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Abstract: We report the step-by-step construction of the exact, closed and explicit expression for the
evolution operator U(t) of a localized and isolated qubit in an arbitrary time-dependent field, which
for concreteness we assume to be a magnetic field. Our approach is based on the existence of two
independent dynamical invariants that enter the expression of SU(2) by means of two strictly related
time-dependent, real or complex, parameters. The usefulness of our approach is demonstrated by
exactly solving the quantum dynamics of a qubit subject to a controllable time-dependent field that
can be realized in the laboratory. We further discuss possible applications to any SU(2) model, as well
as the applicability of our method to realistic physical scenarios with different symmetry properties.
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1. Introduction

A basic, evergreen and open problem in quantum mechanics is the derivation of the
exact unitary evolution operator in a closed form applicable to any non-stationary quantum
system described by a time-dependent Hermitian Hamiltonian model H(t) = H0 + V(t) such
that the two operators H(t1) and H(t2) at different times do not generally commute [1,2].

Dyson [3] has also provided a compact exponential-like expression for U(t) in this
case [4]. His formula, based on the ad hoc introduction of the so-called time-ordered
operator, is, however, nothing more than a formal solution of the general quantum dy-
namics problem. The reason is that, by construction, this formula gives only a symbolic
representation of the asymptotically divergent [5,6] Dyson series obtained by infinitely iter-
ating the fundamental integral equation for U(t). It is remarkable that, although Dyson’s
formulation does not fully satisfy the ambitious desired goal, it still provides a quite useful
resource for constructing perturbative solutions of the problem of interest [7].

Dirac tackles the same problem by focusing, however, on the determination of the
evolved state. Inspired by the well-known method of variation of constants [8] developed
by Lagrange in the nineteenth century, he first projects the time-dependent Schrödinger
equation on the basis (assumed to be known) of all eigenstates of H0. In this way, the
equation of motion is converted into a non-autonomous and linear normal system of
coupled first-order differential equations in the reduced probability amplitudes, which
are defined in such a way that, if V(t) = 0, they become constant functions of time with a
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transparent physical meaning. Finding closed and exact solutions of this system is generally
a hopeless task, even when the Hilbert space of the physical system under consideration
has a finite dimension. However, as for Dyson’s approach, it takes on practical significance
if we settle it for perturbative solutions.

Clearly, having efficient perturbation theories for non-stationary (as well as stationary)
quantum systems allows one to make predictions of experimental interest, even if the
solutions hold over finite time intervals and are often confined to subdomains of the space
of parameters involved in the Hamiltonian models under scrutiny [9]. The applicability
of perturbation theory to non-stationary quantum systems described by non-Hermitian
Hamiltonian models has recently been explored [10]. The growing demand to speed up
the implementation of new and reliable quantum devices aimed at increasingly sophis-
ticated specific applications requires the development of new theoretical strategies and
mathematical tools beyond any perturbative treatment [11,12].

A first promising approach introduced by Lewis [13,14] drew the attention of theo-
rists to the advantages of extending the use of dynamical invariant operators in a quan-
tum scenario to obtain the exact time evolution of non-stationary systems. For example,
he successfully applied his method to a quantum parametric harmonic oscillator. The
core idea of this method has been later extended to more complex quantum mechanical
situations [15–17]. It is worth noting the possibility of deriving, in principle, the time
dependence of U(t) by resorting to its direct link with the invariant operator [17]. Another,
more direct, approach is based on the evolution operator method [18–21] pioneered by
Dyson [3] seventy years ago. In 1969, Lewis and Riesenfeld [22] presented the stimulating
idea of exploiting the knowledge of the instantaneous eigensolutions of a Hermitian time-
dependent quantum dynamical invariant of a system to circumvent the direct integration
of the pertinent Schrödinger equation. This invariant theory, initially conceived for quan-
tum systems described by Hermitian Hamiltonians, has recently been extended to also
investigate systems with non-Hermitian time-dependent Hamiltonians [23]. The bottleneck
of this elegant approach, as well as of the previously mentioned Lewis’ approach, is that
both often lead to an intractable non-autonomous system of generally nonlinear differential
equations, which, in practice, does not allow one to obtain the explicit time dependence of
the target evolved state. Notwithstanding, the ideas reported in [13,14,22] have inspired
many investigations into the quantum dynamics of non-stationary quantum systems in
many different scenarios [17,21,24–43]. (The analysis in ref. [17] is still particularly useful
for appreciating the role of time-dependent invariants in the quantum dynamics of para-
metric harmonic oscillators. Moreover, several studies cited by its extensive bibliography,
although no longer reported in recent literature, may offer opportunities for a modern
reinterpretation.) In particular, the construction of exact dynamic invariants of quantum
systems described by time-dependent Hamiltonian models expressible as the sum of time-
independent generators of a Lee algebra has been successfully finalized [26,44,45] . It is
worth noting that the solution of the quantum dynamics of a spin 1

2 in a time-dependent
(magnetic) field provides the symmetry-based mathematical key to also finding the exact
solution for the time evolution of an arbitrary spin j subject to the same external control
field [46].

