecules are composed of heavy nuclei and light electrons, and thereby
the very basic molecular theory due to Born and Oppenheimer gives a view that quantum electronic
states provide potential functions working on nuclei, which in turn are often treated classically or
semiclassically. Therefore, the classic study of chaos in molecular science began with those nuclear
dynamics particularly about the vibrational energy randomization within a molecule. Statistical
laws in probabilities and rates of chemical reactions even for small molecules of several atoms are
among the chemical phenomena requiring the notion of chaos. Particularly the dynamics behind
unimolecular decomposition are referred to as Intra-molecular Vibrational energy Redistribution
(IVR). Semiclassical mechanics is also one of the main research fields of quantum chaos. We herein
demonstrate chaos that appears only in semiclassical and full quantum dynamics. A fundamental
phenomenon possibly giving birth to quantum chaos is “bifurcation and merging” of quantum
wavepackets, rather than “stretching and folding” of the baker’s transformation and the horseshoe
map as a geometrical foundation of classical chaos. Such wavepacket bifurcation and merging are
indeed experimentally measurable as we showed before in the series of studies on real-time probing
of nonadiabatic chemical reactions. After tracking these aspects of molecular chaos, we will explore
quantum chaos found in nonadiabatic electron wavepacket dynamics, which emerges in the realm
far beyond the Born-Oppenheimer paradigm. In this class of chaos, we propose a notion of Intra-
molecular Nonadiabatic Electronic Energy Redistribution (INEER), which is a consequence of the
chaotic fluxes of electrons and energy within a molecule.

Keywords: quantum chaos; electronic-state chaos; electron dynamics; nonadiabatic dynamics;
chemical dynamics; semiclassical mechanics; quantum tunneling; stochasticity and determinicity

1. Introductory Remarks: What Makes Molecules Special in Quantum Science
and Chaos

Molecules consist of heavy nuclei and light electrons, which give rise to quite inter-
esting and characteristic properties. All of the living bodies and biological systems on the
globe are made up with molecules and are subject to the beautiful chemical laws. In the
biological activities most of those molecular dynamics and properties should appear to
be deterministic in the molecular levels, whereas the general dynamics of molecules often
work in stochastic and statistical manners. The origin of such statistical properties arising
even from small molecular systems are widely ascribed to classical [1] and quantum [2–12]
chaos. This in turn suggests that one may find novel chaos in the dynamics of molecules.

Light electrons in a molecule move very fast and yet are accompanied with long
wavelength in their matter waves, while the nuclear motion is much slower, but the
relevant wavelengths are relatively far shorter due to the heavy masses. Thus, the two
intrinsic hierarchical structures emerge in time-scale and length-scale within the dynamics
of a molecule. Consequently the general picture of a molecule are: (i) Nuclei move on
mean-field potential functions that are generate by the electrons. (ii) The nuclear motion
can bear classical and semiclassical nature due to the short wavelength, while electrons
are utterly quantum. Therefore, in contrast to classical chaos of the nuclear motion, it
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is often claimed that there is no chaos in electronic states because of discreteness in the
energy levels with large gaps among them. Physics of the mapping of classical chaos onto
quantum systems is often referred to as quantum chaology [13]. As a matter of fact most of
the chaos studies in molecular science have been focused on the vibrational spectroscopy
and nonlinear mixing of the vibrational modes and the theoretical foundation of statistical
laws in chemical reaction dynamics. All these are about the chaoticity arising from the
nuclear motion alone.

However, the theoretical separation of the electronic and nuclear motions due to the
fast and slow modes, which is known as the Born-Oppenheimer separation, can sometimes
break down through large kinematic interaction between them, which cause a mixing of
the relevant electronic states. This interaction is generally and vaguely referred to as nona-
diabatic interaction [14–20]. This interaction is extremely important in molecular science,
since the electronic states and the relevant molecular properties can change instantaneously
and drastically when a molecule passes through those nonadiabatic interaction regions.
Moreover, we will show that nonadiabatic mixing among many electronic states involved
in the manifold of densely quasi-degenerate electronic states can result in strong chaos,
which can manifest as a diffusion motion of electronic states in the Hilbert space. This
article will hence discuss chaos in what we call nonadiabatic electron dynamics [21–27].

Chaos theory for Hamilton mechanics was initiated (resumed from the view point of
Poincaré) around 1950s [28]. Many beautiful theoretical models, elegant mathematics of
geometry along with sophisticated numerical studies on ordinary differential equations
have been studied since [1]. As for molecular chaos, there are very many pieces of the-
oretical studies in the literature, yet, due to the complexity of molecular nature most of
the theoretical developments and applications are limited to small dimensional systems,
typically two-dimensional in the early days. On the other side, the present author and
his group have long been studying the chemical dynamics ranging from nuclear classical
and semiclassical dynamics (see ref. [29,30] and more cited there) to full quantum electron
dynamics [25–27]. Such molecular studies on chemical dynamics often guide us to chaotic
phenomena that appear only in molecules. Conversely, tracking the path of our chaos
studies, along with some data added herewith, would give partly an idea about what
the dynamics of molecule are. We therefore apologize in advance that this review article
covers only a very biased aspect of chaos studies. We hence do not cover the topics of the
main-stream theories and well-established materials for quantum chaos such as level statis-
tics, the random matrix theory, chaos in external fields and dissipative systems, and so on.
Extensive reviews about general quantum chaos theory [11,12] are now widely available in
numerous monographs [2–10] and review articles published elsewhere. The special issue
of this journal Entropy, “Quantum Chaos—Dedicated to Professor Giulio Casati on the
Occasion of His 80th Birthday”, is certainly among the newest ones.

We begin this review with the very basic structure of molecular science in Section 2,
along with the so-called Born-Oppenheimer approximation, which separates nuclear and
electronic dynamics in molecules [31].

In Section 3, we briefly touch upon the aims and implications of chaos studies in
molecular science, particularly for chemical dynamics. For this purpose only, we take a
couple of examples from previous studies on classical chaos.

Section 4 resumes with the full quantum chaos using the modified Hénon-Heiles
potential as a model system of two-dimensional vibrational motions. We track the quantum
wavepackets running within the quasi-separatrix and construct some of the associated
eigenfunctions. A class of dynamical tunneling that exists only in the quasi-separatrix will
be presented. The long-time energy spectra and the dependence of the chaotic spectra on
the magnitude of the Planck constant are briefly examined.

Multidimensional semiclassical mechanics is indispensable in the treatment of the
dynamics of heavy nuclei in molecules. We review our developed semiclassics [29,30] in
Section 5, which we call the method of Action Decomposed Function (ADF) [32,33]. With
ADF we analyze the mechanism of quantization not only of forming the energy peaks
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but of nullification of the off-resonance components. As a consequence of our theoretical
and numerical studies, we proceed to the idea of amplitude free quantization without
use of the annoying amplitude factors such as the van Vleck determinant [34] and those
inherent to the semiclassical kernels (Greens functions) [35–37]. Semiclassical tunneling is
also touched upon.

Then we study the characteristic molecular science, in which the nuclear dynamics
kinematically couples with the electronic states, where the electronic-nuclear separation
is broken down. In Section 6, we first concentrate on the nonadiabatic nuclear dynamics,
which are subject to coupled equations of motion on multiple potential energy surfaces.
The electronic states are still represented in time-independent wavefunctions. We show
that the phenomenon of “bifurcation and merging (remixing) of quantum wavepackets”,
a fundamental mechanism of quantum chaos, is indeed observable experimentally.

The final part of this review is devoted to the nonadiabatic electron dynamics in
Section 7. Electronic wavepacket description is particularly useful in the stage where the
adiabatic electronic states behind are embedded in a quasi-degenerate manifold and thereby
nonadiabatic mixing among them is very intense and continual. Those strong and enduring
electronic state mixing result in quantum chaos for the molecular electronic states.

This review concludes with some remarks in Section 8, stressing that the theory of
quantum chaos and philosophy behind is indeed fundamental and useful also in practical
science like chemistry.

2. Brief Introduction to the Theoretical Framework of Molecules: Born-Oppenheimer
Approximation to Separate Electronic and Nuclear Motions

We first outline briefly the very basic frame of quantum description of molecules
suggesting how chaos studies of molecules proceed.

2.1. The Born-Oppenheimer (BO) Approximation

The nonrelativistic molecular Hamiltonian is given as

H(r, R) = TN + Hel(r; R)

=
1
2 ∑

k

P̂2
k

Mk
+ H(el)(r; R), (1)

and
ih̄

∂

∂t
Ψ(r, R, t) = H(r, R), (2)

where H(el)(r; R) is the electronic Hamiltonian defined as

H(el)(r; R) = Te + Vc(r; R)

=
1

2m ∑
j

p̂2
j + Vc(r; R) (3)

with r and R representing the electronic and nuclear coordinates, respectively, while p̂j

and P̂k denote the operators for their conjugate momenta of the jth and kth component of r
(specifically written as rj) and R (Rk), respectively. We here consider only the Coulombic
interactions Vc(r; R) among electrons and nuclei, that is

Vc(r; R) = ∑
a<b

e2

|ra − rb|
−∑

a
∑
A

ZAe2

|ra − RA|
+ ∑

A<B

ZAZBe2

|RA − RB|
, (4)

where ra and RA are the ath electron and Ath nuclei, respectively, and ZA indicate the
nuclear charge on the Ath nuclei.
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Due to the great difference in the time scales between electrons and nuclei, their
motion is assumed to be separated at each time, as the so-called the Born-Oppenheimer
(BO) approximation represents the total wavefunction Ψ(r, R, t) to be

Ψ(r, R, t) ' χI(R, t)ΦI(r; R), (5)

where ΦI(r; R) and χI(R, t) are the electronic and nuclear wavefunctions, respectively. Note
that electrons are assumed to move so fast that it can adjust themselves as a stationary wave
at any nuclear position R, and thereby the electronic wavefunction ΦI(r; R) is assumed to
be free of time coordinate t. This in turn requires that ΦI(r; R) is to be attained at each R
such that

Hel(r; R)ΦI(r; R) = VI(R)ΦI(r; R). (6)

Notice that R in ΦI(r; R) and in Equation (6) is thereby treated as a parameter. The electronic
energy VI(R) as a function of nuclear coordinates serves as a potential energy function
(I = 1, 2, . . .) for the nuclear wavefunction in such a manner that

ih̄
∂

∂t
χI(R, t) =

[
∑
k

P̂2
k

2Mk
χ + VI(R)

]
χI(R, t). (7)

The time independent figure VI(R) is often called the potential energy hyper-surface (PES)
in the chemical literature [31].

The lowest-order correction to the Born–Oppenheimer energy is found to be in the
order of

(m/M)6/4. (8)

This analysis [38] clearly demonstrates that the Born–Oppenheimer approximation is far
better than would be expected from a simple mass ratio m/M. For example, if m/M ∼ 10−4,
which is typical in molecular systems, the error term is (m/M)1.5 ∼ 10−6.

2.2. The Born-Huang Expansion

To approach the exact solution of Equation (2) from the BO approximation, we need
to expand Ψ(r, R, t) in the stationary electronic basis functions {ΦI(r; R)} at each nuclear
position R as

Ψ(r, R, t) = ∑
I

χI(R, t)ΦI(r; R), (9)

where unknown time-dependent coefficients χI(R, t) are supposed to describe the nuclear
wavepackets. This is referred to as the Born-Huang expansion [39]. The electronic basis
functions {|ΦI〉} are assumed to be orthonormal at each nuclear configuration as

〈ΦI(R)|ΦJ(R)〉 = δI J . (10)

The nuclear wavefunctions are subject to the following coupled equations

ih̄
∂

∂t
χI =

1
2 ∑

k

P̂2
k

Mk
χI + ∑

J
Hel

I JχJ − ih̄ ∑
k

∑
J

Xk
I J

Mk
P̂kχJ −

h̄2

2 ∑
k

∑
J

Yk
I J

Mk
χJ , (11)

where

Xk
I J =

〈
ΦI |

∂ΦJ

∂Rk

〉
, Yk

I J =

〈
ΦI |

∂2ΦJ

∂Rk
2

〉
, (12)

and
Hel

I J(R) =
〈

ΦI

∣∣∣Hel
∣∣∣ΦJ

〉
. (13)

Since Xk
I J and Yk

I J serve as the mixing elements among the adiabatic electronic states, they
are collectively called nonadiabatic interactions. Tough difficulties in an attempt to solve the
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coupled equations of motion (11) are due to the many dimensionality of R, the oscillatory
nature (due to the short wavelength) of {χI}, and many channels to be taken into account.
Besides, some of {χI} can extend to asymptotic regions in reaction (scattering) dynamics.

Note that the above Born-Huang expansion can be performed with use of other basis
functions that do not satisfy Equation (6). In such a case Hel

I J(R) in Equation (13), have
significant amount of nonzero off-diagonal elements. {ΦI(r; R)} satisfying Equation (6)
are referred to as the adiabatic wavefunctions, while others are to diabatic wavefunctions
collectively. There are many ways to determine the diabatic functions [16–18,20], a typical
set being those that minimize

∣∣∣Xk
I J

∣∣∣. We will use the adiabatic representation in what follow
unless otherwise noted.

3. Implication of Chaos in Chemical Dynamics
3.1. Determinicity versus Stochasticity in Molecules

It was Arrhenius who established the well-known thermodynamical reaction rate k
from initial molecules to products in the form

k ∝ exp(−Ea/RT). (14)

This formula is indeed revolutionary in that the rate or speed has been derived based on
the Maxwell-Boltzmann distribution for equilibrium states. The physical insight of this rate
expression was uncovered by Eyring [40–42]. He studied a potential energy surface for
simple atomic exchange reaction

A + BC → [ABC]‡ → AB + C (15)

where [ABC]‡ is a transient state, called the transition state, at the bottleneck area on the
way of reaction. He assumed a statistical distribution for the vibrational modes transversal
to the translational one and associated the partition functions with them. He thus clarified
the quantum mechanical meaning of the barrier height Ea along with the preexponential
factors to k (Polanyi and Wigner also stressed the geometrical roles of the potential energy
surface VI(R) of Equation (6)) [40–42]. It is now known that the transition state theory is
approximately valid even in binary collisions in vacuum. Even a quantum mechanical
extension is one of the important subjects [43,44]. On the other hand, rather simple reactions
for small systems can now well be treated in full quantum mechanics in a completely
deterministic manner. (I do never mean that the full quantum scattering calculation for
chemical reactions is an easy task. See refs. [45,46] for examples.) Yet the fundamental
question is aimed at the theoretical ground of the statistical assumption made in the
transition state.

While being subject to statistical laws on one hand, the dynamics of molecular motions
are generally deterministic on the other hand. Let us see such a rather intricate example.
See Figure 1, which is an ab initio (first principle) dynamics of 5-methyltropolone (5MTR).
Ushiyama found that the proton shift from on O2 in the panel (a) to the position next to
O1 (panel (c)) induces the rotation of the methyl group -C8HaHbHc at the bottom. The re-
ciprocal motion of proton turns to rotational motion of the methyl group through such a
long distance. Careful inspection at the panel (a) and (c) shows that this determinicity is
supported by the shift of double bonds (see ref. [47] for the electronic state mechanism).
This example denies the simple minded view that a molecule can be always regarded as a
set of points of nuclear point masses connected by “springs” among them. We therefore
need a careful thought when we study the chaos of molecular vibrational motions.
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Figure 1. (a) Stable structure of 5-methyltropolone (5MTR). Hydrogen atoms attached on C3, C4,
C6, and C7 are not shown. (b) The transition state on the way. (c) Proton has ben shifted from O2

to O1 inducing the internal rotation of the methyl group at the bottom. [Taken from Ushiyama, H.;
Takatsuka, K. Angew. Chem. Int. Ed. 2005, 44, 2 with permission].

