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Abstract: Complex eigenvalues of random matrices J = GUE + iγ diag(1, 0, . . . , 0) provide the
simplest model for studying resonances in wave scattering from a quantum chaotic system via a
single open channel. It is known that in the limit of large matrix dimensions N � 1 the eigenvalue
density of J undergoes an abrupt restructuring at γ = 1, the critical threshold beyond which a
single eigenvalue outlier (“broad resonance”) appears. We provide a detailed description of this
restructuring transition, including the scaling with N of the width of the critical region about the
outlier threshold γ = 1 and the associated scaling for the real parts (“resonance positions”) and
imaginary parts (“resonance widths”) of the eigenvalues which are farthest away from the real axis.
In the critical regime we determine the density of such extreme eigenvalues, and show how the
outlier gradually separates itself from the rest of the extreme eigenvalues. Finally, we describe the
fluctuations in the height of the eigenvalue outlier for large but finite N in terms of the associated
large deviation function.

Keywords: non-Hermitian random matrices; complex eigenvalues; extreme eigenvalues; eigenvalue
outlier; resonances; resonance trapping

1. Introduction

Rank-one non-normal deformations of the Gaussian and Circular Unitary Ensembles
are a useful analytic tool for studying statistics of resonances in quantum scattering from
a chaotic domain via a single channel [1,2]. As surveyed in [2,3], these random matrix
ensembles are integrable in the sense that the joint probability density of their complex
eigenvalues and, in some spectral scaling limits of interest, the eigenvalue correlation
functions can be determined in a closed form. Such integrability, which also proves to be
useful in other physics contexts, see, e.g., [4], extends to a certain degree to the deformed
β−Gaussian and β−circular ensembles [5,6], especially to the classical values β = 1, 4 [7,8],
but is lost if the underlying normal random matrix ensemble (Hermitian or unitary) is
not integrable, as is the case with, e.g., finite rank non-Hermitian deformations of Wigner
matrices [9–11] or band matrices [12]. Still, the latter matrices are found to share, in
appropriate parameter ranges, some statistical characteristics of their complex eigenvalues
and eigenvectors with their integrable counterparts.

In this paper, we aim to investigate complex eigenvalues with extreme imaginary
parts for the rank-one non-Hermitian deformations of the Gaussian Unitary Ensemble
(GUE) by exploiting the above-mentioned integrability. The latter feature gives access to the
asymptotics of the eigenvalue density in the complex plane on mesoscopic scales and allows
us to carry out a quantitative analysis of the separation of the eigenvalue outlier (which is
known to exist in this model [9,10]) from the rest of the eigenvalues. Eigenvalue outliers
in the complex plane have recently attracted renewed interest [11,13–15]. Our analysis
refines and complements the existing knowledge about the outliers of nearly Hermitian
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matrices [9–11] albeit for arguably the simplest model of its type. As we will demonstrate,
despite the simplicity of the model, its extreme eigenvalues exhibit an interesting transition
at a certain value of the deformation parameter, with rich critical behaviour which deserves
to be studied in more detail.

The non-Hermitian matrices that we consider are of the form

J = H + iΓ, (1)

where H is a GUE matrix and Γ is a diagonal matrix with all diagonal entries being zero
except the first one,

Γ = γ diag(1, 0, . . . , 0). (2)

Denoting the matrix dimension by N, we fix the global spectral scale by the condition that
the expected value of Tr H2 is N. Then the joint probability density function (JDPF) of
matrix elements of the GUE matrix H is

fN(H) = const× exp
{
−N

2
Tr H2

}
. (3)

With this normalisation, the limiting eigenvalue distribution of H, as the matrix dimension
is approaching infinity, is supported on the interval [−2, 2], and, inside this interval, the
eigenvalue density is ν(X) = 1

2π

√
4− X2.

Note that due to the invariance of the JPDF (3) with respect to unitary rotations
H → UHU−1 one may equivalently replace Γ in (2) with any other rank-one Hermitian
matrix. Without loss of generality we may also assume γ to be positive. Then the eigen-
values Xj + iYj of matrices J (1)–(3) are all in the upper half of the complex plane and for
N large they all, except possibly one outlier, lie just above the interval [−2, 2] of the real
line. Whether such an outlier is present or not is determined by the value of γ. For fixed
values of γ < 1, almost surely, for N sufficiently large, all N eigenvalues lie within distance
cN N−1 from the real line, with cN = o(Nε) for every ε > 0 [9]. Furthermore, if γ > 1 then
the same is true of all but one eigenvalue. This outlier lies much higher in the complex
plane: to leading order in N, its imaginary part (the “height”) is γ− γ−1 [9,10,14]. For
precise statements and proofs we refer the reader to [9,10] where these and similar facts
were established for finite rank non-Hermitian deformations of real symmetric matrices
with independent matrix entries.

For finite but large matrix dimensions, one would expect to find a transition region of
infinitesimal width Ω about the outlier threshold value γ = 1 which captures the emergence
of the outlier from the sea of low lying eigenvalues. Questions about the scaling of Ω with
N and the corresponding characteristic height and distribution of the eigenvalues that lie
farthest away from the real line are natural and interesting in this context. These are open
questions in the mathematics and mathematical physics literature on the subject.

Apart from the mathematical curiosity, there is also motivation coming from physics.
In the physics literature, the eigenvalues of J are associated with the zeroes of a scattering
matrix in the complex energy plane, and their complex conjugates with the poles of the
same scattering matrix, known as “resonances”. The latter are obviously the eigenvalues
of matrices (1)–(2) with γ replaced by −γ. In that context the absolute value of the eigen-
value’s imaginary part is associated with the “resonance width”. The eigenvalues close to
real axis are called “narrow resonances” and the outlier is called the “broad resonance”.
The use of the Gaussian Unitary Ensemble for H is justified by invoking the so-called
Bohigas-Giannoni-Schmidt conjecture [16] describing spectral statistics of highly excited
energy levels of some classes of systems whose classical counterparts are chaotic. The re-
sulting ensemble J is then an important ingredient in characterising statistical properties of
scattering matrices in systems with quantum chaos and no time-reversal invariance, see [1]
for description of the associated framework going back to the pioneering paper [17] . In
that framework, the phenomenon of the outlier separation and the simultaneous movement
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of the rest of the eigenvalues towards the real axis was first discussed, albeit at a heuristic
level, already in early theoretical works [18,19], the latter work even establishing the correct
asymptotic position of the outlier. Later on, this phenomenon got considerable attention
under the name “resonance trapping” and eventually was observed in experiments [20].

Very recently, Dubach and Erdős [11] performed a detailed analysis of the eigenvalue
trajectories, with respect to changing the parameter γ, in the random matrix ensemble
H + iγvs.v∗ in the settings when H is assumed to be a Wigner matrix and v a column vector
of unit length. It turned out that the evolution of the eigenvalues is governed by a system
of deterministic first-order differential equations subject to random initial conditions, with
the initial positions and velocities expressed in terms of the eigenvalues and eigenvectors
of H. In addition, under suitable conditions on the distribution of matrix entries of H
ensuring the validity of the uniform isotropic local law (Theorem 5 in [11]), Dubach and
Erdős proved that with high probability the eigenvalue outlier is distinctly separated from
the rest of the eigenvalues for all

γ > 1 +
Nε

3
√

N
, ε > 0. (4)

Moreover, if ε < 1/3, i.e., if N−1/3+ε is asymptotically small, the outlier’s height is 2N−1/3+ε

and its real part is in the window of width N−1/3−ε/4 around the origin, whereas all other
eigenvalues are no higher than N−1/3−ε. In addition, with high probability, for all

γ < 1− Nε

3
√

N
, ε > 0, (5)

no eigenvalue reaches the heights

Y =
m

3
√

N
, m > 0. (6)

These findings suggest that the width Ω of the transition region around γ = 1 scales with
as N−1/3 for N large. Naturally, for γ inside this region one would expect to find several
eigenvalues, including the emerging “atypical” outlier, with imaginary parts on the critical
scale (6) much exceeding the height O(N−1) of low lying eigenvalues, as illustrated in
Figure 1. One might call such eigenvalues “typical extremes” to emphasise atypicality of
the emerging outlier.
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Figure 1. γ-trajectories of eigenvalues of matrices (1)–(3) of dimension N = 1000 near the origin.
Each plot represents a different sample of H from the GUE (3). The parameter γ is varying in the
interval [0, 0.5] in the increments of 0.05 (blue dots), in the interval [0.5, 1] in the increments of 0.1 (red
dots), and in the interval [1, 1.5] in the increments of 0.1 (green dots).

To a large extent our paper is motivated by [11] and aims to provide quantitative
insights into this picture of the outlier emerging from the cloud of extreme eigenvalues.
Whilst the approach of Dubach and Erdős is dynamical (fix matrix H and study eigenvalue
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trajectories as the magnitude γ of the deformation increases), our approach is statistical (fix
a scale for γ and count the number of eigenvalues on characterisitc spectral scales in the
complex plane averaged over the distribution of H which, for technical reasons, we assume
to be GUE). Our present approach is limited to the expected values; analysing higher order
moments is left as an interesting problem for future investigations. However, even with
such a basic tool we are able to develop rather detailed quantitative understanding of the
outlier separation and the associated restructuring transition in the spectra of matrices J.

As such, the two approaches complement each other very well. For example, we prove
that for

γ = 1 +
α

3
√

N
, α ∈ R, (7)

the expected number of eigenvalues whose height exceeds the level (6) is asymptotically
given by the integral

∫ ∞
m p(Im)

α (m′)dm′ with density

p̃(Im)
α (m) =

1
2
√

π

3
2m +

( 3m
2 − α

)2

m3/2 e−m(α−m
2 )

2
, m > 0.

This density is the average density of the extreme eigenvalues at height (6). Together with
findings in [11] this result establishes that the width Ω of the transition region around
γ = 1 indeed scales with N−1/3. Similarly, we are able to determine the average density of
extreme eigenvalues Zj = Xj + iYj of J near the origin in the complex plane in the critical
scaling regime when when q + im = 3

√
NZ = O(1). As a function of coordinates q and m,

this density, when appropriately rescaled, is given by

p̃α(q, m) =
1

4πm

[
1
m

+
q2

4
+

(
3m
2
− α

)2
]

e
−m

[
q2
4 +(α−m

2 )
2
]

, q ∈ R, m > 0.

It can be verified that
∫ +∞
−∞ p̃α(q, m)dq = p̃(Im)

α (m), implying that the population of extreme
eigenvalues at the critical height (6) which generates the eventual outlier (as α is approach-
ing infinity) is constrained to a narrow vertical strip of width O(N−1/3) about the origin
(the centre of the eigenvalue band of H). Thus, our results both confirm and complement
the analysis in [11], and show that it indeed touched the optimal scales in γ (7), both along
the real and imaginary axes.