The Lewis–Riesenfeld method has inspired, even recently, treatments to find exact so-
lutions of time-dependent Schrödinger equations. We mention here the so-called cranking
method [47], whose goal is to find an ad hoc unitary, generally time-dependent transfor-
mation eig(t), with g(t) = g†(t), that maps a time-dependent Hamiltonian model (cranked
Hamiltonian) into a time-independent one. The use of the Lewis–Riesenfeld method, as
well as the knowledge of g(t), provides an easy way to write the explicit form of the
evolution operator of the cranked Hamiltonian.

Other dynamic invariant-based applications include inverse engineering processes
that produce shortcuts to adiabaticity [48–50].

We mention, incidentally, that in the literature time-dependent SU(2) models have
been considered which can be solved exactly without resorting to the Lewis and Riesenfeld
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theory [51–67]. It should also be emphasized that recent studies have usefully leveraged
on the knowledge of the evolution operator for time-dependent single spin 1/2 models to
derive the exact dynamics of quite general multi-spin time-dependent models [68–85].

New ideas and technical tools that enhance our ability to solve exactly non-stationary
SU(2) quantum problems are in themselves an incisive theoretical advancement. Equally
important, they may contribute to the development of future quantum technologies. The
robust control of the dynamics of complex non-stationary quantum systems is in fact
an indispensable goal to be achieved for the realization of scalable, reliable and high-
performance quantum devices [86,87]. The development of a well-founded and applicable
control theory has been a shared goal of research areas in physics, chemistry, applied
mathematics, and computer science [86]. A challenge common to all these investigations is,
for example, to find exact analytical solutions of the unitary quantum dynamics of a qubit
subject to a classical (and therefore controllable) time-dependent field.

The main result of the present study is the step-by-step construction of a closed, exact
and ready-to-use expression for the unitary time-evolution operator U(t) of a generic
time-dependent SU(2) Hamiltonian model system. Our approach is based on geometric
considerations combined with the knowledge of two independent invariants of motion
that reflect both the symmetry exhibited by the Hamiltonian model and the specific time
dependence of the external field.

It is here useful to recall that, by definition, an invariant or integral of motion of
a quantum system S, either stationary or not, is a linear and generally time-dependent
operator F(t) that in the Schrödinger picture satisfies, irrespective of the initial density
matrix ρ(0) and at any time t, the condition

Tr(ρ(t)F(t)) = Tr(ρ(0)F(0)), (1)

where ρ(t) = U(t)ρ(0))U†(t), U(t) being the evolution operator of S. In other words, the
expectation value of an invariant is constant along every quantum trajectory of the system.
In particular, a time-independent invariant of the motion is often called a constant of
motion [17]. Clearly, in the Heisenberg picture, an operator is, by definition, an invariant of
the motion if and only if it does not depend explicitly on time. In fact, Equation (1) can be
equivalently written as Tr(ρ(0)(U†(t)F(t)U(t))) = Tr(ρ(0)F(0)) and must be valid for any
ρ(0). It is worth noting that an invariant does not necessarily represent an observable.

It is clearly true that the statistical operator ρ(t) is an invariant for any unitarily
evolving quantum system S, since Tr(ρ2(t)) = Tr(ρ2(0)) at any t. In fact, using Stone’s
theorem [88], it is easily seen that the solution of the fundamental Schrödinger–Liouville
equation for the evolution operator U(t) (U(0) = I) of a quantum system can always be
represented as

U(t) = e−iH(t) , H(0) = 0, (2)

where the dimensionless Hermitian operatorH(t) is (h̄ = 1)

H(t) = Ht (3)

if S is stationary, while, otherwise, the link between the Hamiltonian H(t) and H(t) is
generally unknown.

When H does not depend explicitly on time, U(t) can always be put in the form

U(t) = V†e−iVHtV†
V, (4)

where V denotes the unitary operator that diagonalizes the Hamiltonian. This transforma-
tion is of practical use because it facilitates the description of the evolution of a system from
any initial state. In principle, the analytical form of V can be derived from the knowledge
of an appropriate set of independent constants of motion of S. Considering Equation (4),
this fact implies that U(t) can be generated by exploiting the constants of motions of S,
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which, in turn, can be traced back to the symmetries inherent in the Hamiltonian model of
the system.