Another example of statistical reaction rate theory was given by Marcus [48], which
augmented the successors’ formalism due to Rice, Ramsperger, and Kassel, thereby now
called the RRKM theory for unimolecular dissociation, which predicts the rate of slow
unimolecular dissociation of a molecule energized high enough to surmount the potential
barrier. This process is schematically represented as

[MA]∗ → M + A, (16)

where an energized molecule [MA]∗ may have been produced by collision and/or photo-
excitation, and so on. From the view point of quantum scattering theory, [MA]∗ can be
regarded as a core (temporally) excited resonance, and the unimolecular dissociation may
be viewed as a half-collision process of the Feshbach resonance [49,50]. In case where those
decaying vibrational energy levels are densely packed having high density of states, a state
in the vibrational-state manifold wanders among many nonlinearly coupled vibrational
states with a long life-time. It is intuitively clear that statistical prediction should work
well in such a situation, since the corresponding microcanonical ensemble is expected
to be highly mixing. The years of 1970s have been devoted to prove that the ergodicity
and mixing in the relevant classical phase space of [MA]∗ is indeed realized by classical
chaos. Such stochastic energy redistribution within a molecule is now generally termed
Intramolecular Vibrational energy Redistribution (IVR), which represents one of the most
important concepts in chemical dynamics and will be briefly touched upon below. In short,
statistical mechanics works surprisingly well even in such small molecules composed only
of several atoms, not of the Avogadro number. Those dynamics deviating from the RRKM
theory are now placed under special focus for their possible peculiar phase-space structures,
which are often termed as non-RRKM dynamics.

The key quantity that brings about stochastic and statistical nature into small molecular
dynamical systems is the density of state (DOS), not the number of particles (atoms and
molecules). In case where the DOS is low, the quantum dynamics should be subject
to the Schrödinger equation and naturally deterministic. The higher is DOS, the harder
become the relevant coupled equations to solve, and statistical treatments turn out to be
more feasible. Due to the heavy masses of nuclei, the vibrational and rotational degrees of
freedom of a molecule tend to have very high DOS, which can readily amount to the order
1010 eV−1 even for several atomic systems. This is not as large as the Avogadro number
but sufficiently large to allow for statistical treatment. On the other hand, the DOS for the
typical low-lying electronic states is less than 1.0 eV−1, and quantum mechanics is almost
only one faithful approach. For this reason, the theory of stationary molecular electronic
states is widely called quantum chemistry. For these low DOS and discrete states, it is a
natural assertion that there is no chaos. Yet, in the end of this review, we will penetrate the
electronic state manifold of densely quasi-degenerate states, ending up with finding chaos.
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3.2. Intramolecular Vibrational Energy Redistribution (IVR)

Given the statistical assumption of molecular vibrational energy distribution, the
RRKM theory actually estimates the rate of unimolecular dissociation based on statistical
inference at the bottle neck position on the way to products in phase space [48], using the
transition state [40–42]. Yet, chemical dynamics has made a further step to the physical
processes of intramolecular vibrational (along with rotational) energy flow (redistribution)
within a molecule.

Such experimental studies were made possible by the advent of short pulse laser,
which has unified two then separated subfields in molecular science, namely, spectroscopy
of molecular structures and chemical reaction dynamics. As such the so-called stimulated
emission pumping (SEP) spectroscopy applied to acetylene molecule H-C≡C-H (linear in
shape having a triple bond) has given a huge impact [51–54]. Just briefly is outlined the
essence of the experiment below. Preparing beforehand an electronically excited state of
H-Ċ=Ċ-H (bent structure and longer C-C distances, double bond), they de-excited it to the
high vibrational excited state on the electronic ground state by induced emission. Varying
the time-width of the pumping laser, they observed very interesting vibrational emission
spectra in the various hierarchical levels of resolution. Reflecting the highly vibrational
excited states of polyatomic molecule, the attained spectra were extremely complicated,
manifesting the chaotic feature behind. Surprisingly nevertheless, Yamanouchi succeeded
to assign the spectral origins of most of the relevant peaks [52]. Among others, the most
striking spectral feature is the so-called nested clump structure: Each of clump-like spectral
peaks of a rather broad width is found to be composed of finer peaks attained when a longer
width pulse is applied. Each of these fine peaks in turn shows another clump structure
and is observed to consist of the even finer peaks with the pulse of further long width.
They ascribed the nested structures to the stepwise intramolecular energy redistribution
triggered by the mode change from the vibrational structure of H-Ċ=Ċ-H to that H-C≡C-H.
For example, the elongated Ċ=Ċ bond releases much vibrational energy to the shorter
C≡C in the first stage, which are transferred to the C-H stretching modes, which in turn
coupled with the bending motion of ∠HCC in due time ordering. More complicated
energy redistribution can follow such as a very large amplitude motion of the hydrogen
atoms, but we do not pursue them here. Since the spectra of the longer time-width can
track the long physical process of energy redistribution. The related experiments and
precise analyses have vividly shown the real-time and actual energy flow within a molecule.
The notion of chaos has thus physical reality in chemical dynamics.

The energy transfer among the different vibrational modes are induced by high an-
harmonicity of the relevant potential functions, leading to nonlinear canonical equations,
and are also due to the overlap among the Fermi resonances [55] or the Feshbach reso-
nance [50]. (see ref. [5] for the overlap criterion of chaos.) Therefore, the relevant dynamics
can readily result in chaos leading to ergodicity [56]. Many classical mechanical stud-
ies have been devoted to IVR. Yet, only recently become available extensive reviews on
quantum ergodicity and intramolecular energy flow due to Leitner [57] and quantum
ergodicity transition in relation to IVR in a phase space perspective by Karmakar and
Keshavemurthy [58].

Incidentally, energy transfer, relaxation, and redistribution of intra- and inter-molecular
systems in condensed molecular systems [55,59] and biological molecules [60,61] are also
among the basic processes of many of chemical phenomena, irrespective of the extent of
possible contribution by quantum chaos. Currently, molecular dynamics studies are among
the main streams in these fields, but those are beyond the scope of this review.

3.3. Onset of Statistical Properties: Liquid-Like Clusters

Beck and Steve Berry are the first, to the best of out knowledge, who found the
critical roles of classical chaos in the statistical behavior of “melting and phase transition”
appearing in structural isomerization dynamics of small atomic clusters [62]. Berry and
their coworkers have achieved many fundamental works about cluster dynamics. See
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ref. [63] as a representative paper. We also refer to the work by Chandler et al. [64] as a
pioneering study on stochastic dynamics of molecular isomerization.

Chaos not only makes the relevant phase space ergodic and mixing but also gives
interesting qualitative features to the dynamics of molecules. Such properties can be
typically seen in the structural isomerization dynamics of atomic clusters. Take an example
from Ar7 cluster on the Lennard-Jones potential, which has 4 isomers as depicted in Figure 2.
(Permutation symmetry counts more than 5000 isomers.) Each isomer is supported by
its own potential energy basin. In a low energy, each isomer can stay within its potential
basin keeping its structure as a solid, while at some high energy the isomerization begins
to take place by surmounting the potential barriers, and further in considerably high
energy frequent isomerization keeps taking place, which can be viewed as extensive large
scale vibrational motions over the entire molecule or as a liquid-phase analog [63]. Even
higher energy induces evaporation of one atom and two atomic molecule [65,66]. This
entire process is hence regarded as a molecular level prototype of the first-order phase
transition [62,63,67].

Figure 2. Four isomers on the single Lennard-Jones potential energy surface. The names and the
bottom energy of each potential basins are presented. [Drawn by Dr. C. Seko].

In the liquid-like phase, chaotic dynamics manifest themselves in the following phe-
nomena. (1) Each classical path wanders among the potential basins for individual isomers
in a random fashion (see Figure 2). The time-series with respect to the names of the isomers
such as {PBP→COCT→IST→COCT→PBOP→SKEW→ . . .} is stochastic in the Newtonian
dynamics, yet a path stays for somewhat long time in each basin [68,69]. (2) Memory
loss of the classical paths occurs. Despite mutually different potential barriers among the
individual potential basins, they behave as though they forget which basin they came from
and to which basin they are going to visit next. They seem not to care about the presence of
the so-called transition state, which is the lowest energy saddle between two basins [68,69].
(3) The time scale for a trajectory to penetrate into a mixing area after getting into a potential
basin is so short that trajectories readily lose the memory in the mixing area in phase space.
We call this situation inter-basin mixing [70]. (4) Microcanonical temperature can be defined
with which the lifetimes of the isomers are subject to an Arrhenius relation. This in turn
suggests the existence of the free energy despite the nonequilibrium dynamics [71].
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Behind the above chaotic dynamics we can imagine geometrical structures in phase
space, referred to as the reaction tubes. Suppose that a trajectory enters a PBP basin from
the neighboring COCT by passing through a divided surface (many dimensional). Then
there should exist a large bundle of similar trajectories flowing from the COCT to this PBP
that includes this particular trajectory. See Figure 3, which illustrates a part of the unit
piece of reaction tube. Into this PBP basin schematically represented as a circle, for instance,
many other reaction tubes come in from other neighboring potential basins such as those
of SKEW and IST. Soon after the tubes come in, each branches frequently as schematically
shown in the figure. The successive branching actually reduces the diameter exponentially
as time. Indeed one can measure the exponent of the decay in the form exp(−βt) [70,72].
This is a geometrical background for classical paths to lose their memory from which
basin they came in. Those extremely thin tubes entangle with other tubes of different
histories, and they repeatedly merge with one another to thicker tubes and each eventually
gets out of this basin to the neighboring ones (take the time reversal dynamics of the
branching). This is how they lose the future “memory” of which basin they are going to
visit next [70,72]. By construction it is obvious that the initial fat trunk of the reaction tube
depicted in Figure 3 is already a mixture of finer tubes of different histories, each of those
finer tubes being composed of even finer ones. Thus, the cross-section of the tube should
exhibit very complicated fractal structures, along with globally periodic orbits of many
different symbolic dynamics and different periods. In summary, repeated branching and
remerging of the reaction tubes exist behind the memory loss.

Figure 3. Schematic presentation of a unit of reaction tube in a potential basin and its bifuraction
structure. The circle schematically models a potential basin, each of which supports one isomer. Only
one of tubes is depicted and truncated at some points. The reaction tubes lie behind classical chaos in
structural isomerization dynamics, which is one of the so-called many-valey problems. The similar
tube units are extended from every neighboring potential basins, and one basin is filled with many
tubes. Time-revesal symmetry gives an idea of how the reaction tubes are reconnected with one
another to form thicker tubes and get out of the basin to next ones. [Drawn by Dr. C. Seko].

The original idea of reaction tube is due to De Leon and their colleague, which
they called the cylindrical manifold in the study of two dimensional two potential basin
dynamics [73,74]. “Bifurcation and remerging (reconnection)” of the reaction tubes can be
regarded as a basic mechanism of complex isomerization dynamics besides the baker’s
transformation. There are interesting studies about the fine structure of the reaction tubes
relevant to the stochastic dynamics. However we skip this aspect to quantum chaos.
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4. Quantum Dynamics in the Quasi-Separatrix of Two Dimensional
Molecular Vibration

In the early 1980s the studies of quantum chaos in terms of quantum wavepacket
propagation were made rather extensively in the community of chemical physics [75–78].
In particular, Feit and Fleck [78] are among the first, to the best of our knowledge, who
numerically integrated the Schrödinger equation for wavepackets on the Hénon-Heiles
Hamiltonian [28]. The scientific insights attained thus far with the accurate and the efficient
methodologies developed for those studies are indispensable to date.

We herein study pure quantum chaos in terms of wavepackets and eigenfunctions
confined in the separatrix on the modified Hénon-Heiles potential. This potential function
is regarded as a two dimensional potential energy surface (PES) on which for molecular
vibrational motion to develop.

4.1. Quantum Wavepackets Embedded in the Quasi-Separatrix

The Hamiltonian we adopt is

H =
1

2mx
p2

x +
1

2my
p2

y +
1
2
(x2 + y2) + x2

(
ay2 + y

)
+

1
3

y3(by− 1), (17)

where the masses are chosen as mx = 1.0087 and my = 1.0 and a = 0.6, b = 0.2 with the
Planck constant h̄ = 0.005. The parameters have been set so as to close the dissociation
channel inherent to the original Hénon-Heiles potential. The potential functions are drawn
in the upper panels of Figure 4, while the Poincaré surface of section at x = 0 with px > 0
for a selected energy is drawn at the left of the lower panel. One of the regular vibrational
modes lying in a torus, marked with “lib”, is drawn in the (x, y)-space right to the Poincaré
surface of section. An appropriate energy is chosen so that the quasi-separatrix has a small
to medium size so as to coexist with the set of tori of significant scales. These altogether
represent weak chaos.

Figure 4. Panels in the top row for the potential functions used (the left one for a perspective view and
the right for the contour plot). The bottom row, left panel indicates the classical Poincaré surface of
section at x = 0 and px > 0. The dark area with many dotts displays the quasi separatorix separating
the major tori. The symbols “lib” and “rot” characterize the vibrational modes of the individual tori.
The bottom right panel exemplifies one of the torus modes, a libratation. [Taken from Hashimoto, N.;
Takatsuka, K. J. Chem. Phys. 1998, 108, 1893 with permission].



Entropy 2023, 25, 63 11 of 52

We first track a wavepacket propagating in time within the major quasi-separatrix.
To do so, we extended the Poincaré surface of section to a quantum version as follows [79,80].
Given a two-dimensional wavefunction ψ(x, y, t), we first take a momentum representation
only in the x-coordinate such that

ψ̃(px, y, t) =
∫ ∞

−∞
dx exp

(
− i

h̄
pxx
)

ψ(x, y, t). (18)

Then Fourier back it using only the positive px such that

ψ+(x, y, t) =
∫ ∞

0
dpx exp

(
i
h̄

pxx
)

ψ̃(px, y, t) (19)

and put x = 0 there for making a cross section at x = 0. Bring it then into the Husimi
representation in such a way

ρH
(
qy, py, t

)
= (2πh̄)−1(πh̄)−1/4

×
∣∣∣∣∫ ∞

−∞
dy exp

(
− 1

2h̄
(y− py)

2 +
i
h̄

pyy
)

ψ+(0, y, t)
∣∣∣∣2. (20)

We then plot ρH
(
qy, py, t

)
in the

(
qy, py

)
-plane corresponding to the classical counterpart.

This is rather a faithful extension of the classical Poincaré section.
An example of the quantum Poincaré section is exhibited in Figure 5, the upper

row indicates |ψ(x, y, t)|2 at selected times, while the lower row shows the corresponding
quantum Poincaré section. It is clear in the quantum Poincaré section that the present packet
is running on the quasi-separatrix. It is noteworthy that in upper panels of Figure 5a,c,
the wavepacket stays around the unstable fixed points for a longer time, thereby leaving
two significant strips in the wavefunction in the corresponding (x, y) space. These dense
strips are an example of the so-called quantum scar first found by Heller [81] (see also E. J.
Heller, page 547 in ref. [4]).

Figure 5. Time propagation of a quantum wavepacket in the quasi-separatrix. Time passes from
panel (a–d). The upperrow indicates |ψ(x, y, t)|2 at selected times, while the lower row shows the
corresponding quantum Poincaré section, in which the wavepacket is seen to be running on the
classical quasi-separatrix. [Taken from Hashimoto, N.; Takatsuka, K. J. Chem. Phys. 1998, 108, 1893
with permission].
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4.2. Energy Spectra and Eigenfunctions in the Quasi-Sparatrix

The next question is whether the eigenfunctions can be built in the quasi-separatrix
without decaying to the stable tori. We next explore this aspect.