We would like to conclude this section with a short description of the structure of our
paper. In Section 2 we develop quantitative heuristic analysis of the outlier separation. This
analysis elucidates the emerging critical scaling in γ and the critical spectral scalings in the
complex plane and provides a useful background for rigorous calculations later on. This
section also offers our outlook on the universality of the exponent −1/3 in (7). Section 3
contains the statement of our main results and discussion. In Section 4 we express the
expected density of eigenvalues of J and the density of their imaginary parts at finite matrix
dimensions in terms of, respectively, Hermite and Laguerre polynomials. These expressions
are then used in Sections 5 and 6 for asymptotic analysis of eigenvalue densities in various
scaling limits. The two appendices contain derivations of technical auxiliary results.

2. Low Lying Eigenvalues and Their Extremes: A Heuristic Outlook

Before presenting our main results in the next Section, we would like to offer our
quantitative heuristic insights into the outlier separation elucidating the emerging scalings
and mechanisms behind them and providing a useful background for rigorous calculations
later on.

With zj = Xj + iYj standing for the eigenvalues of matrices J = H + iΓ, the angular
brackets 〈. . .〉 standing for averaging over the GUE matrix H (3), and δ(X) for the Dirac
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delta-function, the expected number of eigenvalues of J in domain D can be computed by
integrating the mean eigenvalue density

ρN(X, Y) =
〈 1

N

N

∑
j=1

δ(X− Xj)δ(Y−Yj)
〉

(8)

over D and multiplying the result by N. For example, the expected number Nγ(Y) of
the eigenvalues of J which lie above the line Im z = Y in the complex plane is given by
the integral

Nγ(Y) = N
∫ ∞

−∞

∫ ∞

Y
ρN(X, Y′) dXdY′ = N

∫ ∞

Y
ρ
(Im)
N (Y′) dY′ , (9)

where ρ
(Im)
N (Y) is the mean density of the imaginary parts irrespective of the value of the

real part,

ρ
(Im)
N (Y) =

〈 1
N

N

∑
j=1

δ(Y−Yj)
〉

. (10)

Guided by the eigenvalue perturbation theory one can expect that the typical height Y
of the eigenvalues whose real part is close to a point X ∈ (−2, 2) in the spectral bulk scales
with the mean separation ∆ = (Nν(X))−1 between neighbouring real eigenvalues of the
GUE matrix H in the limit N → ∞. On a more formal level, introducing the scaled version
of ρN(X, Y) [21]

ρ̃N(X, y) :=
1

ν(X)

〈 1
N

N

∑
j=1

δ
(
X− Xj

)
δ
(
y− 2πν(X)NYj

)〉
, −2<X< 2 , (11)

one finds that such scaled density is well-defined in the limit of large matrix
dimensions [1,2,21,22]: for every y > 0

ρ̃(X, y) := lim
N→∞

ρ̃N(X, y) = − d
dy

[
e−yg(X) sinh y

y

]
, g(X) =

γ + 1
γ

2πν(X)
, (12)

confirming that locally the typical height of low lying eigenvalues scales with ∆ =
(Nν(X))−1.

Globally, the typical height of low lying eigenvalues scales with N−1. Intuitively, this
can be understood from the exact sum rule

N

∑
j=1

Yj = γ (13)

which follows from the obvious relation Tr J = iγ + Tr H. On a more formal level, consider
the expected fraction of the eigenvalues of J which lie above the level Im z = Y, and set
y = NY. In the limit N → ∞,

1
N
Nγ

( y
N

)
∼
∫ 2

−2
dX ν(X)

∫ ∞

2πν(X)y
dy′ ρ̃(X, y′) (14)

=
e−y

(
γ+ 1

γ

)
y

∫ 2

−2

dX
4π

(
ey
√

4−X2 − e−y
√

4−X2
)

. (15)
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The integral in (15) is the modified Bessel function I1(2y). Therefore,

lim
N→∞

1
N
Nγ

( y
N

)
=

e−y
(

γ+ 1
γ

)
y

I1(2y) . (16)

From this,

ρ̃(Im)(y):= lim
N→∞

1
N

ρ
(Im z)
N

( y
N

)
= − d

dy

 e−y
(

γ+ 1
γ

)
y

I1(2y)

 (17)

=
e−y

(
γ+ 1

γ

)
y

[(
γ +

1
γ
− 2
)

I1(2y)− I0(2y)− I2(2y)
]

. (18)

The density ρ̃(Im)(y) is the mean density of the scaled imaginary parts yj = NYj in the limit
of large matrix dimensions. Even though it describes low lying eigenvalues it contains
some useful information about eigenvalues higher up in the complex plane.

As an example, consider the expected value of the sum of the imaginary parts of low
lying eigenvalues. Using definition (10), the sum rule (13) implies that

N
∫ γ

0
Yρ

(Im)
N (Y)dY = γ . (19)

Upon rescaling y = NY, one could naively jump to the conclusion that
∫ ∞

0 y ρ̃(Im)(y) dy = γ.
However, by making use of (17) and integral 6.623(3) in [23], one actually finds that

∫ ∞

0
y ρ̃(Im)(y) dy =

∫ ∞

0

e−y
(

γ+ 1
γ

)
y

I1(2y) dy =
γ + 1

γ −
√(

γ + 1
γ

)2
− 4

2
=


γ, if γ < 1,

1
γ , if γ > 1.

Thus, if γ < 1 then the imaginary parts of low lying eigenvalues indeed add up to γ, in full
agreement with the sum rule (19), whereas if γ > 1 they add up only to 1

γ < γ. The sum

rule deficit γ− 1
γ is exactly the imaginary part of the outlier, and suggests that the rescaled

limiting density of low lying eigenvalues, ρ̃(Im)(y), precisely misses the delta-functional
mass 1

N δ
(

y−
(

γ− 1
γ

))
.

As another example, consider the asymptotic form of ρ̃(Im)(y) when y � 1. It is
markedly different depending on whether γ = 1 or not. In the later case, using in (17)
the asymptotic expansion for the modified Bessel function of large argument, Ip(x) ∼

ex
√

2πx
(1− 4p2−1

8x + . . .) one finds an exponential decay, whilst in the former case the decay
is algebraic:

ρ̃(Im)(y) =


e−y (1−γ)2

γ

2
√

π y3/2

[
(1− γ)2

γ
+

30− 3(γ + γ−1)

16y
+ O

(
1
y2

)]
if γ 6= 1,

3
4
√

π

1
y5/2 + O

(
1

y7/2

)
if γ = 1 .

(20)

It is instructive to return to the unscaled imaginary part Y and take a closer look at the
expected number of the eigenvalues of J exceeding the level Im z = Y in the limit N → ∞.
It is evident from (16) that

Nγ(Y) ∼
e−NY

(
γ+ 1

γ

)
Y

I1(2NY) , (21)
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provided NY = O(1). Extending this asymptotic relation to large values of NY allows one
to get insights, even if only heuristically, about the characteristic scale of the highest placed
among the low lying eigenvalues. Along these lines, we define the characteristic scale of the
height of typical extreme eigenvalues as such level Ye that the expected number of eigenvalues
with imaginary part exceeding Ye is of order of unity:

Nγ(Ye) = O(1). (22)

We add the word typical to exclude the atypical eigenvalue (the outlier) which is known
to exist when γ > 1. Now, assuming NYe to be large (but still anticipating Ye � 1)
one can replace the Bessel function in (21) by its corresponding asymptotic expression
and approximate:

Nγ(Ye) ≈
e−NYe

(1−γ)2
γ

2
√

πN Y3/2
e

, 1� NYe � N . (23)

The condition in (22) then leads to two essentially different scenarios depending on the
value of γ. Namely, for every fixed positive γ 6= 1 the characteristic scale of the typical
extreme values is, to leading order in N, O(N−1 ln N). On the other hand, if γ = 1 then the
typical extreme values raise from the sea of low lying eigenvalues to a much higher height
of O(N−1/3). This change of scale for extreme values is easy to trace back to the emerging
power-law decay in the vicinity of γ = 1 which is evident in (20).

In fact, as evident from (23), the typical extreme values scale as Ye = O(N−1/3) not
only at γ = 1, but also as long as |1− γ| ∝ N−1/3. Actually, by setting simultaneously
γ = 1 + αN−1/3 and Ye = mN−1/3 the asymptotic relation (23) is converted into

N1+ α
3√N

(
m

3
√

N

)
≈ e−mα2

2
√

π m3/2 , (24)

an expression that is indeed of order of unity for all fixed values of α and m > 0. Thus,
the width of the transition region about γ = 1 must scale with N−1/3. Combined with
the existence of a distinct outlier at height γ − γ−1 � Ye one may indeed see that our
heuristic argument perfectly agrees with the conjecture of Dubach and Erdős about the
critical scaling γ = 1 + O(N−1/3) where the separation of typical and atypical extreme
values happens.

Before continuing our exposition of the heuristics behind the restructuring of the
density of complex eigenvalues we would like to make two remarks.

Remark 1. To make further contact with the standard subject of extreme value statistics, it is
useful to recourse to the classical theory of extreme values for i.i.d. sequences of random variables
y1, . . . , yN , a succinct albeit informal summary of which can be found in, e.g., [24]. In that case the
probability law of extreme values is characterised by the tail behaviour of the “parent” probability
density function (pdf) p(y) of yj and is essentially universal in the limit N → ∞. In our context,
the pertinent case for comparison is that of non-negative continuous i.i.d. random variables with
the parent distribution supported on the entire semi-axis [0, ∞). Then only two possibilities may
arise. Those sequences which are characterised by the power-law decaying pdf p(y) ∼ Ay−(1+α),
α > 0, as y→ ∞ have their extreme values scaling with (AN/α)1/αand the distribution of their
maximum, ymax = max(y1, . . . , yN), after rescaling converges to the so-called Fréchet law in the
limit N → ∞. In contrast, if the parent pdf decays faster than any power, e.g., if ln p(y) ∼ −yδ,
δ > 0, then, to leading order, extreme values scale with (ln N)1/δ, and the distribution of the largest
value ymax, converges, after a shift and further rescaling, to the so-called Gumbel law. Although,
the imaginary parts of complex eigenvalues in the random matrix ensemble (1)–(3) are not at all
independent (as is evident from their JPDF (51) resulting in a non-trivial determinantal two-point
and higher order correlation functions at the scale N−1, see [22]), our scaling predictions for the
typical extreme eigenvalues are in formal correspondence with the i.i.d. picture: a Gumbel-like
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scaling (with δ = 1) if γ 6= 1 and a Fréchet-like scaling (with α = 3/2) if γ = 1. This is exactly as
would have been implied in the i.i.d. picture by the tail behaviour of the mean eigenvalue densities
in the two cases in (20). This fact naturally suggests to conjecture Gumbel statistics for the typical
largest imaginary part (excluding possible outlier) for any γ 6= 1, changing to a Fréchet-like law for
γ = 1, with a possible family of α− dependent nontrivial extreme value statistics in the crossover
critical regime γ = 1 + αN−1/3. Although we are not able to shed light on the distribution of
typical extreme eigenvalues in the random matrix ensemble (1)–(3), we will discuss some results in
that direction for a somewhat related model at the end of the next section.

Remark 2. The phenomenon of resonance width restructuring with increasing the coupling to
continuum (controlled in the present model by the parameter γ) and the emergence of the broad
resonance has many features in common with the so-called super-radiant phenomena in optics. This
is well known in the physics literature, see [25] and references therein. Here, we would like to
point to a similarity of the spectral restructure in the random matrix ensemble (1)–(3) to a process
in a different physics context, the so-called “condensation transition” which occurs in models of
mass transport when the globally conserved mass M exceeds a critical value, see, e.g., [26] for a
review. In such a regime, the excess mass forms a localised in space condensate coexisting with
a background fluid in which the remaining mass is evenly distributed over the rest of the system.
A particularly simple case for analysing the condensation phenomenon is when the system has
a stationary state such that probability of observing a configuration of masses mi factorises into
the form ∏i f (mi)δ(∑i mi −M). In that context again the tail behaviour of the “parent” mass
density f (m) plays important role. Although we would like to stress again that in our model the
imaginary parts of the complex eigenvalues are not independent, the analogy with the condensation
phenomenon is quite evident.

Essentially the same heuristic analysis as in the above helps to clarify the numerically
observed fact of the outlier emerging mostly close to the origin of the spectrum Re z = 0.
From this angle it is instructive to ask what should be the scale of extreme values for
eigenvalues satisfying |Re z| < W, that are sampled in a window of a small widths
W � 1 around the origin (still assuming typically many eigenvalues in the window, so
that W � ∆ ∼ 1/N). The total mean number of eigenvalues in the window W whose
imaginary parts exceed the level Y (but still formally remain of the order of 1/N) is now
given by

Nγ,W(Y) =
e−NY

(
γ+ 1

γ

)
4πY

[TW(NY)− TW(−NY)], TW(NY) = 2
∫ W

0
eNY

√
4−X2

dX. (25)

For NY � 1 the term TW(−NY) is exponentially suppressed, while the integral in TW(NY)
is dominated by X � 1 and with required accuracy yields the leading-order expression in
the form:

Nγ,W(Y � 1/N) ≈ e
−NY

(
(1−γ)2

γ

)
2πY3/2

√
2
N

∫ W
√

NY/2

0
e−

t2
2 dt. (26)

Now, let us assume that both the width W of the window and the parameter γ scale with
N in this non-trivial way as

W ∼ N−1+κ , 0 < κ ≤ 1, and γ = 1− αN−δ, 0 < δ ≤ ∞, α ∈ R, (27)

and again apply the same heuristic procedure to determine the scale of extreme values
Ye(κ, δ) in the window as N → ∞ for given values of exponents κ and δ. A straightforward
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computation shows that the arising scale of extreme values very essentially depends on
whether the parameter δ satisfies 0 < δ < 1/3 or 1/3 ≤ δ < 1. In the former case we find

Ye(κ, 0 < δ < 1/3) ≈



N−1+κ , if 0 < κ < 2δ ,

κ − 2δ

α
N−1+2δ ln N, if 2δ < κ < 1− δ ,

1− 3δ

α
N−1+2δ ln N, if 1− δ < κ < 1 .

(28)

whereas in the latter case

Ye(κ, 1/3 ≤ δ < 1) ≈

N−1+κ , if 0 < κ < 2/3,

N−1/3, if 2/3 < κ < 1.
(29)

One may say that as long as δ < 1/3 the system is not fully in the well-developed “critical
regime”, and the extreme value scale is growing with the window width, saturating at
the Gumbel-like scale N−1+2δ ln N. At the same time, as long as δ exceeds the threshold
value δ = 1/3, the typical extreme values reach the scale Ye = O

(
N−1/3

)
as long as they

are sampled in a window of width exceeding the scale Wc = O
(

N−1/3
)

, thus containing

O(N2/3) eigenvalues. This heuristics suggests that only eigenvalues satisfying |X| < Wc
typically have a nonvanishing probability to reach to the maximum height in the complex
plane, and eventually to generate an outlier as α increases. It would be also natural to
expect the corresponding extreme eigenvalues to follow the Fréchet-type statistics for their
imaginary parts, as opposed to the Gumbel statistics in the former case.

We would like to end our heuristic considerations with a brief heuristic outlook on
the universality of the scaling factor N−1/3 which is key to the correct description of
the transition in question. As is evident from (23) the exponent −1/3 is implied by the
scaling law

Nγ=1(Y) ∝
1

N1/2Y3/2 (30)

in the limit NY � 1 for the expected number of eigenvalues exceeding the level line
Im z = Y. Thus, to investigate the extent of universality of this exponent one needs to trace
the origin of the scaling law (30). This can be readily done by returning to the asymptotic
relation (14) and (15) which was used to obtain (30). On evaluating the integral in (15)
for large values of y = Y/N by the Laplace method it becomes immediately apparent
that the power Y−3/2 on the right-hand side in (30) and, hence, the exponent in ques-
tion stems from the quadratic shape of the limiting GUE eigenvalue density function
ν(X) = (2π)−1

√
4− X2 in the vicinity of its maximum. It is natural to conjecture that had

one started from a random Hermitian matrix H taken from the broad class of invariant
ensembles characterised by joint probability density function ∝ exp{−N Tr V(H)} with a
suitable potential V(H) (or from the class of Wigner matrices with suitable conditions on
the iid entries), the asymptotic expression (12) for the scaled eigenvalue density ρ̃N(X, y)
would retain its validity after replacing ν(X) in (11) and (12) by the corresponding limiting
eigenvalue density of H. For example, as was shown albeit not fully rigorously in [27],
such universality of the scaled eigenvalue density near the real line is exhibited by almost
Hermitian random matrices which are morally similar to finite rank non-Hermitian devia-
tions as in (1) and (2). Since asymptotic relation (14) and (15) is the immediate corollary of
(12), one then concludes that as long as the limiting eigenvalue density of H has a single
global parabolic-shaped maximum, an additive rank-one non-Hermitian deformation will
demonstrate the same type of critical scaling for its extreme complex eigenvalues, and,
most probably, after appropriate rescaling, the same type of critical behaviour of the density
of imaginary parts as described in the next section. One can however imagine invariant
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ensembles where the mean eigenvalue density would have a non-parabolic behaviour close
to the maximum point.

From this point of view, the noticed in [11] resemblance of the N−1/3 critical scaling in
the present model and the edge scaling of extreme real eigenvalues of GUE, which, e.g.,
manifests itself in the so-called BBP [28] transition under additive rank-one Hermitian
perturbation of the GUE, looks to us purely coincidental. Indeed, the latter is known to
have its origin in the square root behaviour of the mean density ν(X) at the spectral edges
where ν(X) vanishes, and as such seems to have nothing to do with the behaviour of the
same density close to its maximal point.

3. Main Results and Discussion

Our first result concerns the mean density of imaginary parts ρ
(Im)
N (Y) (10) in the large

deviation regime Y � N−1. We note that no eigenvalue of J has imaginary part equal or
greater than γ. This is a consequence of the sum rule (13). Therefore we only consider the
range of values Y ∈ [0, γ).

Theorem 1. Consider the random matrix ensemble (1)–(3) in the scaling regime

N1−εY = y > 0, 0 < ε ≤ 1, N → ∞ . (31)

Then for every fixed γ > 0 and ε ∈ (0, 1]

ρ
(Im)
N (Y) ∼ 1√

N
Ψγ(Y) exp{−NΦγ(Y)}, (32)

with

Φγ(Y) = Y(γ−Y)− ln
γ−Y

γ
−Yr∗(Y) + 2 ln r∗(Y), (33)

Ψγ(Y) =
1√
2π

γ

(γ−Y)2
[1− r∗(Y)(γ−Y)]2

Y3/2(Y2 + 4)1/4 , (34)

and

r∗(Y) =

√
Y2 + 4−Y

2
. (35)

The rate function Φγ(Y) is a smooth non-negative function of Y on the interval [0, γ) vanishing at
Y = 0. The rate function is monotone increasing on this interval if γ ≤ 1, whereas if γ > 1 then it
has two local extrema: a local minimum at Y∗ = γ− γ−1 where it vanishes, and a local maximum
at Y∗∗ =

2(γ−γ−1)

3+
√

1+8 γ−2
< Y∗.

By the way of discussion of the above Theorem a few remarks are in order.

Remark 3. The two distinct profiles of the rate function are illustrated in Figure 2. If γ > 1, the
point Y∗ = γ− γ−1 where the Large Deviation Rate function Φγ(Y) vanishes can be identified
as the most probable value of the imaginary part in the region Y � N−1, converging in the limit
N → ∞ to (the height of) the outlier, see next comment. At the same time, the other extremal
point, Y∗∗, can be interpreted as the true boundary, along the imaginary axis in the complex plane,
between the bulk of eigenvalues and the spectral outlier. This is because the pre-exponential factor
Ψγ(Y) in (32) vanishes at Y = Y∗∗ too. Hence, ρ

(Im)
N (Y∗∗)→ 0 in the scaling limit (31).
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Figure 2. Plots of the rate function Φγ(Y) for γ = 2 (plot on the left) and γ = 0.2 (plot on the right).

Remark 4. The Large Deviation approximation (32) for γ > 1 describes fluctuations of the
imaginary part of the outlier around its most probable value Y∗ = γ − γ−1. The law of these
fluctuations in the limit N → ∞ can be easily determined from (32). To this end, we first note that
for N large the magnitude of fluctuations about Y∗ scales with 1/(

√
N|Φ′′γ(Y∗)|). Calculating

the second derivative and rescaling the density ρ
(Im)
N (Y) correspondingly, one finds (in the limit

N → ∞) that

N ρ
(Im)
N

(
Y∗ +

σu√
N

)
∼ 1√

2π
e−

u2
2 , σ2 =

1
γ2

γ2 + 1
γ2 − 1

. (36)

The integral of the rescaled density on the left-hand side over the entire range of values of u counts
the expected number of eigenvalues in the σ√

N
-neighbourhood of Y∗. Evidently, this integral is

approaching unity as N → ∞, confirming that the rescaled density on the left-hand side in (36)
describes the law of fluctuations of a single eigenvalue - the outlier. Thus, we recover one of the
results of [10] where laws of outlier fluctuations were established in greater generality than our
assumptions (2) and (3). We note that for finite but large values of N the function

pN(Y) :=
√

N Ψγ(Y) exp{−NΦγ(Y)} (37)

provides an approximation of the probability density function of the outlier Ymax = max Yj in the
interval 0 < ε < Y < γ, γ > 1.