4.2.1. Energy Screening of Quantum Wavepackets

Prior to the numerical presentation we need to show how only (or at least mostly)
the separatrix eigenfunctions are extracted from the very many eigenfunctions. This
is a difficult task if we resort to the straightforward method of diagonalization of the
Hamiltonian matrix, which may be expanded in arbitrary basis functions. Fortunately,
those wavepackets we have shown above in Figure 5 are certainly running on the quasi-
separatrix, and it would be an appropriate idea to quantize those packets. Our way to do
so was as follows [82].

As a standard way to obtain eigenfunctions at any chosen energy E from a wave
packet, one may want to calculate the time-energy Fourier transform [83,84]

ψ(x, E) = (2πh̄)−1
∫ +∞

−∞
e+

i
h̄ Etψ(x, t) dt . (21)

However, this approach needs to pick extremely accurate E′s beforehand, usually by means
of the Fast Fourier Transform of a correlation functions. (Incidentally see ref. [85] to extract
very accurate spectrum from the FFT beyond a given grid size.) This is because the integral
in Equation (21) simply vanishes in use of an inaccurate E. Moreover one may need to know
in advance whether E should indeed belong to one of the quasi-separatrix eigenfunctions.

An efficient alternative to calculate eigenfunctions directly without the prior knowl-
edge on the energy spectrum is the screening method [82]. Suppose we seek for an
eigenfunction in an arbitrary narrow energy range [ε1, ε2]. A wavepacket residing in the
interval can be generated as

|Φ[ε1, ε2]〉 =
∫ ε2

ε1

dE δ(E−H)|φ(0)〉

=
1

2π

∫ ∞

−∞
dt

eiε2t − eiε1t

it
|φ(t)〉, (22)

with the help of

δ(E− Ĥ) = (2πh̄)−1
∫ +∞

−∞
dt e

i
h̄ (E−Ĥ)t , (23)

where |φ(t)〉 = e−iHt|φ(0)〉, and |φ(0)〉 is an initial wavepacket supposed to run on the
quasi-separatrix in the present purpose. If there is only one eigenstate in [ε1, ε2], this
wavefunction |Φ[ε1, ε2]〉 should converge to to the exact one, aside from the norm. Its
energy, if needed, is to be readily estimated as an expectation value. If the target energy
range does not contain any eigenfunction, |Φ[ε1, ε2]〉 converges to the null. When several
eigenstates are included in the range, one can step to a further elaboration, which is not
difficult at all [82,86]. Incidentally, notice the faster convergence in Equation (22) than in
Equation (21) due to the presence of t in the denominator.

4.2.2. Chaotic Eigenfunctions and Spectra

Figure 6 represents an almost degenerate pair of eigenfunctions belonging to the
quasi-separatrix wavefunctions. The left (right) panel represents an odd (even) function
with respect to the mirror line at the x = 0, with energy E = 0.152094 (E = 0.152500).
The two energies are close to the one for the classical Poincaré section of Figure 4. As seen
in the nodal structures, these are actually highly excited states. The classical motions at the
two major unstable fixed pints are separated by symmetry as a left-handed (right-handed)
librating motions (suggested by panel (a) and (c) in the upper row of Figure 5). However,
the quantum wavepackets mix together by floating from and into those fixed point areas.
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Looking back at the structure of the quasi-separatrix in Figure 4, it is noticed that two wide
areas around the fixed points (chaotic seas) are connected through thin canals, thus forming
constrictions (see at py = 0 in the section for instance). Therefore the wavepackets must
pass through those thin channels to move from one wide chaotic sea to the other to become
a global eigenfunction. In other words, those canals serve as “dynamical barriers”, which
suppress the mobility of the wavepackets. The above pair of eigenfunctions in Figure 6 are
generated through such dynamical barriers, and the slight difference in their energies and
the odd-even symmetry separation are all the consequences of that kind of blockade or
quasi-tunneling.

Davis and Heller found a quantum mechanical tunneling between two (or more) tori,
which are separated by separatrix(es). This phenomenon is referred to as the dynamical
tunneling through dynamical barrier [87–89]. In contrast, the pair of eigenstates observed
in Figure 6 are not literally dynamical tunneling, since the canal-passing is allowed both
quantum- and classical-mechanically. However, the view of the Poincaré section in Figure 5
suggests that the chaotic seas around the major fixed points reserve two major wavepackets
to stay long, which are weakly separated by the thin canals thereby serving as dynamical
barriers effectively. We therefore referred to this tunneling-like motion as dynamical
tunneling of the second kind [80]. This phenomenon seems to be peculiar to quantum
chaos, and yet we are not aware whether it has been found in actual molecular spectra.

Figure 6. A pair of almost degenerate eigenfunctions lying in the quasi-separatrix. In the left panel
is an odd function with respect to the symmetry axis x = 0 [energy E = 0.152094], while the right
being even [E = 0.152500]. The slight energy difference and the separation of the symmetry are due
to what we call dynamical tunneling of the second kind. See the text. [Taken from Hashimoto, N.;
Takatsuka, K. J. Chem. Phys. 1998, 108, 1893 with permission].

4.2.3. Dependence on the Magnitude of the Planck Constant

We are curious about the possible effects of the magnitude of the Planck constant on
quantum chaos. To save the space, we refer this aspect to our original paper [79]. Yet we
hereby briefly touch upon the smoothing of chaos in the larger value of h̄ as demonstrated
in terms of the Poincaré section. The above two panels in Figure 7 come from a separatrix
eigenfunction with h̄ = 0.005 ([E1, E2] = [0.150.0.153]), while the lower panel displays
the section h̄ = 0.010 ([E1, E2] = [0.150.0.156]). Such quantum smoothing is not at all
surprising, but the corresponding energy spectra are found not as simple (not shown here)
chematic [79]. As a chemist, I suspect that the biological worlds on the globe may not be
robust against a small change of the Planck constant.

4.3. Time-Dependent Spectrum of Very Long-Time Dynamics

The classical trajectories within the thin quasi-separatrix are generally not periodic
nor quasi-periodic by definition (meaning a zero measure for the exception), and moreover
they wander around circulating near one tori to another one from time to time, each torus
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of which represents different mode of vibration (see Figure 4). Therefore those trajecto-
ries seem to continue to undergo different vibrational motions mostly in an intermittent
way [90]. Therefore it can take extremely long time to extract the associated vibrational
quantum spectra from the correlation functions based on those trajectories. The resultant
spectrum can be time dependent, meaning that it is dependent on which timing we begin
to calculate the correlation function and on when we finish. Such an example of time-
dependent spectra are seen in [79,80] This is a serious issue in vibrational spectroscopy
for complicated molecules of chaotic behavior. (Recall the nested clump structure in the
SEP spectrum, mentioned in Section 3.2) The structural isomerization dynamics in the
liquid-like phase discussed in the previous section (Section 3.3) is actually a large amplitude
vibrational motion of the extremely long time-scale associated with chaos. It is still left
unresolved how to take vibrational spectra for such wandering motions from one potential
basin to another, spending some long time at each basin. Proteins in molten globule state
must have the similar nature to the liquid-like clusters.

Figure 7. Quantum Poincaré surface of section. Panels at the top row reprsent an quasi-separatorix
eigenfunction given by h̄ = 0.005 ([E1, E2] = [0.150.0.153]). The bottom panels are the eigenfunction
at h̄ = 0.010 ([E1, E2] = [0.150.0.156]). Left column (a) for the perspective views and the right
(b) for contour plots. [Taken from Hashimoto, N.; Takatsuka, K. J. Chem. Phys. 1995, 103, 6914
with permission].

5. Quantization of Chaos with Semiclassical Wavepackets

The mechanism of energy quantization is a landmark lying in between classical and
quantum mechanics. It is therefore quite natural for semiclassical mechanics to play
a major role there. Besides, the chemical dynamics quite often demands semiclassical
treatment for the nuclear motion apart from chaos. There are many beautiful studies in
the literature on the EBK semiclassical quantization for regular systems (see ref. [91,92] for
representative examples). As for quantization of chaotic dynamics the periodic orbit theory,
or the trace formula, due to Gutzwiller [35–37] is the central work [2,4–10,12]. One of the
most intriguing aspects of the trace formula is its relation to the Riemann and Selberg zeta
functions. However, reviewing it is by far beyond the scope of this article [93].
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5.1. The Gutzwiller Periodic Orbit Theory

The periodic orbit theory [35–37] treats the semiclassical estimate of the density of
states with the Feynman kernel K as

D(E) =
∫

dq
∫

dtK(q, q, t) exp
(

i
h̄

Et
)

. (24)

The theory applies the (first-order) semiclassical approximation to the Feynman kernel
or its energy representation (the energy Green function) to the density of states, thereby
extracting the essential roles of phase-space periodic orbits [94]. The successive applications
of the stationary phase approximations give rise to the famous expression

D(E) ' 1

(2πh̄)N

∫ ∫
dqdpδ(E− Hcl(q, p)) +

1
πh̄ ∑

γ

∞

∑
k=1

Tγ cos
(

k
(

Wγ

h̄ − π
2 λγ

))
√∣∣∣Det

(
Mk

γ − I
)∣∣∣ , (25)

where the first term of the right hand side is the Thomas–Fermi (classical) density of states
with the classical Hamiltonian Hcl(q, p) arising from the periodic orbits of zero length and
the second oscillatory terms represent the quantum interference among the finite periodic
orbits (specified by γ) in terms of the period Tγ, the action integral Wγ, and the Monodromy
matrix Mk

γ in the transversal direction of phase-space periodic motion. These terms should
be summed up with respect to the number of circulations k over all the possible periodic
orbits. However, it is very difficult particularly in many-dimensional systems to find
the necessary periodic orbits (see ref. [95] for instance) and count up their contributions
accurately. Moreover, it is well known that the periodic orbits proliferate exponentially as
the length of the period Tγ. Another intrinsic difficulty in the path summation appears
in the denominator in the second term of D(E). This is a direct reflection that most of the
semiclassical expressions bear the serious theoretical difficulty related to divergence of the
monodromy matrix, which explodes at the caustics or the turning points. The divergence is
particularly prominent in chaotic systems. It is therefore often claimed that the series of
periodic orbit sum in Equation (25) may not be absolutely convergent, which sometimes
leaves the trace formula to be obscure in practice. Furthermore, a naive question may be cast
at whether the oscillatory terms in the trace formula can indeed cancel the Thomas–Fermi
density at any energy of not-to-be quantized (off-resonant energy).

It seems that there are two major opposite directions to cope with the fundamental
difficulty of the trace formula. One is an attempt to recount the periodic orbit contributions
in Equation (25) in such a way to attain a conditional convergence [96]. Furthermore,
the convergence of the trace formula can be better considered in the complex energy
plane [97]. Semiclassical mechanics of higher order h̄ is obviously a canonical candidate to
improve the trace formula [98]. Deep mathematics are involved in these approaches.

The other one is to take an easier, simpler and more tractable approach, mainly based
on the semiclassical propagation of wavepackets. Our approach below is along this line.
Besides, semiclassical wavepacket theory is one of the main methodologies in chemical
reaction dynamics. As such, we here present our own approach, which is intended to
step further beyond semiclassical approximation to the exact one. We then attain some
insights about the mechanism of energy quantization, that is, the explicit roles of not only
constructive but destructive interferences in forming discrete energy levels. We also see
that the energy levels in chaos can be determined without the tedious pre-exponential
factor (or the Monodromy matrix) of the semiclassical kernel.

5.2. Wavepacket Semiclassics with Action Decomposed Function

Many semiclassical theories have been proposed in the literature [7,14,15,34,94,99–104],
either starting from the Feynman kernel, WKB theory or others. Yet, we consider the following
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theory to clarify the dynamical hierarchical structure in the range extending from classical and
semiclassical to full-quantum dynamics.

5.2.1. Short Time Dynamics of the Maslov Type Wavefunction

We represent a wavefunction Ψ(q, t) in the so-called Maslov type [102], such that

Ψ(q, t) = F(q, t) exp
(

i
h̄

Scl(q, t)
)

, (26)

for a short time interval [t, t + ∆t] on a multidimensional coordinate q in configuration
space, where Scl is assumed to satisfy the classical Hamilton–Jacobi (HJ) equation

∂Scl
∂t

+
1

2m
(∇Scl)

2 + V = 0, (27)

which defines relevant classical paths during the interval, with m being the mass. The clas-
sical factors are thus factored out for this short interval and thereby the purely quantum
factors are thus supposed to be included only in the function F(q, t) [32,33]. F(q, t) is
thus referred to as Action Decomposed Function (ADF) [29,30]. Then in this interval,
the Schrödinger equation for Ψ(q, t) is transformed to a linear equation of motion for the
complex valued amplitude function F(q, t) as

∂F(q, t)
∂t

=

(
−p · ∇ − 1

2
(∇ · p)

)
F(q, t) +

ih̄
2
∇2F(q, t), (28)

where p is a momentum at (q, t), which is q(t), as

p = ∇Scl(q, t). (29)

We use the mass weighted coordinates so that all the masses (m) are scaled to unity
m = 1, and thereby p is set to be numerically equivalent to the corresponding velocity v.
In transforming the Euler picture to the Lagrange by defining

D
Dt

=
∂

∂t
+ v · ∇ (30)

Equation (28) reads
D
Dt

F(q, t) =
[
−1

2
(∇ · p) + ih̄

2
∇2
]

F(q, t). (31)

F(q− qcl(t), t) is hence carried along a classical path qcl(t) in this interval. Then the Trotter
decomposition [94] valid for a very short time–interval ∆t gives

F(q− qcl(t + ∆t), t + ∆t)

' exp
[

ih̄
2

∆t∇2
]

exp
[
−1

2
(∇ · p)∆t

]
F(q− qcl(t), t)

' exp
[
−1

2
(∇ · p)∆t

]
exp

[
ih̄
2

∆t∇2
]

F(q− qcl(t), t) (32)

and represents the quantum effects in a product between the momentum gradient
(exp

[
− 1

2 (∇ · p)∆t
]
) and the pure quantum diffusion (exp

[
ih̄
2 ∆t∇2

]
). The theory is ex-

act except for the Trotter decomposition, provided that the classical action Scl(q, t) exists.
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5.2.2. Semiclassical Approximation

Equation (32) is first reduced to a semiclassical level of approximation by considering
the momentum gradient part only, which results in

F(q− qcl(t + ∆t), t + ∆t)

' exp
[
−1

2
(∇ · p)∆t

]
F(q− qcl(t), t). (33)

Notice that the Planck constant does not yet appear in this level. The time evolution of it is
approximately given by estimating the momentum gradient term as follows [29]

F(q− q(t + ∆t), t + ∆t)|q=qcl(t+∆t)

= exp

[
−1

2

∫ t+∆t

t
dt ∑

k

∂pk
∂qk

]
F(q− qcl(t), t)

∣∣∣∣∣
q=qcl(t)

=

(
σ(t)

σ(t + ∆t)

)1/2
F(q− qcl(t), t)

∣∣∣∣∣
q=qcl(t)

, (34)

or

σ(t + ∆t)1/2F(q− qcl(t + ∆t), t + ∆t)
∣∣∣
q=qcl(t+∆t)

= σ(t)1/2F(q− qcl(t), t)
∣∣∣
q=qcl(t)

, (35)

where the deviation determinant σ(t) is expressed as

σ(t) =
N

∏
i=1
∧
(

qi
cl(t)− qcl(t)

)
, (36)

which is an N-dimensional orientable tiny volume surrounding the point qcl(t) in configu-
ration space, with qi

cl(t) (i = 1, . . . , N) being the configuration space point of an ith classical
trajectories nearby the reference path qcl(t). See Figure 8 for geometrical definition of σ(t).
Since σ(t) arises from the orientable volume, the square root of it gives rise to the part of
the so-called Maslov phase [105]. (see ref. [106] for another geometrical meaning of the
Maslov phase.)

Figure 8. An illustration for geometrical implication of σ(t) defined in Equation (36). A deviation
determinant σ(t), which is an orientable volume, withrespect to the main path is formed with the
help of nearby classical paths. Time passes from panel (a–d). [Taken from Takahashi, S.; Takatsuka, K.
Phys. Rev. A 2004, 69, 022110 with permission].
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The above results can be represented in a symmetric manner by defining “square
root” of the volume element [107]. Suppose that an arbitrary function f (qt), where qt is the
coordinate system in configuration space, is mapped from the original point q0 at time 0 by
the classical flow q0 → qt. An integral also mapped is represented as

I =
∫

f (qt, t)dqt =
∫

f (qt, t)dq1/2
t dq1/2∗

t (37)

with

dq1/2
t ≡ exp

[
iπM(q0, qt)

2

]
|dqt|1/2, (38)

where dq1/2∗
t is intended to be the complex conjugate to dq1/2

t , and M(q0, qt) is the Maslov
index counting the number of the change of sign of σ(t) of Equation (36). The semiclassical
conservation rule is then written up to the phase as [107]

F(qt, t)dq1/2
t = F(q0, 0)dq1/2

0 . (39)

This is rather similar to the law of the Poincaré-Cartan absolute invariance in
phase space [108].

The momentum gradient ∑k ∂pk/∂qk can diverge, when it happens to hold σ(t) = 0
in Equation (35), where a classical path come to a focal point either in configuration or
momentum space. This is the origin of the difficulty of the theories of semiclassical level.
Yet, such a singularity can be removed by the quantum diffusion below [30].

5.2.3. Gaussian Wavepacket Approximation

We next proceed to take account of the quantum diffusion term. In doing so, we here
survey the dynamics of a Gaussian wavepacket among other possible choices of F(q, t).
Heller introduced the dynamics of a Gaussian function as early as in 1975 by assuming that
the potential function at the Gaussian center is truncated up to the quadratic terms [109].

We insert a Gaussian of the following form into the general scheme of
ADF Equation [30],

G(q− qcl(t), t) = g(t) exp
[
− 1

c(t) + id(t)
(q− qcl(t))2

]
, (40)

with both c(t) and d(t) being real-valued. Then some (rigorous) manipulations give

c(t + ∆t) = c(t)
(

σ(t + ∆t)
σ(t)

)2
(41)

and

d(t + ∆t) = d(t)
(

σ(t + ∆t)
σ(t)

)2
+

2h̄∆t
m

. (42)

or shows they satisfy the following differential equation, respectively,

ċ(t) = 2
σ̇(t)
σ(t)

c(t). (43)

and

ḋ(t) = 2
σ̇(t)
σ(t)

d(t) +
2h̄
m

. (44)

Note that the Planck constant appears only in this level of dynamical hierarchy. This
normalized Gaussian form are propagated in time quite accurately, under the dynamical
circumstances where the Gaussian may remain Gaussian. Yet, the theory needs additional
procedures when the dynamics under study faces difficult situations like wavepacket
bifurcation [110].
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Further, one can find an interesting internal structure in the Gaussian packet. Define
ζ(t) then such that

d(t) = ζ(t)σ(t), (45)

and insert this back into Equation (44) to obtain

σ(t)ζ̇(t)− σ̇(t)ζ(t) =
2h̄
m

, (46)

which is a Wronskian relation between σ(t) and ζ(t). This suggests that something is rotating
to maintain the packet in the quantum realm [30]. However, we step aside from this subject
to be back to the energy quantization problem [110].

5.3. On the Quantization Condition: Creation and Elimination of the Spectral Peaks by the Phases

It is quite often that only the to-be-quantized (resonant) energy peaks are under focus
without paying much attention to to-be-nullified part of D(E) at off-resonant energy areas.
We therefore reconsider here the basic mechanisms of evolution of the resonant peaks and
those of suppression of the off-resonant counterparts.

5.3.1. Prior Quantization Conditions Based on the Periodic Orbits

To reconsider the mechanism of quantization from the view point of wavepacket
dynamics, we get back to a little more elementary stage of the theory. Consider a spectral
density function

P(E) =
∫

PO

dq0dp0

h̄N Ptr(Ecl(q0, p0); E), (47)

for an N-dimensional system, where the pre-spectral density is defined as

Ptr(Ecl(q0, p0); E)

= lim
L→∞

1
L

∫ L

0
dtR(qt, q0, t) exp

[
i
h̄

S(qt, q0, t)− i
π

2
M(q0, qt)

]
exp

(
i
h̄

Et
)

, (48)

which is a correlation function starting from a classical point (q0, p0) on a manifold of energy
Ecl . M(q0, qt) is the Maslov index. R(qt, q0, t) represents an overlap integral between a
wavepacket at t = 0 and that of later time t. We implicitly assume that the wavepacket
adopted here has been taken from the above ADF framework, Equation (26), yet we do
not specify the functional form of it in this stage and it does not have to be a Gaussian.
The Fourier transform in Ptr eventually gives rise to the energy spectrum in Equation (47).
In the following analysis, we assume that (1) only the periodic orbits are to be considered
in Ptr(Ecl(q0, p0); E) as the symbol

∫
PO indicates, which is a natural consequence of the

stationary-phase condition, (2) the phases in Equation (47) are just made up with the
standard action integral and the associated Maslov phases alone, and (3) the amplitude
factor R(qt, q0, t) is always finite and smooth along the trajectories [111,112].

5.3.2. Peaks Arising from Individual Orbits and an Extended Quantization Condition

In the time-integration of P(E) in Equation (48), one can apply the stationary phase
approximation (SPA) to obtain

∂

∂t
[S(q, q0; t) + Et] = −Ecl + E = 0, (49)

which indicates that classical trajectories with Ecl should make a major contribution to
Ptr(Ecl(q0, p0); E), which is already well-known [35–37,113,114]. And Ptr(Ecl(q0, p0); E)
can be viewed as a function of both E and Ecl(q0, p0).
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We first survey the oscillatory property of the integrand of Ptr(Ecl(q0, p0); E). With the
classical action integral

S(qt, q0, t) =
∫ qt

q0

p(q; Ecl(q0, p0))dq− Ecl(q0, p0)t, (50)

we define

Λ(t; q0, p0) = R(qt, q0, t)exp
[

i
h̄

∫ qt

q0

p(q; Ecl(q0, p0))dq
∣∣∣∣
PO
−i

π

2
M(q0, qt)

]
, (51)

to rewrite Ptr(Ecl(q0, p0); E) in a simplified fashion as

Ptr(Ecl(q0, p0); E) =
∫

dtΛ(t; q0, p0) exp
[

i
h̄
(E− Ecl(q0, p0))t

]
. (52)

Note that both
∫ qt

q0
p(q; Ecl(q0, p0))dq and π

2 M(q0, qt) have the following time dependence
on the periodic orbits

(constant)× t + (oscillatory part). (53)

Here the constant part is calculated out as an average of
∫ qt

q0
p(q; Ecl(q0, p0))dq and π

2 M(q0, qt)

in Λ(t; q0, p0) of Equation (51) for the interval of, say, [q0, qT ]. Let the period of the periodic
orbit under consideration be T(q0, p0). Then we define a quantity X(q0, p0) such that

1
T(q0, p0)

1
h̄

qT∮
q0

p(q; Ecl(q0, p0))dq− π

2
M(q0, qT)

= X(q0, p0), (54)

and extract X(q0, p0)× t from the phase part of (51) (that is Equation (53)) in such a way that

1
h̄

∫ qt

q0

p(q; Ecl(q0, p0))dq−π

2
M(q0, qt)− X(q0, p0)t. (55)

Then this function should appears to be an exactly periodic function. Furthermore, since
the preexponential factor R(qt, q0, t) is also assumed to be periodic of T(q0, p0),

Λ(t; q0, p0) exp[−iX(q0, p0)t] (56)

is periodic with the period T(q0, p0) as a whole. Then one can expand the function
Λ(t; q0, p0) in a Fourier series such that

Λ(t; q0, p0) =
∞

∑
n=−∞

cn exp
(
−i

2nπ

T(q0, p0)
t + iX(q0, p0)t

)
, (57)

where

cn =
1

T(q0, p0)

∫ T

0
dtΛ(t; q0, p0) exp

[
i

2nπ

T(q0, p0)
t− iX(q0, p0)t

]
. (58)

Here we take a limit in the time integral for Ptr(Ecl(q0, p0); E) in Equation (48) up to
sufficiently long time L and rewrite it with the help of Equation (57) as

Ptr(Ecl(q0, p0); E)

≡ 1
L

∫ L

0
dtΛ(t; q0, p0) exp

[
i
h̄
(E− Ecl(q0, p0))t

]
=

1
L

∞

∑
−∞

cn
−ih̄T(q0, p0)

−2nπh̄ + (E− Ecl(q0, p0) + Xh̄)T(q0, p0)

×
(

exp
[

iL
h̄T(q0, p0)

(−2nπh̄ + (E− Ecl(q0, p0) + Xh̄)T(q0, p0))

]
− 1
)

. (59)
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The correlation function R(qt, q0, t) is assumed to be so smoothly varying (or much less
oscillatory than the phase factor) that it can be practically factored out from the Fourier
expansion with respect to the phases.

It is now clear from Equation (59) that only the denominator in this expression satisfy-
ing the condition

(E− Ecl(q0, p0) + Xh̄)T(q0, p0) = 2nπh̄ (60)

will lead to a peak in Ptr(Ecl(q0, p0); E) of the height of cn. The substitution of X(q0, p0)
with that of Equation (54) gives rise to a condition

(E− Ecl(q0, p0))T(q0, p0) +

[∫ qt

q0

p(q; Ecl(q0, p0))dq
∣∣∣∣
PO
− π

2
M(q0, qT)h̄

]
= 2nπh̄. (61)

This is a quantization (resonance) condition for Ptr(Ecl(q0, p0); E) (but not for P(E)), which
we call the prior quantization condition [111,115]. Not only E but (q0, p0) has to fulfill this
condition to make a peak in Ptr(Ecl(q0, p0); E). Although Ptr(Ecl(q0, p0); E) has far more
peaks than P(E) itself, many of these peaks are to be eliminated by destructive interference
upon integration over the trajectory space, which will be discussed below.

Yet, the true peaks should be contained in the set of peaks fulfilling Equation (61).
Note also that the additional condition of Equation (49) nullifies

(E− Ecl(q0, p0))T(q0, p0) (62)

in Equation (61), thereby reducing it directly to the EBK-like condition.

5.3.3. Destructive Interference Suppressing the Spurious Energy Peaks: Another Essential
Role of the Phases for Quantization

The off-resonant trajectories should suppress the values of P(E) to the order of O(h̄) due
to the Riemann-Lebesgue lemma. However, there can exist many quasi-resonant trajectories,
which would form spurious peaks in Ptr(Ecl(q0, p0); E). These peaks are anticipated to be
cancelled away by destructive interference with many other anonymous trajectories. As such
there are two basic case in which to suppress virtual peaks as follows. (We refer to the original
papers, ref. [111,112], for more details along with numerical presentations.)

Case in which E is Slightly Shifted from a True Eigenvalue (Near-Resonance Peaks)

Suppose there is a peak satisfying[∫ qt

q0

p(q; Ecl(q0, p0))dq− π

2
M(q0, qT)h̄

]
= 2nπh̄ (63)

at an energy Ecl(q0, p0) = Ex. It is expected theoretically that the contribution from nearby
orbits having E′cl(q

′
0, p′0) should make Ptr

(
E′cl(q

′
0, p′0); Ex

)
very small to the order of O(h̄).

However, if E′cl(q
′
0, p′0) happens to be sufficiently close to the Ex = Ecl(q0, p0), the peak is

split into “a pair of very high spurious peaks” that contain the peak of Ptr
(
E′cl(q

′
0, p′0); Ex

)
in

between. These peaks constitute a continuous width near the true peak. (For numerical
and graphical examples, see [111].)

Case of Generation of Harmonics in E

There is yet another mechanism to generate spurious peaks. A trajectory with
Ecl(q0, p0) happens to satisfy the resonance condition of Equation (63) with some “quantum
number” n and the energy Ex. Then, it is possible that the prior quantization condition
of Equation (61) may be satisfied by another set of (n′, E′x). They must be simply the
harmonics of the correct peak of (n, Ex) [111]. These harmonics also should be eliminated
by off-resonant trajectories in terms of the appropriate destructive interference.

Having presented the specific roles of off-resonant trajectories to suppress the spurious
peaks, we are concerned whether the trace formula implements such a function in it.
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5.4. Amplitude-Free Energy Quantization of Classical Chaos

One of the theoretical and numerical difficulties of the trace formula manifests itself
explicitly in the denominator of Equation (25) of the second term, which comes from
the amplitude factor of the energy Greens function. In the above analysis of the energy
spectrum, from Equations (48)–(61), no significant role was found for the amplitude factor
R(qt, q0, t) to play. We hence try to pursue a possible energy quantization disregarding the
absolute value of the amplitude factor, but taking the Maslov phase into account.

To explicitly monitor the sensitivity of the amplitude factor to the variation of the
preexponential factor, we first make the following preliminary calculations [116], in which
the amplitude factor is rescaled intentionally as follows.

CADF
s (t) =

∫
dq0F∗(qt, 0)F(q0, 0)

∣∣∣∣ ∂qt

∂q0

∣∣∣∣1−s

× exp
[

i
h̄

S1(qt, q0, t) +
i
h̄

p0 · (q0 − qt)−
iπM

2

]
, (64)

where CADF
s (t) is a correlation function using a primitive Gaussian function, and an artificial

scaling parameter s has been introduced. The value s = 0.5 reduces CADF
s to the original

semiclassical correlation function, while there is no physical justification to choose other
values. Yet, it numerically turns out that values up to at least s = 1.5 give correct energy
positions in the resultant spectra [116]. In particular the choice of s = 1.0 implies that one

can abandon the semiclassical amplitude factor as
∣∣∣ ∂qt

∂q0

∣∣∣0, aside from the Maslov phase,
to obtain the spectral positions.

After somewhat extensive analysis and numerical studies, we have confirmed that
the spectrum positions are accurately reproduced through an amplitude correlation func-
tion [117,118], of the form

CI I I
p0
≡
∫

dq0F∗(qt)F(q0) exp
(
− i

h̄
p0qt

)
exp

[
i
h̄

S2(qt, p0, t)− iπM
2

]
, (65)

where p0 is an initial momentum to be scanned to cover the entire spectrum, and F(qt) is
a (frozen) Gaussian function to be carried from the initial position q0 [115,116]. We only
need the way of calculation of the Maslov index as exemplified in Figure 8. It turns out
that the amplitude-free correlation function CI I I

p0
works quite well even in chaotic regime,

provided that the semiclassical dynamics under study is essentially dominated by the
phases. An example of chaotic spectrum in chaotic region for the Hamiltonian

H =
1

2mx
p2

x +
1

2my
p2

y +
1
2
(x2 + y2) + x2

(
0.6y2 + y

)
+

1
3

y3(0.2y− 1) + 0.1x (66)

with mx = 1.0087 and my = 1.0 is shown in Figure 9, where we have adopted h̄ = 0.005 and
Ecl ' 0.157. (Note that for a large h̄, the quality of semiclassical quantization is accordingly
deteriorated and should not be used.)

The partial success of the amplitude-free quantization without paying full attention
to the semiclassical amplitude factors, except for the Maslov phase, suggests that one
does not necessarily have to faithfully track the every fine complexity of the Lagrange
manifold behind classical chaos in order to perform semiclassical mechanics, partly due to
the quantum smoothing.
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Figure 9. (a) Classical Poincaré surface of section at x = 0, px = 0 for an ensemble of trajectories with
the total energy Ecl = 0.157. h̄ = 0.005. (b) The nearest neighbor level spacing of the full quantum
spectrum in this energy region, which is subject to the Wigner distribution, an indication of quantum
chaos. The right panel shows the spectrum taken from the amplitude free correlation function (green
solid) and full quantum counterpart (red). Only the spectral positions should be compared. [Taken
from Takahashi, S.; Takatsuka, K. J. Chem. Phys. 2007, 127, 084112 with permission].