In Figure 3, we plot histograms of the imaginary parts Yj of the eigenvalues and of their
maximal value Ymax = max Yj in the random matrix ensemble (1)–(3) and make comparison
with the corresponding Large Deviation approximations. Although the value of N = 50 is only
moderately large, one can observe a good agreement. Furthermore, one can observe that the large-N
approximation (37) of the probability density of Ymax captures well the skewness of the distribution of
Ymax for finite matrix dimensions. This skewness disappears in the limit N → ∞, see Equation (36).

Remark 5. Consider now the scales Y = O
(

N−1+ε
)

with ε ∈ (0, 1). The expected number of
eigenvalues with N1−εY ∈ [y1, y2] is given by the integral

N
∫ y2

y1

1
N1−ε

ρ
(Im)
N

( y
N1−ε

)
dy. (38)

The rescaled density in this integral can be found from (32)–(34):

1
N1−ε

ρ
(Im)
N

( y
N1−ε

)
∼ 1

Nε/2
1

2
√

π

(1− γ)2

γ

1
y3/2 e−Nεy (1−γ)2

γ , ε ∈ (0, 1) . (39)

Evidently, if γ 6= 1 then, away from the boundary point y = 0, the integral in (38) vanishes in the
limit N → ∞. Therefore for every fixed γ 6= 1 and 0 < ε < 1 there are no eigenvalues of J whose
imaginary part is scaling with N−1+ε. On the other hand, according to the heuristics of Section 2,
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one should expect finite numbers of eigenvalues whose imaginary part is scaling with N−1 ln N.
These would be the extremes of the eigenvalues with the typical imaginary part Y = O(N−1).

By formally letting ε→ 0 in (39) one obtains

1
N

ρ
(Im)
N

( y
N

)
∼ 1

2
√

π

(1− γ)2

γ

1
y3/2 e−y (1−γ)2

γ .

This relation reproduces the leading order of the asymptotic form of the density of the rescaled
imaginary parts y = NY in the region y� 1, see the top line in (20). Thus, for a fixed value of
γ 6= 1 Theorem 1 describes a crossover of the density of imaginary parts from the characteristic scale
of low lying eigenvalues to larger scales, including Y = O(1) which is the scale of the outlier.
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Figure 3. Histograms of the imaginary parts Yj of the eigenvalues in the random matrix ensemble
(1)–(3) of dimension N = 50 with γ = 2. Plot on the left: Histogram of Yj’s versus the large
deviation approximation of density of the imaginary parts given by (32) (solid line). Plot on the right:
Histogram of the largest imaginary part Ymax = max Yj versus the large deviation approximation
pN(Y) (37) of the p.d.f. of Ymax (solid line). Each plot was produced using 100,000 samples from the
GUE distribution (3).

Whereas the picture described by Theorem 1 is quite complete for a fixed γ, it is not
detailed enough to accurately describe the typical extreme eigenvalues in the situation
when the parameter γ approaches its critical value γ = 1 as N is approaching infinity.
For example, from the heuristics of Section 2 we know that both the width of the tran-
sition region about γ = 1 and the height of the typical extreme eigenvalues scale with
N−1/3. The Large Deviation approximation (32), if applied formally in the transition region
parametrised by γ = 1 + αN−1/3, yields the following approximate expression for the
rescaled density of imaginary parts:

1
N1/3 ρ

(Im)
N

( m
N1/3

)
≈ 1

N
1

2
√

π

( 3m
2 − α

)2

m3/2 e−m(α−m
2 )

2
. (40)

Evidently, in the limit of small values of m which corresponds to approaching the scale
Y = O(N−1) from above, this expression does not reproduce the correct power 5/2 of
algebraic decay (20) characteristic of this scale when γ = 1. In contrast, the heuristics based
on (21), see the approximations in (23) and (24), do reproduce the correct power. Indeed,
by taking the derivative in m of the expression on the right-hand side in (24), one gets

1
N1/3 ρ

(Im)
N

( m
N1/3

)
≈ 1

N
1

2
√

π

3
2m + α2

m3/2 e−mα2
. (41)

In the limit of small values of m the expression on the right-hand side agrees with the bottom
line in (20). One can also arrive at (41) by making the formal substitution γ = 1 + α

N1/3 and
y = NY = mN2/3 in (20).
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Our next Theorem is a refinement of Theorem 1 in that it provides an accurate descrip-
tion of the density of the typical extreme eigenvalues in the transition region between the
sea of low lying eigenvalues and the eigenvalue outlier.

Theorem 2. Consider the random matrix ensemble (1)–(3) in the scaling regime

γ = 1 +
α

N1/3 , Y =
m

N1/3 , N → ∞ . (42)

Then, for every fixed α ∈ R and m > 0,

1
N1/3 ρ

(Im)
N

( m
N1/3

)
∼ 1

N
1

2
√

π

3
2m +

( 3m
2 − α

)2

m3/2 e−m(α−m
2 )

2
. (43)

This theorem confirms that the characteristic scale of the height of the typical extreme
eigenvalues of matrix J is O

(
N−1/3

)
. Indeed, the expected number of eigenvalues with

imaginary part exceeding the level Y = m
N1/3 is given by

N
∫ ∞

m

1
N1/3 ρ

(Im)
N

( m
N1/3

)
dm ,

which is a finite number in the limit N → ∞.

Theorem 2 also describes the density ρ
(Im)
N (Y) in the cross-over from the characteristic

scale of low lying eigenvalues to the Large Deviation regime of Theorem 1. Indeed, for
small values of m the asymptotic expression (43) matches the one in (41), whilst in the limit
of large values of m it matches (40).

The emerging outlier is captured by (43) when both m and α > 0 are large. Intuitively
this is clear from the comparison of (43) and (40). On a more formal level, one can come to
the same conclusion by analysing the limiting density of extreme values

p̃(Im)
α (m) =

1
2
√

π

3
2m +

( 3m
2 − α

)2

m3/2 e−m(α−m
2 )

2
, m > 0 . (44)

Using Wolfram Mathematica one finds

d
dm

p̃(Im)
α (m) =

e−m(α−m
2 )

2

32
√

π m7/2 Q6(α, m) ,

where

Q6(α, m) = −60− 48α2m + 72αm2 − 16α4m2 + 80α3m3 − 144α2m4 + 108αm5 − 27m6.

Evidently, Q6(α, m) < 0 for all m > 0 if α is negative. Therefore, if α < 0 (subcritical values
of γ) then the limiting density p̃(Im)

α (m) is a monotonically decreasing function of m on the
entire interval m > 0. One can interpret this profile as a population of extreme eigenvalues
without an obvious “leader”. By continuity, this profile persevere for small positive α.
Indeed, at α = 0 the polynomial Q6(0, m) has three pairs of complex conjugated roots, none
are real. Since the roots of polynomials depend continuously on its coefficients, there exists
an α0 > 0 such that for all α ∈ [0, α0] the polynomial Q6(α, m) in m will still have no real
roots and, hence, will take only negative values, implying that p̃(Im)

α (m) is a monotonically
decreasing function of m. By computing the roots of Q6(α, m) in variable m, we can show
that 0.6485 < α0 < 0.649.
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Once α > α0, the polynomial Q6(α, m) in m acquires real roots. In the limit of large
positive α there are two real roots: to leading order these are

m1 = 2α

(
1 +

3
8α3 + o

(
1
α3

))
and m2 =

2
3

α

(
1 +

15
8α3 + o

(
1
α3

))
.

The larger root, m1, is the point of local maximum of p̃(Im)
α (m), where p̃(Im)

α (m1) ∝ α1/2 � 1,
and the smaller root, m2, is the point of local minimum p̃(Im)

α (m), where p̃(Im)
α (m2) ∝

α−5/2 � 1. In fact, in the limit α → ∞ the larger root is transitioning into Y∗, the most
probable value of imaginary parts, and, hence, it can be interpreted as the emerging spectral
outlier. At the same time, the smaller root is transitioning into the true boundary Y∗∗
between the sea of low lying eigenvalues and the outlier. This cross-over can be validated

by noticing that in the scaling limit (42) Y∗ = γ− γ−1 ∼ 2α and Y∗∗ =
2(γ−γ−1)

3+
√

1+8γ−2
∼ 2

3 α.

Further insights into the restructuring of the spectrum of J can be obtained by looking
at the γ-dependence of the expected number of the eigenvalues of J with imaginary parts
exceeding the level Y = mN−1/3. In the scaling limit (42) this number converges to

Ñα(m) =
∫ ∞

m
p̃(Im)

α (m′)dm′ .

In Figure 4, we plot Ñα(m) as function of α for several values of m. One can observe that
for any fixed m > 0 the population of the extreme eigenvalues of J that exceed the level
Y = mN−1/3 is, on average, growing as γ is approaching the critical value γ = 1 from
below. For γ on the other side of γ = 1, this population peaks a some point and then it
starts to decline as γ increases further, to a single eigenvalue which is the outlier. All the
other extreme eigenvalues are getting closer and closer to the real line with the increase of
γ. One can think of them as being trapped in the sea of low lying eigenvalues. This picture
is consistent with the eigenvalue trajectories of Figure 1 and provides a more quantitative
description of the “resonance trapping” phenomenon [20] in the framework of random
matrix theory.
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Figure 4. Plot of the expected number Ñα(m) of the eigenvalues of J with imaginary parts exceeding
the level Y = mN−1/3 as function of α when m = 0.1 (black solid line), m = 0.2 (blue dashdotted
line), m = 0.3 (red dashed line), and m = 0.4 (magenta dotted line).
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Our final result aims to clarify the length of the central part of the spectrum of J
supporting nontrivial scaling behaviour of the extreme eigenvalues in the vicinity of the
separation transition. To this end, let us consider eigenvalues zj = Xj + iYj of J in the
scaling regime when

γ = 1 +
α

N1/3 , X =
q

N1/3 , Y =
m

N1/3 , N → ∞ . (45)

On average, eigenvalue numbers in this regime can be counted using the rescaled density

p̃N(q, m) :=

〈
N

∑
i=1

δ
(

q− N1/3Xj

)
δ
(

m− N1/3Yj

)〉
=

N
N2/3 ρN

( q
N1/3 ,

m
N1/3

)
,

where, as before, the angle brackets stand for the averaging over the GUE matrix H in (1)
and ρN(X, Y) is the mean eigenvalue density (8).