5.5. Chaos Mediated by Dynamical Tunneling

Tunneling effect is one of the key phenomena to characterize chemical reactions not
only in very low temperature circumstances but even in excited states. It is now widely
accepted that complex semiclassical theory is very effective in the study of quantum
tunneling [119]. However, classical chaos generally makes the structures of the Lagrange
manifold and associated caustics very complicated in multidimensional complex space.
Besides, the choice of the stationary paths there is not necessarily achieved as in the
Feynman kernel over the real paths. Shudo and Ikeda have developed a pioneering
work to lay out and cope with the intricate yet beautiful tunneling paths in the complex
domain [120,121]. We here present a simple-minded idea on semiclassical tunneling by
introducing the parity of motion, which splits phase space into many mutually exclusive
nonclassical sub-spaces [122,123].

5.5.1. Semiclassical Tunneling Theory

We first need to formulate a tunneling theory in a semiclassical context [122,123]. Let
us begin with Feynman’s path integral representation of the kernel

K(x, ∆t; y) =
( m

2πih̄∆t

)N/2
exp

(
i∆t
h̄

[
m
2
(

x− y
∆t

)2 −V(
x + y

2
)

])
(67)

or in a more limited alternative

K(q + ∆q, ∆t; q) =
( m

2πih̄∆t

)N/2
exp

(
i∆t
h̄

[
∑
k

mk
2
(

∆qk
∆t

)2 −V(q)

])
, (68)
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where ∆q is not necessarily as short as ∆t, and V(q) is an arbitrary potential function. In the
path integration, the Euler variational principle

d
dt

(
∂L
∂q̇k

)
− ∂L

∂qk
= 0, (69)

with the Lagrangian

L = ∑
k

mk
2
(

∆qk
∆t

)2 −V(q)

= ∑
k

mk
2
(q̇k)

2 −V(q) as ∆q→ 0 with ∆t→ 0 (70)

brings about the stationarity in the integral [94]. It is seen though that the kernel of
Equation (68) is invariant to a set of parameters (constant) σk that are introduced in a
manner that

K(q + ∆q, ∆t; q) =
( m

2πih̄∆t

)N/2
exp

(
i∆t
h̄

[
∑
k

mk
2
(σk

∆qk
∆t

)2 −V(q)

])
(71)

as long as
σ2

k = 1. (72)

Define accordingly the corresponding Lagrangian L(σ) as

L(σ) = ∑
k

mk
2
(σk q̇k)

2 −V(q) (73)

which should satisfy the stationary condition

d
dt

(
∂L(σ)

∂q̇k

)
− ∂L(σ)

∂qk
= 0. (74)

An additional set of the Newtonian equations then results

mk q̈k = −σk
∂V(q)

∂qk
. (75)

Nothing happens when all σk = 1. If all the σk is −1, the paths emerged from Equation (75)
are equivalent to the so-called instanton path [94]. We refer to σk as the parity of motion.
A variety of the set {σk} gives the various combinations of non-tunneling and tunneling
paths in the real time. Thus, the sets of {σk} defines the individual phase spaces, which we
call sheets. No communication exists among them as long as the parity sets are frozen.

We can move to the Hamiltonian framework by defining

pk =
√

σk q̇k, (76)

where pk is pure imaginary for the negative parity. The corresponding canonical equations
of motion

σk ˙̄pk = −
∂H(σ)

∂qk
and σk q̇k =

∂H(σ)

∂ p̄k
, (77)

is defined with the modified Hamiltonian

H(σ) = ∑
k

σk
2mk

p̄k
2 + V(q). (78)

Setting σk = −1 is effectively equivalent to flipping the mass mk from positive to nega-
tive value.
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To see the invariance property inherent to the Hamilton system, the following coordi-
nates are convenient, that is

Qk =
√

σkqk and Pk =
√

σk p̄k, (79)

in which the new coordinates Qk’s in configuration space are also pure imaginary when
their parities are negative. Then Equation (77) are transformed to

Ṗk = −
∂H(σ)

∂Qk
and Q̇k =

∂H(σ)

∂Pk
. (80)

Due to the Poincaré-Cartan theorem of absolute invariance [108], the symplectic structure
the 2-form

ω2 = ∑
k

dPk ∧ dQk (81)

is conserved and the Stokes theorem allows to define the path-action Scl , that is,

Scl =
∫

∑
k

PkdQk − H(Q, P)dt. (82)

In order to adopt these paths in semiclassical mechanics, the Q-coordinates should be
rotated back to q-coordinates keeping P in such a way that

(Q, P)→ (q, P). (83)

Then we have an action integral

Scl(Q, P)→ Stnl(q, P) =
∫

∑
k

Pdqk − H(σ)dt

= ∑
k

∫ √
σk p̄kdqk − H(σ)dt, (84)

and a semiclassical wavefunction for tunneling is formally written as

ψ = A exp
(

i
h̄

Stnl

)
, (85)

where the pre-exponential factor A represents an amplitude. Since Stnl in Equation (84), is
generally complex-valued, we rewrite Stnl in the standard form as

Stnl = SR + iSI . (86)

Insertion of Equation (86) into Equation (85) gives

ψ = A exp
(
−1

h̄
|SI |

)
exp

(
i
h̄

SR

)
, (87)

where the phase convention to Stnl is taken so that SI becomes positive. Thus, the damping
of the norm due to tunneling is estimated as

exp
(
−2
|Im Stnl|

h̄

)
, (88)

which gives a natural definition of the relevant tunneling probability.
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The tunneling paths induce additional phases when they are incorporated into the
semiclassical Feynman kernel such that [124]

K(qt, t; qs, s : σ) = ∑
α

(
1

−2πih̄

) N
2 1√∣∣∣ ∂qt

∂ p̄s

∣∣∣ exp
(

i
h̄

Stnl + iφ
)

, (89)

where N is the number of dimensions and the additional phase φ is given by

φ = −π

2
N f +

π

4
Np (90)

at an entrance of a tunneling path and

φ = −π

2
N f −

π

4
Np (91)

at an exit of a tunneling path. Here Np is the number of the negative parities while N f is
the sum of the multiplicities of the zeros of ∂q f /∂ p̄i = 0 along the trajectory, which gives
the Maslov index.

Connection Problem

Tunneling paths can arise only upon transferring from {σk = 1} to another, typically
only one of σk is negative. This is because as the number of negative parities increases
the damping probability in Equation (88) also become large. Those paths on the different
sheets should be connected smoothly. To ensure smoothness, we change the sign of one of
the parities at a caustic in the direction normal to the caustic line. The caustics, at which
the density of the paths becomes very high (actually infinite in the primitive semiclassical
approximation), are defined with the so-called Jacobi field [94] in such a way that

det|
∂~q f

∂~pi
| = 0, (92)

where ~pi is a real-valued (quasi-)momentum vector for a given parity set {σk = ±1} at the
initial point on each sheet and ~q f is the final points of a trajectory on the same sheet. The tun-
neling path can get back to the Newtonian sheet of {σk = 1} in a similar manner [125].

The stationary phase condition in the semiclassical approximation to the Feynman
kernel requires that the quantum phase SHJ in Equation (89) should be connected smoothly
at the connection point. This requirement is expressed as

∂SHJ

∂q
(in classical region) =

∂Stnl
∂q

(in tunnel region), (93)

which simply implies
p̄k = − p̄k (94)

at the connection point. Obviously,
p̄k = 0 (95)

is the unique solution [126]. Therefore, to connect the wavefunctions smoothly at the
turning points in the relevant direction k, we may change the parity there (or parities
depending on the degeneracy of turning points) to the direction of zero momentum.

Tunneling phenomena are quite important in many chemical reaction dynamics, and
some applications of the present treatment are found in Refs. [124,126–128].
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5.5.2. Statistical Redistribution of Tunneling Paths

In view of the nature of this review article, we briefly show an example of chaos that
is induced by tunneling dynamics, just for curiosity. The Hamiltonian is

H =
1

2mx
p2

x +
1

2my
p2

y +
1
2
(x2 + y2) + x2y− 1

3
y3, (96)

where the masses are chosen as mx = 1.0087 and my = 1.0 so as to break the symmetry of
C3. The vibrational modes and the corresponding tori in the Poincaré surface of section
are depicted in Figure 10. The bottom panel displays a long time Poincaré section arising
from a single trajectory, which repeats dynamical tunneling from time to time among tori,
thus giving rise to chaos effectively. Here, however, we have intensionally disregarded the
damping of the amplitude induced by tunneling. Careful inspection will find the faint trace
of a couple of tori [125]. See ref. [125] for details about the present tunneling dynamics.

Figure 10. The right panel of the upper row shows the Poincaré section (x = 0 and px > 0) along
with the vibrational modes (left) belonging to the tori. E = 0.09. The botton row shows a long time
plot at the Poincaré section, which wanders from one torus to another through tunneling. Statistical
distribution through tunneling is recognized. [Taken from Ushiyama, H.; Takatsuka, K. Phys. Rev. E
1996, 53, 115 with permission].

6. Chaos Arising from Repeated Bifurcation and Merge of the Quantum Wavepackets
on Nonadiabatically Coupled Potential Basins

One of the characteristic features of quantum chaos is reflected on the energy level
statistics such as the patterns in the nearest neighbor level spacing distribution
(NNLSD) [114,129]. The extensive level repulsions among the states are widely recog-
nized to be the origin of the Wigner distribution in NNLSD. It is therefore natural to pay
attention to the nonadiabatic interactions as one of the key factors to modulate the structure
of the energy levels. As such, the theory of level dynamics [9,130–132] sets a focus on
nonadiabatic interactions as a factor that can modulate the energy levels in an anomalous
fashion. Shudo [133,134] explicitly clarified the effects of an avoided crossing on the level
distributions, the avoided crossing of which is induced by a variation of a part (s) of inter-
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action potential but not by those interactions presented in Equation (12). The nonadiabatic
interactions of Equation (12) are basically about electronic-state mixing due to the nuclear
kinematic coupling on the occasion of the variation of nuclear configuration (molecular
geometry) and are one of the most critical interactions in chemical dynamics [14,16–20].
Therefore, the beautiful methods in the level dynamics does not seem to apply to the
dynamics of molecules.

Besides, we are quite often concerned with the wavepacket dynamics of electrons
rather than the electronic energy levels at a given nuclear configuration. In other words,
the essential characteristics of molecular nonadiabatic dynamics is seen when the relevant
quantum wavepackets bifurcate and coherently merge (remix) many times at the molecular
geometry of significant nonadiabatic interactions. It is quite natural therefore to suspect that
the wavepacket bifurcation and merging should be the dynamical origin of purely quantum
chaos in place of “stretching and folding” in the baker’s transformation for classical chaos.
We hence survey the nuclear wavepacket dynamics of bifurcation and remixing in this
section first and then proceed to the nonadiabatic electron wavepacket dynamics in the
next section.

6.1. Experimental Observation of Bifurcation and Merge of the Quantum Wavepackets

We here show that “bifurcation and merging” of quantum wavepackets can be ob-
served with the modern real-time experiments. Among the cutting-age experimental
methodologies to track the femtosecond-scale nuclear motions in chemical dynamics,
the time- and angle-resolved photoelectron spectroscopy (TRPES) has been very well es-
tablished since 1999 [135–137], when the group of this author happened to start the first
complete ab initio full quantum mechanical simulation to track nuclear wavepackets in
TRPES [138–140]. Among others, we showed for the first time that the instance of bifurca-
tion and merging of nuclear wavepackets in passing across the nonadiabatic regions can be
directly observed [141,142]. That is, such bifurcation and merging are of physical reality.
Now other novel experimental methodologies are available.

For readers who might be interested in the recent experimental progress since then,
which are related to observation nonadiabatic dynamics, we refer to the following works
(we apologize for not a complete list). T. Suzuki is the first who used photoelectron
imaging technique to observe the dynamics passing through an intersystem crossing
of pyradine [143,144]. Wörner and his group observed the passage of NO2 molecule
across the conical intersection by means of the high harmonic spectroscopy [145] and time-
resolve photoelectron spectroscopy [146]. Further novel methods have been introduced,
such as attosecond stimulated X-ray Raman spectroscopy [147], time-resolved fluorescent
spectroscopy [148], ultrafast electron diffraction technique [149], and so on. We also found
that the wavepacket bifurcation can be directly observed not only by pump-probe technique
by means of pulse lasers but with induced photoemission spectroscopy from molecules
placed under a CW laser [150].

The basic experimental setting for the time-resolved photoelectron spectroscopy is as
follows: (1) First excite a ground state wavepacket to an electronically excited state by a
pump pulse-laser. This laser is of a sufficiently short width so that the nuclear wavepacket
thus excited begins to run spontaneously, which eventually passes across the nonadiabatic
region(s). Then, (2) shine another laser (probe laser) to ionize the excited state. (3) Measure
the energy and angular distributions of photoelectrons as a function of the time delay
(the time lag between the probe and pump), and thereby retrieve the information of the
dynamics of the nuclear (chemical) dynamics. This TRPES technique is quite successful in
that there is no closed channel to be probed.

The theoretical framework of TRPES is outlined below [138–140]. Briefly, the total
wavefunction is expanded in terms of the three relevant electronic states: Φ1 (with a
potential function V1), Φ2 (with V2), and Φ(−)

k (ion state), as

Ψ(r, R, t) = χ1(R, t)Φ1(r; R) + χ2(R, t)Φ2(r; R) +
∫

dkχk(R, t)Φ(−)
k (r; R), (97)
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where Φ(−)
k (r; R) is a scattering state having the in-going boundary condition [50] with k

labeling the wave vector of the photoelectron. The time-dependent coupled Schrödinger
equations for the vibrational wavepackets χ1, χ2, and χk are to be solved in a coupled
Schrödinger equations (note that χk is continuous with respect to k) under all the matrix
elements being evaluated in full quantum mechanics [138–140]. For instance, we need the
matrix elements with respect to the electronic continuum representing the electronic ioniza-
tion process. This is not an easy task. Once they are all solved through, the photoelectron
spectra are calculated from the vibrational wavepackets after the probe interaction as

P(εk) = k
∫

dRdk̂|χk(R)|2. (98)

Figure 11 shows the photoelectron spectra of NaI molecule exhibiting the wavepacket
bifurcation and merging, taken for the pump-probe delays of 675, 700, 725, and 750 fs.
Snapshots of the absolute square of the wavepackets on the diabatic potentials are shown

in the upper column. The red and blue ones represent
∣∣∣χ(dia)

1 (R, t)
∣∣∣2 on V(dia)

1 (R) and∣∣∣χ(dia)
2 (R, t)

∣∣∣2 on V(dia)
2 (R), respectively. These wavepackets are passing across the crossing

point (nonadiabatic region) from the right to the left. The photoelectron signals, the kinetic
energy distribution of photoelectrons, at each time are correspondingly draw in the lower
column. It is clearly seen that the peaks of photoelectron signals are modulated in real
time from one to two and three peaks, highlighting the wavepacket bifurcation to those
components. These dynamics can be comprehended primarily with the Condon principle:
The wavepackets running on the lower potential energy make the higher photoelectron
kinetic energy signals. The wavepacket bifurcation and merging and can thus be physically
observed in real time.