Theorem 3. Consider the random matrix ensemble (1)–(3) in the scaling regime (45). Then, for
every fixed α ∈ R, q ∈ R and m > 0,

p̃α(q, m) := lim
N→∞

p̃N(q, m) =
1

4πm

[
1
m

+
q2

4
+

(
3m
2
− α

)2
]

e
−m

[
q2
4 +(α−m

2 )
2
]

. (46)

It is easy to see from (46) that
∫ ∞
−∞ p̃(q, m)dq = p̃(Im)

α (m). Thus, Theorem 3 confirms
the heuristics of Section 2 in that the population of extreme eigenvalues which generates
the eventual outlier (as α is approaching infinity) is constrained to a narrow vertical strip of
width O(N−1/3) about the origin.

Our results demonstrate that despite being one of the simplest tools available, the
mean eigenvalue density captures the eigenvalue and parameter scales associated with the
spectral restructuring in the random matrix ensemble (1)–(3). However, it gives no infor-
mation about finer details, such as the probability distribution of the extreme eigenvalues
during the restructure. Calculating all the higher order eigenvalue correlation functions in
the scaling regime (45) would be a significant step towards describing such finer details.
Unfortunately, the eigenvalue point process in the random matrix ensemble (1)–(3) is not
determinantal at finite matrix dimensions and such a calculation is a considerably more
difficult analytic task compared to the mean eigenvalue density.

At this point we want to mention that the probability distribution of extreme eigen-
values can be determined in a related but different random matrix ensemble exhibiting
a spectral restructuring not unlike one in (1)–(3). This ensemble consists of subunitary
matrices of the form

JCUE = U diag(
√

1− T, 1, . . . , 1) , (47)

where the matrix U is taken from the Circular Unitary Ensemble (CUE) of complex unitary
matrices uniformly distributed over U(N) with the Haar’s measure and T ∈ [0, 1] is a
parameter. The ensemble was originally introduced in [29] and various statistical aspects
of their spectra and eigenvectors were addressed in [2,6,30,31] and most recently in [15].

Obviously, if T = 0 then the matrix JCUE is unitary and all of its eigenvalues lie on the
unit circle |z| = 1. If T > 0 and is fixed in the limit N � 1 then, typically, the eigenvalues
of JCUE lie at a distance O(N−1) from the unit circle with the farthest away being at a
distance O

( log N
(1−T)N

)
with probability close to one. On the other hand, for T = 1 one of the

eigenvalues becomes identically zero, and the rest are distributed inside the unit circle in
the same way as eigenvalues of the so-called “truncated” CUE [32].
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The similarity between the random matrix ensembles (47) and (1)–(3) can be exempli-
fied by analysing the mean density of the eigenvalue moduli rj = |zj|

ρN(r) =
〈 1

N

N

∑
j=1

δ(r− rj)
〉

CUE

in the limit of large matrix dimensions N → ∞. One finds [29] that for every fixed T ∈ [0, 1]

lim
N→∞

NρN(r) =

{
δ(r) + 2r

(1−r2)2 , if T = 1,

0, if 0 < T < 1 ,

whereas, on rescaling the radial density near the unit circle [2,32],

ρ̃CUE(y) := lim
N→∞

1
N

ρN

(
1− y

N

)
= − d

dy

[
e−gy sinh y

y

]
, with g =

2
T
− 1. (48)

Equation (48) is identical, with the obvious correspondence

1
2

(
γ +

1
γ

)
=

2
T
− 1 , (49)

to Equation (12) considered at the centre of the GUE spectrum. In the limit of large values
of y,

ρ̃CUE(y) ∼


1− T

T
1
y

e−2y 1−T
T , if 0 < T < 1,

1
y2 if T = 1.

(50)

The rescaled radial density has an exponentially light tail if 0 < T < 1, and it is heavy-tailed
if T = 1 which hints at markedly different behaviour of the extreme eigenvalues in the
two cases. Reflecting on (50), one can convince themselves that this change occurs in an
infinitesimal region near T = 1 of width N−1. Such a scaling regime was earlier identified
and analysed from a somewhat different angle in [15]. The precise relation of our analysis
to one in [15] will be given in a separate paper [33].

On setting T = 1 − t
N , t > 0, one can investigate this transition region in much

detail [33]. For example, the smallest eigenvalue modulus of the subunitary matrices JCUE,

xmin = min
j=1,...,N

|zj|,

converges in the limit N → ∞ to a random variable X whose cumulative probability
distribution function is given by the series

Pr{X ≤ x} =
∞

∑
n=1

(−1)n+1 xn(n−1)

∏n
k=1(1− x2k)

et
(

1− 1
x2n

)
, 0 < x < 1 .

This family of probability distributions interpolates between the Fréchet and Gumbel
distributions and is different from the standard family of probability distributions that
characterise the extreme values in long sequence of i.i.d. random variables. In the limit of
small values of t

lim
t→0+

Pr
{

X < y
√

t
}
= e−y−2

, y > 0,
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whereas

lim
t→+∞

Pr{2t(1− X)− log t + log(log t) < y} = e−e−y
, y > 0.

4. Mean Density of Eigenvalues at Finite Matrix Dimensions

Our analysis of various scaling regimes of the random matrix ensemble (1)–(3) is based
on finite-N expressions for the mean eigenvalue density and the mean density of imaginary
parts in terms of orthogonal polynomials, see Equations (56)–(64). These representations
are new and the current Section contains their derivations.

4.1. Joint Eigenvalue Density and Correlation Functions

Our starting point is a closed form expression for the joint density PN(z1, . . . , zn) of
the eigenvalues zk = Xk + iYk of J (1)–(3):

PN(z1, . . . , zN) = (51)

NN2/2

(2π)N/2N!G(N)γN−1
exp

{
−N

2

(
γ2 +

N

∑
k=1

Re
(

z2
k

))}
δ

(
γ−

N

∑
k=1

Im zk

)
N

∏
j<k

∣∣zj − zk
∣∣2 ,

where G(N) is the Barnes G-function. This expression was derived in [22] (see also [5]) and,
for the obvious reason, it holds for (z1, . . . , zN) ∈ CN

+ , where C+ is the upper half of the
complex plane C+ = {z = X + iY : Y ≥ 0}

The first key fact that makes our analysis possible is that the eigenvalue correla-
tion functions

RN,n(z1, . . . , zn) =
N!

(N − n)!

∫
CN−n
+

PN(z1, . . . , zn, zn+1, . . . , zN)
N

∏
k=n+1

dXkdYk,

can be expressed in terms of averages of products of characteristic polynomials of random
matrices J(γ̃) having the same structure as (1)–(3) but of smaller dimension and with
a different parameter γ. The relevance of this to our investigation is in that the mean
eigenvalue density ρN(X, Y) (8) which is the main object of our interest is

ρN(X, Y) =
1
N

RN,1(X + iY) . (52)

It has been shown in [22] that

RN,n(z1, . . . , zn) =
1

(2π)n/2γn

(
1− ∑n

k=1 Yk

γ

)N−n−1 N
n2
2 (N − n)Nn−n2

n
∏
j=1

(N − j− 1)!
∏

1≤j<k≤n

∣∣zj − zk
∣∣2×

exp

{
−N

2

n

∑
k=1

X2
k − N

n

∑
k=1

Yk(γ−Yk)

}〈
n

∏
k=1

∣∣∣det
[
ẑk1N−n − Jγ̂−∑n

k=1 Ŷk

]∣∣∣2〉
HN−n

,

where

γ̂ =

(
N

N − n

)1/2
γ, ẑk =

(
N

N − n

)1/2
(Xk + iYk), Ŷk =

(
N

N − n

)1/2
Yk ,
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and Jγ̂−∑n
k=1 Ŷk

are the random matrices (1)–(3) of dimension N − n with N in (3) replaced

by N − n and γ in (2) replaced by γ̂−∑n
k=1 Ŷk,

Jγ̂−∑n
k=1 Ŷk

= HN−n + i

(
γ̂−

n

∑
k=1

Ŷk

)
diag(1, 0, . . . , 0) .

The GUE average 〈. . .〉HN−n
of the product of the characteristic polynomials of Jγ̂−∑n

k=1 Ŷk
can be performed with the help of the following proposition which we prove in Appendix A.

Proposition 1. Let

Fγ(z1, z2, . . . , zn) =

〈
n

∏
j=1

∣∣det
(
zj1N − Jγ

)∣∣2〉 ,

where Jγ are the rank-one deviations from the GUE of dimension N defined by (1)–(3) and the
average is taken over the GUE distribution (3). Then

Fγ(z1, z2, . . . , zn) =

1
2n

(
N
π

)2n2∫
D[S2n] exp

{
−N

2
Tr S2

2n

}
detN−1(Z2n + iS2n) det(Z2n + iS2n − iγL2n),

where the integration is over the space of 2n× 2n Hermitian matrices S2n, D[S2n] is the standard
volume element in this space and

Z2n = diag(z1, z2, . . . , zn, z1, z2, . . . , zn), L2n = diag(1,−1)⊗ 1n.

Using this Proposition one arrives, after rescaling S2n =
(

N
N−n

)1/2
Ŝ2n in the resulting

matrix integral, at a useful integral representation for the eigenvalue correlation functions
in the random matrix ensemble (1)–(3):

RN,n(z1, . . . , zn) = (53)

cN
γn

(
1− ∑n

k=1 Yk

γ

)N−n−1

exp

{
−N

2

n

∑
k=1

X2
k − N

n

∑
k=1

Yk(γ−Yk)

}
∏

1≤j<k≤n

∣∣zj − zk
∣∣2×

∫
d[Ŝ2n]exp

{
−N

2
Tr Ŝ 2

2n

}
detN−n−1

[
Z2n + iŜ2n

]
det

[
Z2n + iŜ2n − i

(
γ−

n

∑
k=1

Yk

)
L2n

]

with

cN,n(γ) =
N3n2/2+Nn

(2γ)n (2π)n/2 π2n2
n
∏
j=1

(N − j− 1)!
.

4.2. Mean Density of Complex Eigenvalues

Setting n = 1 and z1 = X + iY in (53) and then shifting the variable of integration by
making the substitution Ŝ2 = S2 − YL2 in the matrix integral, one obtains the following
integral representation for the mean density of eigenvalues (52) in the random matrix
ensemble (1)–(3):
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ρN(X, Y) =
1

2γπ2
√

2π

NN+1/2

(N − 2)!