Figure 11. Photoelectron kinetic energy spectrum as the wavepackets bifurcate and merge at the
avoided crossing. (The potential curves in this figure are graphcally represented in the diabatic
representation.) The polarization vector of the probe laser light is perpendicular to that of the
pump, while the latter is set parallel to the line between Na and I. In the upper row are shown the
absolute square of the wavepackets at selected times (red (blue) one on the red (blue) potential curve).
The bottom row represents the corresponding energy-resolved photelectron signals. Figure drawn by
Dr. Y. Arasaki. [Taken from Takatsuka, K. Bull. Chem. Soc. Jpn. 2021, 94, 1421 with permission].

6.2. Chaotic Eigenfunctions in Nonadiabatically Coupled Potential Functions

We next survey how the infinite repetition of bifurcation and merge of the quantum
wavepackets results in the specific signature in eigenfunctions. Fujisaki systematically
investigated this aspect by placing a focus on the transition from regular to chaotic states
of the wavefunctions as functions of energy and the magnitude of nonadiabatic coupling
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elements [151,152]. The system used was the so-called Heller model, which was defined in
their pioneering work [153]. It is defined as (see also Figure 12)

H =

(
T + VA J

J T + VB

)
,

T =
1
2
(p2

x + p2
y), VA =

1
2
(ω2

xx2 + ω2
yy2) + εA, VB =

1
2
(ω2

xξ2 + ω2
yη2) + εB (99)

with ξ = (x + 2a sin θ) cos 2θ + (y− 2a cos θ) sin 2θ and η = −(x + 2a sin θ) sin 2θ + (y−
2a cos θ) cos 2θ, where T is a nuclear kinetic energy (nuclear masses are assumed to be
unity), Vi (i = A, B) two-dimensional diabatic harmonic potentials of each electronic state
i, J the nonadiabatic coupling constant between the electronic states induces an interaction
between the two otherwise uncoupled harmonic potentials. εi (i = A, B) indicates the
bottoms of each harmonic potential. The geometrical meanings of a and θ are shown in
Figure 12. The angle 2θ referred to as the Duschinsky angle cause a coupling between x
and y. Unlike the original Heller model, we chose the frame for VA to be ‘diagonalized’ (no
crossing terms like xy in VA). The location of the crossing manifold (usually called crossing
seam) should be presented in the original paper [152].

Figure 12. A schematic representation of Heller’s model system. The distance between the centers of
the potentials is 2a, and the angle between the relevant crossing seam (dotted line) and the primary
axis of each potential (dashed line) is θ. Inset: The perspective view of the present system. The energy
difference of the potential bottoms is ∆ε = εB − εA. [Taken from Fujisaki, H.; Takatsuka, K. J. Chem.
Phys. 2001, 114, 3497 with permission].

Since the Heller model is simply an uncoupled pair of harmonic potentials at J = 0,
it can have merely regular states depending on the values on J and θ. Yet, the intense
mixing induced by these coupling elements lead the wavefunctions and energy spectra to
exhibit chaotic patterns. As an example, Figure 13 demonstrates the spatial distribution of
some (selected) very chaotic wavefunctions. The chaoticity was quantified in terms of a
transition from the Poisson to Wigner distributions in the nearest neighbor level spacing
distribution (NNLSD), ∆3 statistics, and so on [151]. Here in the graph of Figure 13, only
the so-called amplitude distributions of the eigenfunctions, proposed by Berry [154], on
one of the surfaces (A) are shown. The definition of the amplitude distributions is

P(φ) =
1√

2πσ2
exp

(
− φ2

2σ2

)
, (100)

where P(φ) is the frequency distribution of the amplitude of the eigenfunction that is
randomly sampled at points that are energetically accessible in configuration space on each
potential. About 6000 points are randomly sampled in Figure 13, and it turns out that P(φ)
is found to be fitted with a large σ, reflecting the spatially wide distribution due to chaos.
Although not shown here, we found that the regular wavefunctions give much smaller σ
(far narrower distributions) [151,152]. Thus, we have seen a regular to chaotic transition
of eigenfunctions (and eigenvalues as well, not shown here) in nonadiabatically coupled
quantum system.
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Figure 13. First row from the top: Eigenfunctions squared (from left to right, 800th, 810th, and 820th)
of Heller’s model system on surface A (see Figure 12) with J = 1.5 (intermediate coupling) and
θ = π/6. Second row: The corresponding eigenfunctions (squared) on surface B. Third row: The
corresponding amplitude distributions of the eigenfunctions onsurface A. The dashed envelope
curves represent Gaussian functions. [Taken from Fujisaki, H.; Takatsuka, K. Phys. Rev. E 2001, 63,
066221 with permission].

6.3. Need for Measures of Chaoticity in Quantum Wavepackets

One of the most interesting issues in quantum chaos is how to measure the extent of
chaoticity. This would depend on the definition of quantum chaos [2–12]. Characterization
of chaoticity embedded in discrete quantum energy levels has been extensively studied (see
Refs. [5,9,11] for instance). For example, the measures such as NNLSD, ∆3 statistics, and
so on, work well to capture chaos. On the other hand, we need to characterize chaoticity
in the dynamics of wavefunctions of molecules. Berry’s amplitude distributions of the
eigenfunctions P(φ) in Equation (100) can be used as one of such measures by applying at
each time of the time-propagation of a packet. However, this measure seems to be based
on a rather intuitive expectation that the chaotic wavefunction should be always widely
distributed in space. Another concern is whether it can distinguish well between regular
systems and those of quantum localization and the quantum scar.

The studies on classical chaos have already established such measures like the Lya-
punov exponent [155], the real-complex valuedness of the eigenvalues of the stability
matrix, KS entropy, and so on [1]. In practical studies on chemical dynamics we often need
a crisp measure to detect and/or characterize chaoticity in the propagation of wavefunc-
tions. However, it is known that quantum coherence working in quantum wavepackets
particularly make a significant difference from the classical one. Suppose we have two
wavepackets φµ(t) and φµ′(t), which are slightly different from each other in their initial
conditions µ and µ′, the initial condition of two wavepackets for instance. In marked
contrast to the exponential deviation of two classical trajectories of slightly different initial
conditions, the following overlap between the two packet

Oµµ′(t) =
∣∣∣〈φµ(t)

∣∣φµ′(t)
〉∣∣∣2 (101)
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is kept constant as long as they are subject to the same Hamiltonian. For the same reason,
quantities like the Shannon entropy

S(t) = −
∫

dq
∣∣φµ(q, t)

∣∣2 log
∣∣φµ(q, t)

∣∣2 (102)

is conserved as well. Then, a primitive idea to break the coherence is as follows [156].
Prepare a projection operator

Pi =
∫

Ai

dr|r〉〈r| (103)

where Ai is a subset (local area) of the entire space and satisfies Ai ∩ Aj = ∅ for i 6= j.
In place of the overlap integral Oµµ′(t)

Oµµ′(t) =

∣∣∣∣∣
〈

φµ(t)

∣∣∣∣∣∑i
Pi

∣∣∣∣∣φµ(t)

〉∣∣∣∣∣
2

(104)

we consider the following modulation

Dµµ′(t) = ∑
i

∣∣∣〈φµ(t)|Pi|φµ′(t)
〉∣∣∣2, (105)

which obviously destroys the coherence among the different regions. In chaos φµ(t) and
φµ′(t) deviate from each other in configuration space, and Dµµ′(t) is anticipated to exhibit
a quick damp from a slight difference in the initial condition [156]. A good compromise to
balance the number of Ai and size is necessary to sensitive yet economical detection of chaos.
It has been shown numerically that the method works very well even for the nonadiabatic
dynamics as in the above Heller model system [156]. However, this decoherence method
costs much labor in many dimensional systems. We hence need general and tractable
alternatives. We will be back to this aspect in the next section.

7. Chaos in Nonadiabatic Electron Dynamics of Molecules

In this section, we review chaotic dynamics in electronic state manifolds, those states
involved in which are mixed frequently and extensively by the nuclear kinematic couplings,
or as vaguely termed, nonadiabatic interactions [21,23–27]. (We do not review the tradi-
tional and canonical theories of nonadiabatic transitions for nuclear wavefunctions, essen-
tially originating from the spirit of the Landau-Zener-Stuekelberg theory [14,16,17,19,20]).

7.1. The Hamiltonian Studied for Electron Dynamics
7.1.1. Electron Dynamics

The coupled Equations (11) based on the Born-Huang expansion, Equation (9), set
the theoretical foundation of molecular science. Yet, various drawbacks arise coming from
the time-independent representation of the electronic wavefunctions {ΦI(r; R)}. First of
all, it is technically hard to prepare a set of potential functions {VI(R)}, on which the
nuclear wavepackets {χI(R, t)} propagate in time. In particular, the most serious situation
appears when the electronic states are densely quasi-degenerate and are strongly coupled
to one another through the nonadiabatic interactions. In such a case a huge time-dependent
fluctuation over the electronic states can appear. To cope with those difficulties, we resume
the dynamics with time-dependent electronic wavefunctions from the beginning.

We hereby restart our basic framework from the following representation of the total
Hamiltonian operator [21,157]

H(R, elec)

≡ 1
2 ∑

k

(
P̂k − ih̄ ∑

I J
|ΦI〉Xk

I J〈ΦJ |
)2

+ ∑
I J
|ΦI〉H(el)

I J 〈ΦJ |, (106)
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where P̂k is the nuclear momentum operator. R indicates the nuclear coordinates, and we
represent the electronic states in the Hilbert space, not in the configuration space r. Note that
P̂k are to be operated only on the nuclear wavefunctions, not on the electronic wavefunctions
ΦI(r; R) , since such kinematic interactions have already been taken into account in Xk

I J
of Equation (106). The sum over the electronic states suffixed with I and J may include
continuum states.

No approximation has been made so far, and, we here introduce an approximation
that the nuclear momentum operators P̂k are replaced with their classical counterparts Pk as

H̃(R, P, elec)

≡ 1
2 ∑

k

(
Pk − ih̄ ∑

I J
|ΦI〉Xk

I J〈ΦJ |
)2

+ ∑
I J
|ΦI〉H(el)

I J 〈ΦJ |. (107)

Then the total wavefunction subject to the Hamiltonian of Equation (106) is to be reduced
to an electron wavepacket state running on paths R(t) (but not necessarily Newtonian
trajectories). More explicitly, we expand it as

|Φelec(t; R(t))〉 = ∑
I

CI(t)|ΦI(r; R)〉
∣∣∣∣
R=R(t)

, (108)

along each R(t), where {ΦI(r; R)} is a basis functions taken at each nuclear coordi-
nate R, and ΦI(r; R) do not have to be the eigenfunctions of the electronic Hamiltonian.
Equations (107) and (108) are widely referred to as mixed quantum-classical representation.
The time-dependent coefficients CI(t) are to be evaluated with the coupled equations of
motion for electron wavepackets in such a way that

ih̄
dCI
dt

= ∑
J

[
H(el)

I J − ih̄ ∑
k

ṘkXk
I J −

h̄2

4 ∑
k
(Yk

I J + Yk∗
J I )

]
CJ , (109)

where H(el)
I J , Xk

I J , and Yk
I J have been defined in Equations (12) and (13), respectively. Again,

the electronic basis {ΦI(r; R)} are not demanded to be adiabatic ones. The bra-ket nota-
tion used here indicates integration over the electronic coordinates r only. Furthermore,
the second order derivative terms Yk

I J in Equation (109) are quite often neglected in practice

because they are always accompanied by the small quantity h̄2 [25,26], although it is not
always negligible in general.

7.1.2. Nuclear Dynamics: Path Branching

The nuclear paths R(t) are driven by the force field provided by the electronic states,
more explicitly in terms of the force matrix Fk

I J (see ref. [21]) defined as

Fk
I J = −

∂H(el)
I J

∂Rk
−∑

K

(
Xk

IK H(el)
KJ − H(el)

IK Xk
KJ

)
+ ih̄ ∑

l
Ṙl

[
∂Xl

I J

∂Rk
−

∂Xk
I J

∂Rl

]
, (110)

which arises from the variational principle or the Hamilton canonical equations of motion
for (R, P) [21].

The non-zero off-diagonal elements of Fk
I J can induce branching of the nuclear paths

R(t) [22]. If, on the other hand, the force matrix is diagonal, that is, Fk
I J = 0 for I 6= J, each

of Fk
I I gives a Newtonian force on each potential function I, which gives the theoretical

foundation for the so-called ab initio dynamics, molecular dynamics, the first principle
dynamics, and so on.
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7.1.3. Nuclear Dynamics: Mean-Field Approximation (Semiclassical Ehrenfest Theory)

To save the work needed for the path branching calculations [22], we often adopt a
mean-field approximation, the so-called semiclassical Ehrenfest theory (SET), in which the
force matrix of Equation (110) is to be averaged over the electron wavepacket as

〈Fk〉 = ∑
I J

C∗I Fk
I JCJ

= −∑
I J

C∗I
∂H(el)

I J

∂Rk
CJ −∑

I J
∑
K

C∗I
(

Xk
IK H(el)

KJ − H(el)
IK Xk

KJ

)
CJ , (111)

which gives rise to a single force for a single path. If the basis set {ΦI(r; R)} happens to be
complete, Equation (111) is reduced to the form of Hellmann–Feynman force

〈Fk〉 = −
〈

Ψelec

∣∣∣∣∣∂Ĥ(el)

∂Rk

∣∣∣∣∣Ψelec

〉
. (112)

The use of the mean-field approximation is justified for short-time propagation, typically
shorter than 100 fs. Indeed, it has been numerically shown [22] that the electronic-state
mixing is very well (accurately) reproduced by SET for a short time, provided that the
nonadiabatic coupling elements Xk

IK and electronic matrix elements H(el)
IK are both correctly

evaluated. As the nuclear positions proceed to some extent, the Ehrenfest paths should be
modified accordingly [22].

7.2. Longuet–Higgins (Berry) Phase and Lorentz-like Force

Before proceeding to the electronic-state chaos, we make a detour to a specific force
working on the nuclei, which can cause breaking the mirror symmetry of molecular shape,
namely molecular chirality.

Let us review the molecular Hamiltonian of Equation (107) now in classical electro-
magnetic field

H̃(R, P, elec, A) ≡

1
2 ∑

k

(
Pk −

Zke
c

Ak − ih̄ ∑
I J
|ΦI〉Xk

I J〈ΦJ |
)2

+ ∑
I J
|ΦI〉H(el)

I J (Aele)〈ΦJ |, (113)

where Ak(R) are the (classical) electromagnetic vector potentials on nuclei. The electronic
Hamiltonian also includes the vector potential Aele. In this expression we notice that the
nonadiabatic couplings mechanically stand parallel with the vector field A, which suggests
the qualitative roles of the nonadiabatic couplings working on the nuclear momentum may
be akin to those of the vector potentials.

Indeed it is well-known that there is a mathematical similarity between the Aharonov–
Bohm phase [158] and the Longuet–Higgins phase [159], the latter being well known
in chemical dynamics relevant to the so-called conical intersection, which is a special
case of nonadiabatic interaction. (see ref. [18] for the interesting properties of conical
intersection.) These two phases have been unified as the so-called geometrical phase, often
called Berry’s phase [160,161]. In light of the above parallelism in Equation (113), we
suspect another similarity to exist between them: As the electromagnetic Lorentz force
works on a charged particle running in a magnetic field, a novel force, which we call the
Lorentz-like nonadiabatic force, appears to work on nuclei running in a field created by the
nonadiabatic interaction field [21,162].

To be more specific, let us imagine a molecular system as illustrated in Figure 14.
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Figure 14. A symmetry breaking by pyramidalization of a coplanar molecular system, leading to
molecular chirality. (a) Atom A is approaching the planar molecule on the same plane. (b) The
Lorentz-like nonadiabatic force triggers to guide the incident atom to the direction out of the plane.
(c) The Hellmann-Feynman force follows to make the pyramidalization complete. [Taken from K.
Takatsuka, J. Chem. Phys. 146, 084312 (2017) with permission].