(
1− Y

γ

)N−2
exp

{
−N

2
X2 − NYγ

}
× (54)

∫
D[S2] exp

{
−N

2
Tr S2

2 + NY Tr S2L2

}
detN−2(X12 + iS2)det

(
X12 + iS2 − i(γ−Y)L2

)
.

It is convenient to parametrise the hermitian matrix S2 by diagonalising it:

S2 = U2Σ2U∗2 , Σ2 = diag(σ1, σ2), σ1 ≥ σ2 ∈ R,

where U2 is a 2× 2 unitary matrix, which can be parametrised as

U2 =

(
cos θ sin θeiφ

− sin θe−iφ cos θ

)
, θ ∈

[
0,

π

2

]
, φ ∈ [0, 2π].

Noting that

D[S2] = (σ1 − σ2)
2 sin(2θ)

2
dσ1 dσ2 dθ dφ.

one arrives, on making the substitution S2 = U2Σ2U∗2 in (54), at

ρN(X, Y) =
cN
γ

(
1− Y

γ

)N−2
exp

{
−N

2

(
X2 + 2Yγ

)}
×

∫ π
2

0
dθ
∫ +∞

−∞
dσ1

∫ σ1

−∞
dσ2 (σ1 − σ2)

2 sin(2θ) exp
{
−N

2

(
σ2

1 + σ2
2

)
+ NY(σ1 − σ2) cos(2θ)

}
×

(X + iσ1)
N−2(X + iσ2)

N−2
[
(X + iσ1)(X + iσ2) + (γ−Y)2 − (γ−Y)(σ1 − σ2) cos(2θ)

]
,

where we have introduced

cN =
1

(2π)3/2
NN+1/2

(N − 2)!
∼ N2eN

2π2 (N → ∞). (55)

The integral over θ can be performed by the substitution t = (σ1 − σ2) cos(2θ). This yields

ρN(X, Y) =
cN

2NYγ

(
1− Y

γ

)N−2
exp

{
−N

2

(
X2 + 2γY− 2Y2

)}
JN(X, Y) , (56)

where

JN(X, Y) =
∫ +∞

−∞
dσ1

∫ +∞

−∞
dσ2 e−

N
2 (σ2

1+σ2
2 )(z + iσ1)

N−2(z + iσ2)
N−2 (z + iσ1)− (z + iσ2)

i
×[

(z + iσ1)(z + iσ2) + (γ−Y)2 +
γ−Y

Ny
− (γ−Y)

(z + iσ1)− (z + iσ2)

i

]
,

with z = X + iY.
Further, introducing functions

πm(z) =
∫ +∞

−∞
dσ e−

N
2 σ2

(z + iσ)N−m , m = 0, 1, . . . , N, (57)
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one can rewrite the integral JN(X, Y) in the following form

JN(X, Y) =− i[π0(Z)π1(z)− π0(z)π1(z)] (58)

− i
(
(γ−Y)2 +

γ−Y
Ny

)
[π1(z)π2(z)− π1(z)π2(z)]

+ (γ−Y)[π0(z)π2(z) + π0(z)π2(z)− 2π1(z)π1(z)] ,

Now one observes that πm(z) are actually a rescaled version of Hermite polynomials. We
have that

πm(z) =
√

π

(
2
N

)N−m+1
2

H̃N−m

(
z

√
N
2

)
=
√

2ππ1/4

√
(N −m)!
NN−m+1 pN−m

(
z

√
N
2

)
, (59)

where H̃k(z) are the monic Hermite polynomials

H̃k(z) =
(
−1

2

)k
e z2 d

dz
e−z2

and pk(z) are the orthonormal Hermite polynomials

pk(z) =

√
2k

k!
√

π
H̃k(z)

satisfying the orthogonality relations∫ +∞

−∞
dz pk(z)pm(z) e−z2

dz = δk,m.

The polynomials pk(z) also satisfy the recurrence relation

pk+1(z) = z
√

2
k + 1

pk(z)−
√

k
k + 1

pk−1(z).

Using the above definitions and the expression for the eigenvalue density ρN(X, Y) in (56)
and with the notation z = X + iY we obtain

ρN(X, Y) =
N − 1√
2NYγ

(
1− Y

γ

)N−2
exp

{
−N

2
X2 − NY(γ−Y)

}
×

Im pN

(
z

√
N
2

)
pN−1

(
z

√
N
2

)
− (γ−Y)

∣∣∣∣∣pN−1

(
z

√
N
2

)∣∣∣∣∣
2

+

√
N

N − 1

[(
(γ−Y)2 +

γ−Y
NY

)
Im pN−1

(
z

√
N
2

)
pN−2

(
z

√
N
2

)

+(γ−Y)Re pN

(
z

√
N
2

)
pN−2

(
z

√
N
2

)]}
.

which, by using the recurrence relation, can be further rewritten as
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ρN(X, Y) =
1

Yγ

√
N
2

(
1− Y

γ

)N−2
exp

{
−N

2
X2 − NY(γ−Y)

}
× (60){

Im pN

(
z

√
N
2

)
pN−1

(
z

√
N
2

)[
1− 1

N
+ (γ−Y)

(
γ +

1
NY

)]

−
∣∣∣∣∣pN−1

(
z

√
N
2

)∣∣∣∣∣
2[

Y(γ−Y)2 + (γ−Y)−Y(γ−Y)
]

−
∣∣∣∣∣pN

(
z

√
N
2

)∣∣∣∣∣
2

(γ−Y) + Re pN

(
z

√
N
2

)
pN−1

(
z

√
N
2

)
X(γ−Y)

.

4.3. Density of the Imaginary Parts

In this section, we present the derivation of the density for the imaginary parts of the
eigenvalues, irrespective of their real parts, as defined in (10). We start with an observation,
see integral 7.377 in [23]:

Lemma 1. Let β ≥ α be two non-negative integers and z = X + iY. Then

∞∫
−∞

e−
N
2 X2

pN−α

(
z

√
N
2

)
pN−β

(
z

√
N
2

)
dX =

iβ−α

√
2
N

Nβ−α

(N − α) . . . (N − β + 1)
Yβ−αL(β−α)

N−β

(
−NY2

)
,

where L(α)
M is a standard Laguerre polynomial.

Integrating with respect to X expression for the density ρN(X, Y) in (60) one gets the
probability density of imaginary parts in the form

ρ
(Im)
N (Y) =

1
Yγ

(
1− Y

γ

)N−2
e−NY(γ−Y)FN(Y) (61)

with

FN(Y) =
N − 1

N
YL(1)

N−1

(
−NY2

)
− N − 1

N
(γ−Y)L(0)

N−1

(
−NY2

)
(62)

+ Y
[
(γ−Y)2 +

γ−Y
NY

]
L(1)

N−2

(
−NY2

)
− (γ−Y)Y2L(2)

N−2

(
−NY2

)
=− 2γL(0)

N−1

(
−NY2

)
+

(
N − 1

N
3Y +

2γ

N

)
L(1)

N−1

(
−NY2

)
(63)

+
[
−2Y + Y(γ−Y)2

]
L(1)

N−2

(
−NY2

)
=

N − 1
N

(3Y− 2γ)L(1)
N−1

(
−NY2

)
+
[
2γ− 2Y + Y(γ−Y)2

]
L(1)

N−2

(
−NY2

)
(64)

where we systematically used the recursion relations:

L(0)
N−1

(
−NY2

)
= L(1)

N−1

(
−NY2

)
− L(1)

N−2

(
−NY2

)
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and

−Y2L(2)
N−2

(
−NY2

)
= L(1)

N−2

(
−NY2

)
− N − 1

N
L(1)

N−1

(
−NY2

)
.

5. Proof of Theorems 1 and 2

In both proofs we use the following integral representation for the Laguerre polynomials
in terms of the modified Bessel functions Iα(x) (see, e.g., Equation 4.19.13 in [34]):

L(α)
N−k

(
−NY2

)
=

2NN−k+1

(N − k)!
e−NY2

|Y|α

∞∫
0

τ2N−2k+α+1e−Nτ2
Iα(2τ|Y|N) dτ (α > −1). (65)

The integral in (65) can be evaluated in the limit N → ∞ in various scaling regimes for Y
using the Laplace method, see Appendix B. The resulting asymptotic expression depends
on the scaling of the variable Y > 0 with N.

Proof of Theorem 1. Consider the scaling regime (31) with γ > 0 being fixed. In this
regime the asymptotic form of the mean density of the imaginary parts can be found using
the leading order form of L(1)

N−k
(
−NY2) which can be read from (A8) as

L(1)
N−k

(
−NY2

)
∼ eNYr∗
√

2πN
r∗(Y)−2(N−k+1)

Y3/2(Y2 + 4)1/4 , r∗(Y) =

√
Y2 + 4−Y

2
. (66)

On substituting (66) into (64) one gets an asymptotic expression for the density (61)
precisely in the Large Deviation form (32) with the rate function (33) and the pre-exponential
factor in the form

1√
N

Ψγ(Y) =
1√

2πN
γ

(γ−Y)2
3Y− 2γ + r∗(Y)2(γ−Y)(2 + Y(γ−Y))

Y5/2(Y2 + 4)1/4 . (67)

Finally, by exploiting the relation 1− r∗(Y)2 = Yr∗(Y),

3Y− 2γ + r∗(Y)2(γ−Y)(2 + Y(γ−Y)) =Y− (γ−Y)
[
2(1− r∗(Y)2)− r∗(Y)2 Y(γ−Y)

]
=Y− (γ−Y)

[
2r∗(Y)Y− r∗(Y)2 Y(γ−Y)

]
=Y[1− r∗(Y)(γ−Y)(2− r∗(Y)(γ−Y))].

This brings the function Ψγ(Y) in (67) to the form as given in (34).
To analyse the shape of the rate function Φγ(Y) in (33) it is convenient to parametrise

Y = eθ − e−θ , θ > 0 . (68)

In this parametrisation, the rate function transforms to

Φ̃γ(θ) := Φγ

(
eθ − e−θ

)
= γ

(
eθ − e−θ

)
+ 1− e2θ − 2θ − ln

(
1− eθ − e−θ

γ

)
,

and its derivative in θ factorises as follows:

Φ̃′γ(θ) =γ
(

eθ + e−θ
)
− 2
(

e2θ + 1
)
+

eθ + e−θ

γ−
(
eθ − e−θ

)
=
(

eθ + e−θ
)(

γ− eθ
)[

1− eθ

γ−
(
eθ − e−θ

)] .
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Therefore, the stationary points of Φ̃γ(θ) solve the equations

eθ = γ (69)

and

eθ = γ−
(

eθ − e−θ
)

. (70)

These equations yields two stationary points eθ∗ = γ and eθ∗∗ =
γ+
√

8+γ2

4 . Correspondingly,
the rate function Φγ(Y) has two stationary points

Y∗ = γ− γ−1 and Y∗∗ =
3γ−

√
8 + γ2

4
=

2
(

γ− 1
γ

)
3 +

√
1 + 8/γ2

.