At the center we have an atom C, say carbon atom, and around it lie three atomic
or molecular elements A1, A2, A3. All the elements A1, A2, A3 in the molecule CA1A2A3
are mutually different and sit stably on a common plane. Suppose an external atom A is
coming in on the same plane of an x − y coordinates. (A1, A2, A3, and A should be all
different species from each other.) The z-direction is set to be perpendicular to this plane
and the plus or minus of this direction determines the right or left with respect to the
plane. Let (xa, ya, za) be a point of the incident atom A. Then the force matrix in za-direction
(perpendicular to the plane) [162] is given such that

Fza
I J =−

(
∂H(el)

∂Rza

)
I J

− ih̄

(
Ṙxa

[
∂Xxa

I J

∂Rza

−
∂Xza

I J

∂Rxa

]
+ Ṙya

[
∂Xya

I J

∂Rza

−
∂Xza

I J

∂Rya

])

− ih̄
A1,A2,A3

∑
b 6=a

x,y,z

∑
jb

Ṙjb

∂X jb
I J

∂Rza

−
∂Xza

I J

∂Rjb

, (114)

where the suffix b specifies A1, A2, and A3, and jb indicates the (x, y, z)-coordinate of each
element. This is a force while the state undergoes nonadiabatic transition from an Ith to the
Jth one. Just for simplicity, we assume that all the atoms other than the incident atom A
stay still, thus neglecting the possible vibrational motion. For the sake of clear presentation,
we simply set to

Ṙjb = 0 (j = x, y, z and b 6= a). (115)

Hence only the atom A is supposed to be moving on the plane with a nonzero value of(
Ṙxa , Ṙya

)
and Ṙza = 0. Fza

I J is then reduced to

Fza
I J = −

(
∂H(el)

∂Rza

)
I J

− ih̄

(
Ṙxa

[
∂Xxa

I J

∂Rza

−
∂Xza

I J

∂Rxa

]
+ Ṙya

[
∂Xya

I J

∂Rza

−
∂Xza

I J

∂Rya

])
. (116)

We here define the Lorentz-like nonadiabatic force with the second term of the right hand
side of this equation as [162]

f za
I J ≡ −ih̄

(
Ṙxa

[
∂Xxa

I J

∂Rza

−
∂Xza

I J

∂Rxa

]
+ Ṙya

[
∂Xya

I J

∂Rza

−
∂Xza

I J

∂Rya

])
(117)

and simply write as
Fza

I J = −
(

∂za H(el)
)

I J
+ f za

I J , (118)

where −
(

∂za H(el)
)

I J
is the short-hand notation of the off-diagonal Hellmann-Feynman

term. (Note that the diagonal elements of the nonadiabatic interaction XI I are zero if the
function used as the basis functions are real. However, this is not the case for complex-
valued wavefunctions.)
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The expression in Equation (117) can be reexpressed in a more familiar manner: Let us
consider a vector of the force matrix elements as

~f a
I J =

(
f xa
I J , f ya

I J , f za
I J

)
. (119)

In terms of the vector ~Xa
I J(R) of the nonadiabatic interaction fields

~Xa
I J(R) =

(
Xxa

I J (R), Xya
I J (R), Xza

I J (R)
)

(120)

we define a vector field
~Za

I J(R) = −ih̄~∇a × ~Xa
I J(R), (121)

in which the dependence on the nuclear coordinates R is explicitly denoted. Then ~f a
I J is

expressed as
~f a

I J(R) = ~va × ~Za
I J(R), (122)

where~va is the velocity vector of the atom A, and ~∇a× indicates the curl on the coordinates
for the atom A only [162].

It is immediately noticed that this expression is essentially of the same mathemat-
ical form as that behind the Fleming left-handed rule in classical electromagnetic theory.
The Lorentz force distinguishes the front and back sides of a plane made up by an electron
current and a magnetic field. See Figure 15. Thus, a simple relationship is found between
the electromagnetic Lorentz force and the Lorentz-like nonadiabatic force in such a way that

~Aa ↔ ~Xa
I J , ~Ba ↔ ~Za

I J , Ṙa × qaeBa ↔ ~va × ~Za
I J , (123)

where B is a magnetic field.
We thus recognize that the nonadiabatic force can distinguish right and left with

respect to the plane of the vector field of nonadiabatic interactions, which can serve as one
of the fundamental mechanisms of the origin of molecular chirality. Yet, further study is
needed to quantify the actual magnitude of anisotropic force.

v
ZIJ

fIJ

Figure 15. A particle coming in with a velocity vector v into the ZI J field feels a force fI J , which is
orthogonal to both v and ZI J , according to ~f a

I J(R) = ~va × ~Za
I J(R). See the text for the definition of ZI J .

7.3. Chaotic Electron Dynamics in Densely Quasi-Degenerate Electronic-State Manifold; B12
Cluster as an Example

As a candidate among molecules possibly having electronic-state chaos, we study some
of the highly excited states of a cluster consisting of 12 boron atoms, B12. The nonadiabatic
interactions working among the excited states of this cluster cause very frequent transitions
among adiabatic states [163–165], resulting in frequent and continual state-mixing as
represented as (recall Equation (108))

adiabatic

∑
I

CI(t)Φad
I (r; R(t)). (124)

In contrast to classical chaos, there is no crisp criterion with which to define or identify
chaos in quantum dynamics, to the best of our knowledge. Below we only quantify the
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extent of chaoticity of the relevant electron dynamics represented as in Equation (124).
A special attention is paid to the random mixing among the deterministic electronic states
in the state space. We then discuss the possible manifestation of those strong chaoticity in
chemical and physical properties of the clusters.

7.3.1. Nearest Neighbor Level Spacing Distribution (NNLSD)

At any selected time t, or at any molecular shape R, one can diagonalize the electronic
Hamiltonian matrix H(el)

I J in Equation (109). The energy levels are therefore geometry depen-
dent. We have surveyed the NNLSD for the B12 cluster (see ref. [164] and its supplemental
material stored in J. Chem. Phys.). It turns out that whereas the NNLSD shows a clear
Wigner distribution in case of low symmetry of molecular shape, level clustering occurs
to some extent when the molecule is of higher symmetry, actually C3v symmetry. This is
natural because the systems of higher symmetry tend to bear accidental degeneracy more
often. On the other hand, the possibility (measure) for this system to take C3v symmetry
is actually zero in the dynamical studies of variable R(t). Thus, we can judge that the
present system has a chaotic structure in its energy level. However, our goal is to clarify and
characterize the chaotic feature possibly hidden in the individual electronic wavepackets.

7.3.2. Diffusive Dynamics in the State Space: Fractional Brown Motion

It is experimentally hard to pick and prepare a pure adiabatic excited state out of the
densely quasi-degenerate electronic state. Even if one could successfully pump the ground
state to one of the highly adiabatic states, the resultant state would quickly begin to undergo
continual nonadiabatic mixing with other states, each of which in turn further mixes with
other states. These enduring state-mixings look like a diffusion as a whole in the electronic
Hilbert space. Figure 16 shows the magnitude of |CI(t)|2 of Equation (124) in a color code
in the (I, t) space. The brighter color indicates the larger |CI(t)|2. It visibly demonstrates
that diffusive dynamics has been certainly realized in the electronic-state space.

To quantify the extent of the diffusive motion of the wavepackets in the electronic state-
space explicitly, we survey the scaling property of the dynamics in terms of the fractional
Brownian motion (fBm) of Mandelbrot [166]. Consider

∑
J=1

(J − I(0))2∣∣CJ(t)
∣∣2 = DI(0)t

α, (125)

where I(0) indicates the state number of the initial state (that is CI(0)), and CJ(t) is the
mixing coefficient at time t starting from this initial I(0) state. Again CJ(t) have been
evaluated with the SET electron wavepackets. Recall that the exponent α = 1.0 implies
the ordinary diffusion and DI(0) is just the ordinary diffusion constant. States of the initial
adiabatic state I(0) = 3, 40, 100, 300, and 500 have been numerically examined [164].
Furthermore, it turns out that the nonadiabatic electron dynamics of I(0) ≥ 40 are indeed
the fractional Brownian motion (fBm) in the sense of Equation (125). The exponent of the
present fBm is found to be about α = 0.15, which suggests a milder stochastic motion
than ordinary diffusion. Interestingly, the values of the exponent is mostly independent of
the initial states chosen, whereas the diffusion constants DI(0) significantly depend on the
initial states, with the higher states having the larger diffusion constant.

Thus, Figure 16 convinces enough that the concept of adiabatic state in the Born-
Oppenheimer approximation and the associated the energy level (potential energy hyper-
surface) all lose sense in the present situation. Besides, the dynamical aspect of chaos is
far more directly relevant to the present huge electronic-state fluctuation than the static
signatures of chaos like the level statistics.
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Figure 16. Diffusion–like redistribution of the electronic states in the excited electronic state manifold
of B12 cluster. It is actually a fractional Brownian motion [164] in the state space. The dynamics of the
log|CI(t)|2 of Equation (108) is tracked with the SET and is charted in color code. An initial state has
been prepared at the 300th adiabatic state. The extensive diffusive state is realized well before 10 fs.
[Figure drawn by Dr. Y. Arasaki. Taken from Takatsuka, K. Bull. Chem. Soc. Jpn. 2021, 94, 1421 with
permission].

7.3.3. Shannon Entropy

We next calculate the Shannon entropy in terms of |CI(t)|2 taken from Equation (124),
which is the probability for the electronic wavepacket to occupy the Ith adiabatic state at
time t. Hence,

S = −∑
I
|CI(t)|2 log|CI(t)|2 (126)

quantifies the information about randomness in the electronic Hilbert space. Note this
entropy is different from Equation (102). Incidentally, the present system is too large
to apply the spirit of decoherence as in Equation (105). Figure 17 shows S for the three
wavepackets, those starting from the adiabatic state #100, #200, and #300. A very quick
rise from S = 0 is observed for all the wavepackets up to about 5 fs, and much slower
uprises follow since then. The absolute magnitude of the entropy is found to be larger
for the higher state, which seems natural. In case of the adiabatic dynamics, where no
electronic-state mixing is induced, the entropy is kept zero since |CI(t)|2 = 1.0. We thus
see that the present electron dynamics keep distributing a large amount of the population
over the extensive range in the Hilbert space.
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Figure 17. Time evolution of the Shannon entropy with respect to the adiabatic state population
|CI(t)|2 involved in the wavepackets, each starting from the adiabatic state #100, #200, and #300,
respectively. [Provided by Dr. Yasuki Arasaki].
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7.3.4. Lyapunov Exponents for the Loss of Electronic State Memory

In the present nonadiabatic electron wavepacket dynamics, the main origin of chaotic-
ity is not nonlinearity in the nuclear path dynamics but the nonadiabatic electronic state-
mixing. To quantify the chaoticity due to the nonadiabatic interactions directly, we compare
two dynamics that start from the same initial condition and one running on an adiabatic
potential and the other to run on the nonadiabatic averaged potential. Suppose we have the
Ith pure adiabatic state Φad

I (r; R(t)) at the nuclear position R(t) at time t. Let a classical
path run on this potential surface VI(R) for a short time ∆t with an arbitrary momen-
tum P(t), reaching a point at Rad(t + ∆t) with the electronic state Φad

I (r; Rad(t + ∆t)).
Likewise we propagate a nonadiabatic electronic state starting from the same set of(

Φad
I (r; R(t)), R(t), P(t)

)
but the nonadiabatic interactions are taken account this time.

The nuclear path then arrives at RSET(t + ∆t), which is slightly different from Rad(t + ∆t),
but a significant different electronic wavepacket ΦSET

(I) (r; RSET(t + ∆t)) is to be attained.
The process is summarized as{

Φad
I (r; R(t))→ Φad

I (r; Rad(t + ∆t)) by adiabatic path
Φad

I (r; R(t))→ ΦSET
(I) (r; RSET(t + ∆t)) by nonadiabatic path. (127)

The deviation of ΦSET
(I) (r; RSET(t + ∆t)) from Φad

I (r; Rad(t + ∆t)) should reflect a mem-
ory loss of the initial state, and we quantify this the process by regarding it as an exponential
decay of ∣∣∣〈Φad

I (r; Rad(t + ∆t))
∣∣∣ΦSET

(I) (r; RSET(t + ∆t))
〉∣∣∣2

=
∣∣∣〈Φad

I (r; R(t))
∣∣∣Φad

I (r; R(t))
〉∣∣∣2 exp(−ξ I∆t), (128)

where t is chosen arbitrary. Unfortunately the integral in the left hand side of Equation (128)
is not easy to estimate. However, for a sufficiently short ∆t, the following approximation
holds very accurately

RSET(t + ∆t) ' Rad(t + ∆t), (129)

since their deviation is far slower and smaller. In fact, the deviation is numerically found to
be about 0.005 Å in 1.0 fs (not shown graphically). Thus, we may define

ξ I(t; ∆t) = − 1
∆t

log
∣∣∣〈Φad

I (r; RSET(t + ∆t))
∣∣∣ΦSET

(I) (r; RSET(t + ∆t))
〉∣∣∣2, (130)

and with use of Equation (124) it is estimated by

ξ I = −
1

∆t
log|CI(t + ∆t)|2. (131)

Figure 18 represents the process of the above memory-loss process as observed in
the selected states. Panel (a) shows that the nonadiabatic electronic state starting from
the adiabatic #300 one quickly loses its memory about which adiabatic state it emerged
from [167]. Actually it takes only 0.5 fs for the nonadiabatic state to lose most of the
memory in |CI(t)|2. The relevant exponents defined in Equation (128) is shown in panel
(b). In this calculation, ∆t was set to 0.5 fs and the time t was scanned. Panel (b) displays
two exponents ξ I of Equation (131) for the nonadiabatic states starting from the #100 and
#300 adiabatic states, respectively. They fluctuate from time to time with the average value
around 5.0 fs−1. This implies that the adiabatic path can immediately lose its memory
as soon as the nonadiabatic interactions are switched on, no matter where the paths run.
In other words, the adiabatic states are entirely embedded in a wide chaotic sea.
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Figure 18. Loss of memory of nonadiabatic states in the Hilbert space. (a) Quick decay of |CI(t)|2
from 1.0 to CI(t + ∆t) with ∆t = 0.5 fs at selcted points of t for B12 cluster SET dynamics starting
from the 300th adiabatic state. Dynamics starting at t = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 fs.
(b) Exponent of memory loss, defined in Equation (128), for the initial adiabatic component weight,
ξ(t, ∆t), starting from either the 300th (red) or the 100th (black) adiabatic state. ∆t = 0.5 fs. Lines
connect calculated points only for visualization. [Provided by Dr. Yasuki Arasaki].

7.3.5. Turbulent Electron Flow in the Cluster

To observe one of the physical consequences from the present stochastic electron dy-
namics, we next survey the internal electron current driven by the nonadiabatic interactions.
The probability current density of electrons~j(r, t), which is also termed electron flux, quan-
tifies and visualizes the flow pattern. ~j(r, t) is supposed to satisfy the continuity equation

∂ρ(r, t)
∂t

+∇~j(r, t) = 0, (132)

and in quantum mechanics~j(r, t) is defined as

~j(r, t) =
h̄

2ime
[ψ∗∇ψ− ψ∇ψ∗], (133)

where me and ψ are the mass and wave function of the involved particles [168]. For
many-electron systems it is reduced to

~j(r, t) =
h̄

2ime
[∇rρ(r′, r)−∇r′ρ(r

′, r)]
∣∣∣∣
r′→r

=
h̄

2ime

NO

∑
i

ni
[
λ∗i (r

′)∇rλi(r)−∇r′λ
∗
i (r
′)λi(r)

]∣∣∣∣∣
r′→r

, (134)

where ∇r and ∇r′ are the nabla with respect to r and r′, respectively, and {λi} are the
natural orbitals that are eigenfunction of the density operator ρ̂(t) (ρ(r′, r) = 〈r′|ρ̂|r〉) with
occupation numbers ni. Note that only the complex-valued natural orbitals can make
contributions to Equation (134). Stationary-state electronic wavefunctions like most of the
eigenfunctions of the electronic Hamiltonian Ĥ(el) are real-valued (with exceptions with
respect to angular momentum eigenfunctions) and thereby give zero flux only (see [169,170]
for the general electronic and nuclear flux in general molecules, refs. [171–174] for the early
applications of electron flux in chemical dynamics, ref. [175] for an extensive review,
and ref. [176] for one of the latest).