It is evident that if 0 < γ < 1 both stationary points Y∗ and Y∗∗ are negative. One can
easily check that in this case Φγ(Y) is monotonically increasing on the interval Y > 0 and
is positive on this interval.

If γ > 1 then taking the second derivative in θ one can easily show that

Φ̃′′γ(θ∗) = (γ2 − 1)(γ2 + 1) > 0, Φ̃′′γ(θ∗∗) = −
(
e2θ∗∗ − e−2θ∗∗

)(
1 + γeθ∗∗

)[
γ−

(
eθ∗∗ − e−θ∗∗

)]2 < 0,

so that Y∗ is the point of local minimum of the rate function Φγ(Y), and Y∗∗ is the point of
local maximum. It is also easy to verify that the rate function Φγ(Y) vanishes in the limit
Y → 0 and also at Y = Y∗, staying positive at all other Y > 0, so that that the point Y = Y∗
is the point of absolute minimum. Finally, to verify that the pre-exponential factor (34)
vanishes at Y = Y∗∗ it suffices to show that r∗(Y∗∗)(γ−Y∗∗) = 1. On noticing that

r∗(Y) =

√
Y2 + 4−Y

2
= e−θ .

this relation evidently follows from (68) and (70).

Proof of Theorem 2. In the scaling regime (42) the variable Y scales with N−1/3. As
NY � 1 in this case, the required asymptotic expressions for Laguerre polynomials can
be read from (A8). It turns out that in order to calculate the density of imaginary parts to
leading order in this regime, one has to retain the subleading term in the pre-exponential
factor as specified in (A8). On substituting Y = mN−1/3 in (A8) we obtain that with the
required precision

L(1)
N−1

(
−N1/3m2

)
=

eNL0(Y)
√

2πm3 (Y2 + 4)1/4

(
1− 3

16
1

mN2/3

)
(71)

L(1)
N−2

(
−N1/3m2

)
=

eNL0(Y)
√

2πm3 (Y2 + 4)1/4 r∗(Y)2
(

1− 3
16

1
mN2/3

)
(72)

L(0)
N−1

(
−N1/3m2

)
=

eNL0(Y)

N1/3
√

2πm3 (Y2 + 4)1/4

(
1 +

1
16

1
mN2/3

)
, (73)

where L0(Y) = Yr∗(Y)− 2 ln r∗(Y) with r∗ (35) and ln r∗ expanded in powers of Y � 1:

r∗(Y) = 1− Y
2
+

Y2

8
+ O(Y4), ln r∗(Y) = −

Y
2
+

Y3

48
+ O(Y4). (74)
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It is easy to see that the overall exponential behaviour of the mean density (61) will still be
given by (33) duly expanded:

Φγ(Y) = Y
(

γ +
1
γ
− 2
)
− Y2

2

(
1− 1

γ2

)
+

Y3

3

(
1

γ3 −
1
4

)
+ O(Y4) . (75)

Putting in here the scaling form γ = 1 + α
N1/3 and recalling Y = m

N1/3 we find from (75),
assuming that the parameters α ∈ R and m > 0 are fixed, that

NΦ1+ α

N1/3

( m
N1/3

)
= mα2 −m2α +

m3

4
= m

(
α− m

2

)2
:= Φα(m) .

This verifies the exponent in (43). To find the pre-exponential terms we find it most
convenient to use Equation (63). Substituting there (71)–(73) we first get

FN(m) =
eNL0(Y)

√
2πm (Y2 + 4)1/4

{
− 2γ

N1/3 r∗(Y)
(

1 +
1
16

1
mN2/3

)
(76)

+
1
m

(
1− 3

16
1

mN2/3

)(
3m

N1/3 +
2γ

N
− 3m

N4/3

)
+

[
− 2

N1/3 +
1

N1/3

(
γ2 − 2γ

m
N1/3 +

m2

N2/3

)]
r∗(Y)2

(
1− 3

16
1

mN2/3

)}
.

After rearranging and collecting the relevant terms in the above expression we arrive at

FN(m) =
eNL0(Y)

√
2πm (Y2 + 4)1/4

{
(r∗(Y)γ− 1)2 + 2(1− r∗(Y)2)

N1/3 − 2γmr∗(Y)2

N2/3 (77)

+
1
N

[
− 9

16m
+ m2r∗(Y)2 − 3

16
(γ2 − 2)r∗(Y)2

m
+

2γ

m
− γr∗(Y)

8m

]}
.

The expansion (74) together with γ = 1 + α
N1/3 give the relations

(r∗(Y)γ− 1)2 + 2(1− r∗(Y)2)

N1/3 =
2m

N2/3 +
1
N

[(
α− m

2

)2
−m2

]
(78)

and

−2γmr∗(Y)2

N2/3 =− 2m
N2/3 −

2m(α−m)

N
, (79)

which are exact to the subleading order. We can now see that the leading order terms
inside the curly brackets in (77) cancel. This also implies that at the leading order it is
enough to replace the factor

(
Y2 + 4

)1/4 in (77) with
√

2. Finally, adding the leading order
contribution from

1
N

[
− 9

16m
+ m2r∗(Y)2 − 3

16
(γ2 − 2)r∗(Y)2

m
+

2γ

m
− γr∗(Y)

8m

]
=

1
N

(
m2 +

3
2m

)
to the 1/N terms in (78) and (79) results in

FN(m) =
eNL0(Y)

2
√

πm
1
N

[
3

2m
+
(

α− 3
m
2

)2
]

, (80)

thus verifying the pre-exponential factors in (43).

Let us finally present the derivation of the marginal density of imaginary parts (18)
pertinent to keeping the product y = YN fixed as N → ∞. This task is straightforwardly
achieved by performing the limit N → ∞ in (61) via substituting the corresponding
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asymptotics of Laguerre polynomials (A3) into the Formula (63) and using the identity
d

dy I1(2y) = I0(2y)− I2(2y).

6. Proof of Theorem 3

Proof. We will use Equations (56)–(58) which express the mean density of eigenvalues
ρN(X, Y) in terms of the rescaled Hermite polynomials πk(X + iY) (59).

Using the integral representation in (57) it can be shown that in the scaling limit

z = X + iY, X =
q

N1/3 , Y =
m

N1/3 > 0 (81)

the rescaled Hermite polynomials πk(z) are given by the asymptotic equations

πk(z) ∼
√

2π

N(1 + σ2
+)

(−iσ+)
k e−

N
2 (1+izσ++2 ln (−iσ+)) , (82)

πk(z) ∼
√

2π

N(1 + σ2
−)

(−iσ−)
k e−

N
2 (1+izσ−+2 ln (−iσ−)) , (83)

where we have introduced the notations

σ+ =
iz +
√

4− z2

2
, σ− =

iz−
√

4− z2

2
. (84)

This implies for JN(X, Y) (58) that

JN(X, Y) ∼ 2π

N
e−N (σ+ − σ−)√

(1 + σ2
+)(1 + σ2

−)
e−N( i

2 (zσ++zσ−)+ln (−σ+σ−)) (85)

×
[
(1− σ+(γ− y))(1 + σ−(γ−Y))− σ+σ−

γ−Y
NY

]
. (86)

We are here interested in the limit of small |z| (81), and, hence, can use the expansions

σ+ = 1 +
iz
2
− z2

8
+ . . . , σ− = −1 +

iz
2
+

z2

8
+ . . .

and, consequently,

1− σ+(γ−Y) =1− γ + Y +
Y
2

γ− iX
2

γ + O(|z|2) ,

1− σ−(γ−Y) =1− γ + Y +
Y
2

γ +
iX
2

γ + O(|z|2) .

Hence,

(1− σ+(γ−Y))(1 + σ−(γ−Y)) =
[
1− γ + Y

(
1 +

γ

2

)]2
+

X2

4
γ2 + O

(
X2 + Y2

)
.

Setting here X = q
N1/3 , Y = m

N1/3 and γ = 1 + α
N1/3 one obtains that to leading order in N

(1− σ+(γ−Y))(1 + σ−(γ−Y)) =
1

N2/3

[(
3
2

m− α

)2
+

q2

4

]
.

With the same precision we have

−σ+σ−
γ−Y

NY
=

1
N2/3

1
m

,
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and, consequently,[
(1− σ+(γ−Y))(1 + σ−(γ−Y))− σ+σ−

γ−Y
NY

]
=

1
N2/3

[
1
m

+

(
3m
2
− α

)2
+

q2

4

]
. (87)

On inspecting (56) and (85), one concludes that the overall exponential factor in (56) is
given by e−NΦ̃γ , where

Φ̃γ =
i
2
(zσ+ + zσ−) + ln (−σ+σ−) +

X2

2
+ γY−Y2 − ln

(
1− Y

γ

)
.

The leading order form of Φ̃γ can be found by expanding in powers of X and Y, in a similar
way as before:

i
2
(zσ+ + zσ−) = −Y− X2 −Y2

2
+

Y
8
(3X2 −Y2) + O(|z|4) ,

ln (−σ+σ−) = −Y +
Y3

24
− YX2

8
+ O(|z|4) ,

− ln
(

1− Y
γ

)
=

Y
γ
+

Y2

2γ2 +
Y3

3γ3 + O(Y4) .

Adding all contributions,

Φ̃γ = Y
(γ− 1)2

γ
+

Y2

2γ2 (1− γ2) +
Y3

3

(
1

γ3 −
1
4

)
+

YX2

4
+ O(|z|4) .

Setting here X = q
N1/3 , Y = m

N1/3 and γ = 1 + α
N1/3 , one obtains that to leading order

Φ̃γ =
m
N

((m
2
− α
)2

+
q2

4

)
. (88)

Combining (88) with (87), and trivially taking into account asymptotic expressions for the
remaining multiplicative factors in (56) and (86), one arrives at (46).
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Appendix A. Proof of Proposition 1

We prove here a more general version of Proposition 1 which holds for rank-M
deviations J = H + iΓ, Γ = diag{γ1, . . . , γM, 0, . . . , 0} from the GUE (3) with arbitrary real
parameters γj, j = 1, . . . , M < N. The Proposition 1 follows as the special case M = 1.

Proposition A1. Let Γ = diag(γ1, . . . , γM, 0, . . . , 0) be a diagonal matrix of dimension N with
M < N non-zero real entries γj and

FΓ(z1, z2, . . . , zn) =

〈
n

∏
j=1

∣∣det
(
zj1N − H − iΓ

)∣∣2〉
H

,

where the average is taken over the GUE distribution (3). Then

FΓ(z1, z2, . . . , zn) = (A1)

1
2n

(
N
π

)2n2∫
D[S2n] e−

N
2 Tr S2

2n detN−M(Z2n + iS2n)
M

∏
j=1

det(Z2n + iS2n − iγjL2n),

where the integration is over the space of 2n× 2n Hermitian matrices S2n, D[S2n] is the standard
volume element in this space and

Z2n = diag(z1, z2, . . . , zn, z1, z2, . . . , zn), L2n = diag(1,−1)⊗ 1n.

Proof of Proposition A1. The average of the product of the characteristic polynomials
over the GUE in in (A1) can be calculated using Grassmann integration. First we use the
well-known identity ∫ (

d Ψd Ψ
)
entexp

{
−〈Ψ, MΨ〉

}
= det M,

where M is N × N matrix, and Ψ, Ψ are Grassmann variables vectors of length N and(
d Ψd Ψ

)
ent =

N

∏
j=1

d ψjd ψj. We also write each square of determinant in the form

|det(zk − H − iΓ)|2 = det
(

zk − H − iΓ 0
0 zk − H + iΓ

)
.

Combining the above relations,

FΓ(z1, z2, . . . , zn) =〈∫ n

∏
k=1

(
d Ψ(k)d Ψ(k)

)
ent

exp

{
−
〈

Ψ(k),

(
zk − H − iΓ 0

0 zk − H + iΓ

)
Ψ(k)

〉}〉
H

.
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Now we interchange the order of integrations and perform the GUE average first:

FΓ =

〈
n

∏
k=1

exp
{〈

Ψ(k),
(

H 0
0 H

)
Ψ(k)

〉}〉
H

=2−N/2
(

N
π

)N2/2 ∫
exp

{
−N

N

∑
p<q

(
Re hp,q

)2
+
(
Im hp,q

)2 − N
2

N

∑
p=1

h2
p,p

}

× exp

{
N

∑
p<q

Re hp,q

n

∑
k=1

(
ψ
(k)
p ψ

(k)
q + ψ

(k)
N+pψ

(k)
N+q + ψ

(k)
q ψ

(k)
p + ψ

(k)
N+qψ

(k)
N+p

)}

× exp

{
i

N

∑
p<q

Im hp,q

n

∑
k=1

(
ψ
(k)
p ψ

(k)
q + ψ

(k)
N+pψ

(k)
N+q − ψ

(k)
q ψ

(k)
p − ψ

(k)
N+qψ

(k)
N+p

)}

× exp

{
N

∑
p=1

hp,p

n

∑
k=1

(
ψ
(k)
p ψ

(k)
p + ψ

(k)
N+pψ

(k)
N+q

)}
,

=exp

 1
4N

N

∑
p<q

(
n

∑
k=1

(
ψ
(k)
p ψ

(k)
q + ψ

(k)
N+pψ

(k)
N+q + ψ

(k)
q ψ

(k)
p + ψ

(k)
N+qψ

(k)
N+p

))2


× exp

− 1
4N

N

∑
p<q

(
n

∑
k=1

(
ψ
(k)
p ψ

(k)
q + ψ

(k)
N+pψ

(k)
N+q − ψ

(k)
q ψ

(k)
p − ψ

(k)
N+qψ

(k)
N+p

))2


× exp

 1
2N

N

∑
p=1

(
n

∑
k=1

(
ψ
(k)
p ψ

(k)
p + ψ

(k)
N+pψ

(k)
N+p

))2


=exp

{
1

2N

N

∑
p,q

(
n

∑
k=1

(
ψ
(k)
p ψ

(k)
q + ψ

(k)
N+pψ

(k)
N+q

))( n

∑
k=1

(
ψ
(k)
q ψ

(k)
p + ψ

(k)
N+qψ

(k)
N+p

))}
.

In the last expression one can see quartic terms in Grassmann variables. To deal with these
terms, we use the so-called Hubbard-Stratonovich transformation. Let

ak,k′ =
N

∑
j=1

ψ
(k)
j ψ

(k′)
j , bk,k′ =

N

∑
j=1

ψ
(k)
N+jψ

(k′)
N+j, ck,k′ =

N

∑
j=1

ψ
(k)
j ψ

(k′)
N+j, dk,k′ =

N

∑
j=1

ψ
(k)
N+jψ

(k′)
j ,

and

A =

( {
ak,k′

}n
k,k′=1

{
ck,k′

}n
k,k′=1{

dk,k′
}n

k,k′=1

{
bk,k′

}n
k,k′=1

)
.

Then

F̂Γ = exp
{
− 1

2N
Tr A2

}
.

The quadratic term in the 2n× 2n matrix A can be linearised at the expense of the additional
integration over 2n× 2n hermitian matrices S2n (the Hubbard-Stratonovich transformation):

F̂Γ = 2−n
(

N
π

)2n2 ∫
D[S2n] exp

{
−N

2
Tr S2

2n − i Tr S2n A
}

.

Now, we can integration over the Grassmann variables. We have
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FΓ(z1, z2, . . . , zn) =
1
2n

(
N
π

)2n2∫
D[S2n] exp

{
−N

2
Tr S2

2n

} ∫ n

∏
k=1

(
d Ψ(k)d Ψ(k)

)
ent

× exp

{
−

N

∑
j=1

(
n

∑
k=1

zkψ
(k)
j ψ

(k)
j +

n

∑
k=1

zkψ
(k)
N+jψ

(k)
N+j

)}

× exp

{
i

N

∑
j=1

γj

(
n

∑
k=1

ψ
(k)
j ψ

(k)
j − ψ

(k)
N+jψ

(k)
N+j

)}

× exp

{
−i

N

∑
j=1

(
n

∑
k,k′=1

sk′ ,kψ
(k)
j ψ

(k′)
j + sn+k′ ,kψ

(k)
j ψ

(k′)
N+j + sk′ ,n+kψ

(k)
N+jψ

(k′)
j + sn+k′ ,n+kψ

(k′)
N+jψ

(k)
N+j

)}
.

By manipulating terms in the exponentials,

FΓ(z1, z2, . . . , zn) =
1
2n

(
N
π

)2n2∫
D[S2n] exp

{
−N

2
Tr S2

2n

} ∫ N

∏
j=1

(
d ψ

(·)
j d ψ

(·)
j

)
ent

(
d ψ

(·)
N+jd ψ

(·)
N+j

)
ent

× exp

−
〈 ψ

(·)
j

ψ
(·)
N+j

,
[(

Z− iγj1n 0
0 Z− iγj1n

)
+ iS2n

] ψ
(·)
j

ψ
(·)
N+j

〉
=

1
2n

(
N
π

)2n2∫
D[S2n] exp

{
−N

2
Tr S2

2n

} N

∏
j=1

det
(
Z2n + iS− iγjL2n

)
.

Now, recalling that γj = 0 for j = M + 1, . . . , N we obtain the statement of the Proposition.

Appendix B. Various Asymptotic Regimes for Laguerre Polynomials

Asymptotic behaviour of the Laguerre polynomials L(α)
N−k

(
−NY2) in the limit when

N → ∞ and k and α are fixed depends on the scale of the variable Y > 0 compared to N.
For our investigation we need two scales: (i) YN = y > 0 is fixed and (ii) YN � 1. In
both cases the desired approximations can be obtained from the integral representation (65)
which we rewrite as

L(α)
N−k

(
−NY2

)
=

2NN−k+1

(N − k)!
e−NY2

Yα

∞∫
0

τ−2k+α+1e−N(τ2−2 ln τ) Iα(2τYN) dτ, Y > 0.

(A2)

We start with simpler case of YN = y > 0 being fixed in the limit N → ∞. In this case
significant contributions to the integral in (A2) are coming from a neighbourhood of the
point τ = 1 which is the point of minimum the function τ2 − 2 ln τ inside the interval of
integration. Straightforward evaluation of the integral by the Laplace method together
with the Stirling approximation (N − k)! ∼

√
2πe−N NN−k+1/2 yields that

L(α)
N−k

(
−y2

N

)
∼ Nα

yα
Iα(2y) , y > 0. (A3)

In the other regime of interest for us, YN � 1, one can use the following asymptotic
expansion for the modified Bessel function Iα(z) (see, e.g., Formula 5.11.10 in [34]):

Iα(z) =
ez
√

2πz

n

∑
p=0

(−1)p

(2z)p A(α)
p + O

(
|z|−n−1

)
, A(α)

p =
Γ(α + p + 1/2)
Γ(α− p + 1/2)

. (A4)
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It reduces the asymptotic analysis of L(α)
N−k

(
−NY2) to analysis of the following expression:

e−NY2

2Yα
√

πYN

∞∫
0

τ−2k+α+1/2e−NL(τ) ∑
p

(−1)p

(4YN)p A(α)
p dτ, L(τ) = τ2 − 2 ln τ − 2τY. (A5)

In this case significant contributions to the integral in (A5) are coming from a neighbour-
hood of the point τ = τ∗(Y) which is the point of minimum the function L(τ) inside the
interval of integration.

τ∗(Y) =
Y +
√

Y2 + 4
2

=
1

r∗(Y)
, r∗(Y) =

√
Y2 + 4−Y

2
> 0 , (A6)

Using the relations τ∗(Y) = r∗(Y) + Y and 1 + r∗(Y)2 = r∗(Y)
(
Y2 + 4

)1/2 we find that

L(τ∗(Y)) = 1 + 2 ln r∗(Y)−Y(r∗(Y) + Y), L′′(τ∗) = 2r∗(Y)
(

Y2 + 4
)1/2

. (A7)

Expanding the integrand in the standard way around τ = τ∗(Y) and collecting the leading
and subleading order terms we get asymptotic expressions for Laguerre polynomials with
the precision sufficient for our purposes:

L(α)
N−k(−NY2)=



eNYr∗(Y)
√

2πN
r∗(Y)−2(N−k)−α−1

Yα+ 1
2 (Y2 + 4)1/4

[
1+O

(
1
N

)]
, Y = O(1),

eNYr∗(Y)
√

2πN
r∗(Y)−2(N−k)−α−1

Yα+ 1
2 (Y2 + 4)1/4

[
1− (4α2 − 1)r∗(Y)

16YN
+O
(

1
N

)]
, Y � 1� NY.

(A8)
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