Figure 19 shows the electron flux induced by the electron wavepacket dynamics
starting from the 74th and 75th states, individually, with no nuclear kinetic energy but
released spontaneously from the initial geometry. The snapshots have been taken at two
very short times at 0.6 fs and 1.0 fs. These flux vectors are viewed from the top. The packet
starting from the 74th state happens to exhibit the electron current in the counterclockwise
direction at 0.6 fs, while the 75th counterpart shows the current mostly in the direction
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clockwise. Although the cluster seems to be in C3v symmetry, it is relaxed to the lower
one, and consequently, these circular patters are not conserved and shortly transformed
to a more complicated flow. Indeed, only shortly after 1.0 fs both fluxes begin to fall into
very complicated in spatial patterns. After all, those electron currents become turbulent or
random flow (not shown graphically). The most exciting chemical study is then to identify
the consequences of electronic turbulence in chemical reactivity and molecular properties.
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Figure 19. Spontaneous electron flux arising from the wavepackets in the SET dynamics starting
from the 74th adiabatic state at (a) 0.6 fs and (b) 1.0 fs, and from the 75th adiabatic states at (c)
0.6 fs and (d) 1.0 fs. dynamics. The flux vectors are systematically multiplied by 2.0 × 104 for
visualization. These fluxes are driven by nonadiabatic interactions. Soon after 1.0 fs, the regular-
looking fluxes become turbulent. [Taken from Yonehara,T; Takatsuka, K. J. Chem. Phys. 2016, 144,
164304 with permission].

Incidentally, one can define the flux of electronic energy [177], which is of course
different from the above electron flux. It is quite interesting to track real-time energy flow
in molecules. We have observed the turbulent flux of the electronic energy too in the above
excited-state cluster dynamics [177].

We have thus observed the clear signatures of quantum chaos in molecular nonadia-
batic electron dynamics.

7.4. The Long Life-Time of Dynamical Chemical Bonding: Hyper Resonance

The above diffusive and chaotic phenomena due to the very frequent nonadiabatic
interactions prevent molecular dissociation and bring about a notion of quantum resonance
we have not seen before. As resonance phenomena the Pauling resonance in the theory of
chemical electronic structure [178] and the Feshbach resonance [49] in quantum scattering
theory [50] are most relevant to the present study. The Pauling resonance in the so-called
valence bond theory is regarded as a configuration mixing (interaction) among the so-
called resonance structures, each of which corresponds intuitively to a valence bonding.
The Feshbach resonance, or core-excited resonance, is schematically represented as

M + A→ (MA)∗

→ dissociations eventually with a long lifetime,
(135)

where a state of a target nuclei, atom, or molecule (denoted as M) is pumped to the
higher levels by borrowing the kinetic energy of an incident particle A. The Feshbach
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resonances and their overlapping set the foundation of Intramolecular Vibrational energy
Redistribution (IVR) in the unimolecular dissociation dynamics, as discussed in Section 3.2.
Thus, the dissociation channels are temporarily closed by a temporal compound state
(MA)∗ surviving a long life-time. Both the Pauling and Feshbach resonances can be
regarded basically as events on a single adiabatic potential surface.

During the continual state-mixing in the diffusive motion in B12, the electronic and
nuclear energies are mutually exchanged through the nonadiabatic interactions. This phe-
nomenon can be regarded as another kind of quantum mechanical resonance. The present
dynamics found in B12 may be termed as hyper-resonance (resonance among the resonant
states), since each adiabatic state is already in a Feshbach and/or Pauling resonance state.
We refer to such a very long life-time tentative chemical bonding as dynamical bonding [165].

7.5. Intra-Molecular Nonadiabatic Electronic Energy Redistribution
7.5.1. Huge Inflation of Phase-Space Volume

Despite the very high energy of those excited-state boron clusters, they do not readily
break apart, since the dissociation channels of them tend to be closed by very frequent
nonadiabatic transitions. This is a natural consequence of hyper-resonance. We then survey
a possible mathematical ground of the long life-time in terms of a drastically simplified
statistical theory based on the phase space theory, originally proposed by J. C. Light [179].
This theory has been extensively applied to and modified before in the context of cluster
dynamics [180–182], Calvo [183–187], and Fujii [65,66].

We consider only the simplest dissociation of B12 cluster in which only one atom is
evaporated from N-body cluster (N = 12). The phase space theory under no external field
predicts the dissociation rate k as

k =
WN−1(E)

ΩN(E)
, (136)

where ΩN(E) is the density of the states of the N-particle cluster at the total energy E,
and WN−1(E) denotes the total flux induced by the dissociation of a single atom [179].
As for a single adiabatic potential energy surface, say VI(R) at a nuclear configuration R,
ΩN(E) is approximately estimated with the expression

Ω(I)
N (E) = h̄−3N

∫
dRdP δ(E− HI(R, P)), (137)

where
HI(R, P) =

P · P
2

+ VI(R), (138)

with the obvious notation of the total nuclear momentum P. We assume that the total
energy is high above the potential barrier of the dissociation channels and that there are not
significant centrifugal barriers for the present non-rotating clusters. In such systems, the so-
called bottle-neck volume, say ∂Ω(I)

N , of the phase-space volume Ω(I)
N to the dissociation

channel cannot be appropriately defined. In place of resorting to ∂Ω(I)
N therefore, we use the

phase space volume of the daughter cluster of N − 1 particles, denoted as Ω(I)
N−1(E− ∆E),

where ∆E is the energy for the dissociating particle to take away with the relative velocity
~v. The flux is approximately expressed as

W(I)
N−1(E) =

∫
Ω(I)

N−1(E− ∆E)~v(∆E) · d~v. (139)

(The reduced mass is set to be unity for simplicity.) Thus, the critical quantity for the
statistical rate of the dissociation probability turns out to be the ratio

Ω(I)
N−1(E− ∆E)

Ω(I)
N (E)

(140)
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for a given ∆E.
We further suppose that the phase space of a system under study has the mixing

property and is completely statistical due to chaos. Then we may regard the quantity

Ω(I)
N (E)−Ω(I)

N−1(E− ∆E) (141)

as a phase space volume for trajectories to “tentatively” remain bound as N-body cluster.
Then the related entropy s(I)(E, ∆E) can then be defined as

s(I)(E, ∆E) = − log

Ω(I)
N (E)−Ω(I)

N−1(E− ∆E)
∆Ω

, (142)

where ∆Ω represents the size of a unit cell of the phase space volume, such as h̄3N , which
is used to count the number of cells in the volume

[
Ω(I)

N (E)−Ω(I)
N−1(E− ∆E)

]
.

Although the state mixing is caused by the interaction

− ih̄
3N

∑
k=1

Ṙk(t)Xk
I J(R(t)) (143)

and/or H(el)
I J (R(t)) as in Equation (109), we herein assume for simplicity that the transition

among the electronic states occur freely. Then the entropy confined in the individual state
s(I)(E, ∆E) should be represented by the sum of them as

s(max)(E, ∆E) = ∑
I

s(I)(E, ∆E)

= −∑
I

log

Ω(I)
N (E)−Ω(I)

N−1(E− ∆E)
∆Ω

. (144)

In such an extreme case the connected phase-space volume within ∆E is effectively extended
and can be approximated as

∏
I

[
Ω(I)

N (E)−Ω(I)
N−1(E− ∆E)

]
. (145)

On the other hand, the phase space volume directly connected to the dissociation channel
should be represented as the simple sum of each as

∑
I

Ω(I)
N−1(E− ∆E). (146)

Hence the the dissociation probability can be dramatically lowered from the order of
Equation (140) to

∑
I

Ω(I)
N−1(E− ∆E)

∏
J

[
Ω(J)

N (E)−Ω(J)
N−1(E− ∆E)

] , (147)

indicating that the relative phase-space volume towards the dissociation is by far smaller
than the phase space volume of the original N-body cluster, and the probability for the
cluster to come across the dissociation channel is extremely small. Consequently, the life-
time of the clusters is expected to be far longer than in case of no nonadiabatic transitions.
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7.5.2. Intra-Molecular Nonadiabatic Electronic Energy Redistribution (INEER):
Nonadiabatic Interaction to Close Dissociation Channels

Nonadiabatic electronic-state chaos thus inflates the volume of phase-space of nuclear
motion of clusters to a very large extent. Due to this inflation, the molecular states lose
chances to reach one of their dissociation channels. That is, a dissociating molecule can
be brought back to the bound state by nonadiabatic interactions, which would dissociate
otherwise. Here is an example of such an event [165]. In Figure 20, a B12 of initial
hindered geometry is prepared, which is close to a dissociation channel. (Such dissociation
channels can be readily found by colliding a B11 cluster and a B atom) In panel (a) is
shown a trajectory for the 47th adiabatic state at this geometry to run on its adiabatic
potential surface (no nonadiabatic interaction). After 110 fs of running, one of the atoms
leaves the cluster leaving B11 cluster behind. Likewise, the same 47th adiabatic state in
panel (b) begins to run from the same geometry with the same momentum but with the
nonadiabatic interactions explicitly included in the electron dynamics. The trajectory clearly
demonstrates that an atom being about to leave the cluster is brought back again to the
B12, thus evidencing that the dissociation channel is closed. This phenomenon is what we
call intra-molecular nonadiabatic electronic energy redistribution (INEER) due to hyper-
resonance [188]. This makes a contrast to intramolecular vibrational energy redistribution
(IVR) caused by classical chaos on a single potential basin. INEER is a crucial consequence
of the intense chaos due to the continual nonadiabatic electronic-state mixing.

Figure 20. B12 bonding structures along a trajectory under (a) adiabatic dynamics, and (b) nonadia-
batic dynamics, starting from the same initial conditions (initial adiabatic state 47). Time t in fs is
indicated beside each structure. At t = 110 fs, atom 1 is in the dissociation channel in the adiabatic
dynamics, while this atom is pulled back to the cluster site in the nonadiabatic dynamics. [Taken
from Arasaki, Y.; Takatsuka, K. J. Chem. Phys. 2019, 150, 114101 with permission].

8. Concluding Remarks

To review “quantum chaos” in the scope of chemical dynamics, we herein have
tracked the following subjects. We began with full quantum dynamics, wavepackets and
eigenfunctions localized in the quasi-separatrix in two-dimensional potential function.
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This study was made in search for a novel molecular vibrational mode. Indeed, in this
small dimensional system lie several vibrational modes, which give birth to very long-time
wandering motions in the quasi-separatrix. A pair of the eigenstates of the dynamical
tunneling of the second kind have been identified.

Semiclassical theory and energy quantization thereof, which is indispensable in the
study of molecular vibration were next reviewed. We took a wavepacket approach in study-
ing semiclassical dynamics rather than the direct semiclassical reduction of the Feynman
kernel. With this approach, we discussed the mechanism of energy quantization for not
only making the peaks but suppressing the off-resonant components. One of the most
annoying parts in semiclassical kernel and related quantities is the divergence at caustics
and/or turning points, which casts an inherent difficulty to the Gutzwiller trace formula.
To avoid the difficulty, we have shown that the amplitude-free energy quantization actually
works quite well. Chaotic paths that appear only through quantum tunneling have been
shown along with a semiclassical tunneling formalism based on the notion of the parity
of motion.

One of the main aims of the present review has been to guide the readers to chaos in
molecular nonadiabatic dynamics, which is induced by the kinematic couplings between
nuclei and electrons. The entanglement between electrons and nuclei is one of the most
important subjects in general chemical science. We have emphasized the critical roles of
“bifurcation and merging” of quantum wavefunctions. The most characteristic molecular
chaos is found in nonadiabatic electron dynamics in the densely quasi-degenerate electronic-
state manifold, every state of which mixes together with other members of the manifold.
We have shown that the dynamical properties of electronic-state chaos can be measured in
terms of the quantities related to diffusion and memory loss in the Hilbert space, turbulent
flow of electron current, and so on. The chaos of the electronic excited state should become
more and more vital in future molecular science, which will proceed far beyond the Born-
Oppenheimer paradigm of the current theoretical framework of chemistry.

Some of the characteristics found for molecular quantum chaos are summarized below:
The basic mechanism of chaos in nonadiabatic wavepacket dynamics is “bifurcation

and merging”, which is a quantum mechanical synonym of “stretching and folding” in the
classical baker’s (or the Smale horse-shoe) transformation. Indeed repeated occurrences of
“bifurcation and merging” of quantum wavepackets result in genuine chaos in quantum
mechanics not only in energy spectra but more importantly in the dynamics of wavepack-
ets. We would like to particularly emphasize again that the bifurcation and merging of
wavepackets are indeed physically observable. Interestingly, “bifurcation (branching) and
merging of the reaction tubes” sets also a geometrical foundation of classical chaos in
structural isomerization dynamics. Extension of the tube geometry to quantum mechanics
has not yet been explored.

“Loss of memory” is one of the central concepts to characterize chaos in general.
The positive Lyapunov exponent in classical systems indicates an exponential separation of
nearby orbits, leading to the loss of the memory of their initial stage. In our quantum chaos,
the exponential decay of the memory of an electronic state in the time-propagation against
the nonadiabatic (kinematic) interactions can take place in the Hilbert space. Again, we
have observed that classical chaos in the structural isomerization dynamics of liquid-like
clusters is associated with a characteristic feature of memory loss, which leads to a random
yet statistical appearance of the isomers in the time series.

The advent of the ultrafast pulse laser has revolutionized molecular science since the
1970s. The femtosecond laser chemistry [189] to date has made it possible to real-time track
the molecular deformation and reactions, an example of which can be seen in Figure 11 of
this review. We are now in the age of technical development and applications of attosecond
pulse lasers, the width of which is compatible with the time scales of electronic motions
in molecules. This situation has been driving us in nonadiabatic electron wavepacket
dynamics in Section 7. Nevertheless, we also call for attention for the study of extremely
long-time spectroscopy. As we noted in this article, the structural isomerization of not
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only clusters but also large molecules like proteins can wander from one shape (potential
valley, potential basin) to another taking a very long time at each local structure. These
many-dimensional dynamics are often accompanied by large dimensional chaotic spaces,
which makes the entire dynamics even longer and more complicated. It is extremely
challenging therefore to figure out spectroscopic means to capture the essential feature
of the long-time dynamics. The time-dependent spectroscopy, which was proposed in
Section 4 and discussed briefly in the section of semiclassical mechanics Section 5, is just
one primitive idea in an attempt to cope with this matter. A parallel computation scheme
with many different initial conditions should be a good candidate to overcome long-time
quantum dynamics in ergodic phase space, if a method to appropriately connect the pieces
of spectra taken individually is devised.

A final remark before closing. The essential nature of classical and quantum chaos
may lie in mathematical beauty and intricate geometry behind the complicated-looking
phenomena. However, the complexity of molecules often makes such elegant mathematical
structures obscure and even less mighty. Moreover, We are afraid that sticking to the
too rigorous definitions of quantum chaos would isolate itself from other natural science.
Therefore, I would like to conclude this review by stressing that more studies on quantum
chaos made mathematically easy and conceptually useful are demanded than ever, since
there are so many unknowns left (not only) in the molecular phenomena, notions, and laws
that need an understanding of quantum chaos.
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