In this paper, adopting the conceptual strategy briefly sketched above, we show how to
exploit the knowledge of the qubit invariants, in the presence of a generic time-dependent
classical field (which can be identified as a magnetic field in many situations of practical
interest), to generate the unknown operator H(t) in Equation (2), and therefore to find
the explicit invariants-based parametric form of the evolution operator. We illustrate the
usefulness of our approach by determining the exact quantum dynamics of a qubit in an
assigned time-dependent magnetic field, which is a physical problem of interest in itself
and for a variety of applications.

This paper is organized as follows. In Section 2, we review mathematical tools useful
for studying the time dependence of the average value of a physical observable in a non-
stationary system. In the Heisenberg picture, the formal construction of the pertinent rate of
change naturally leads to the Heisenberg equation of motion for the operator representing
the observable. In Schrödinger’s picture, instead, pursuing the same goal conceptually
requires the introduction of a specific definition of operator derivative. In Section 3, we
derive the necessary and sufficient conditions that characterize each dynamical invariant of
a qubit in a generically given time-dependent field. We also deduce the general properties
shared by all such invariants. Section 3.1 is devoted to the step-by-step derivation of the
time evolution operator U(t) for the SU(2) system under study in a form that highlights its
parametric link with the pertinent class of qubit dynamical invariants. This section contains
the main result of the present study. In Section 4, our method is successfully applied to a
specific and intriguing physical scenario. The last section contains concluding remarks and
suggestions for possible future developments.

2. Definition of the Time-Derivative Operator in the Schrödinger Picture

In the Schrödinger picture, the dynamical variables of a given system do not depend
on time by definition, and any operator FS relevant to the system can always be expressed
as a function of the pertinent dynamical variables. One can legitimately and consistently
introduce a time-dependent operator, meaning that its expression contains time-dependent
parameters. The Schrödinger equation of a nonstationary system has the form

i
d
dt
|ψ〉t = H(t)|ψ〉t, (5)

where, as we pointed out, the Hamiltonian H changes with t because of time-dependent
parameters entering its expression. The expectation value of FS can depend on time t
through a set of time-dependent parameters ν(t) ≡ (ν1(t), ν2(t), . . .), even if the operators
involved are time-independent in the Schrödinger picture, and is expressed as

〈FS〉t = t〈ψ|FS|ψ〉t = 0〈ψ|FH(t)|ψ〉0. (6)

This equation highlights the relationship between the Heisenberg operator FH and FS,
namely,

FH(t) = U†(t)FSU(t), iU̇(t) = H(t)U(t). (7)

Differentiation of FH with respect to t results in

d
dt

FH(t) = −iU†(t)
(

FSH(t)− H(t)FS
)
U(t) + U†(t)ν̇

∂FS

∂ν
U(t)

= −i[FH(t), U†(t)H(t)U(t)] + ν̇
∂FH(t)

∂ν
. (8)
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We remark that U†HU, the Hamiltonian in the Heisenberg picture, is not the same as H. In
fact, its time evolution implies that

i
d
dt
[U†(t)H(t)U(t)] = U†(t)[H(t), H(t)]U(t) + iU†(t)

∂H(t)
∂t

U(t) 6= 0. (9)

A simple solvable model can illustrate the above. Consider the time-dependent
Hamiltonian

H = Ω[σx cos ωt + σy sin ωt] = Ωeiωtσ− + Ωe−iωtσ+ = Ωe−i ω
2 σztσxei ω

2 σzt. (10)

The last expression helps us find the time-evolution operator, which must satisfy the
relation

iU̇ = Ωe−i ω
2 σztσxei ω

2 σztU. (11)

Since
i

d
dt

(
ei ω

2 σztU
)
=
(

Ωσx −
ω

2
σz

)
ei ω

2 σztU, (12)

we obtain the time evolution operator

U(t) = e−i ω
2 σzte−i(Ωσx− ω

2 σz)t, (13)

which does not commute with H(t); therefore, U†(t)H(t)U(t) 6= H(t).
The Heisenberg equation for FH(t) now reads

i
d
dt

FH(t) = [FH(t), HH(t)] + i ∑
i

ν̇i(t)
∂

∂νi
FH(t), (14)

where HH(t) ≡ U†(t)H(t)U(t). The definition of the time-derivative operator F′S(t) in the
Schrödinger picture (note that here ′ is just a symbol to distinguish the notation for this
operator from that for FS(t)) is obtained from the inverse unitary transformation of the
above Heisenberg equation of motion as

F′S(t) ≡ U(t)
dFH(t)

dt
U†(t) = −i[FS(t), H(t)] + ∑

i
ν̇i(t)

∂

∂νi
FS(t). (15)

Therefore,
d
dt
〈FS〉t = t〈ψ|F′S(t)|ψ〉t, (16)

in accordance with Landau’s definition of time-derivative operator.

3. Dynamical Invariants of a Qubit in a Classical Field

In the Schrödinger picture, a generic operator FS(t) can be parametrically repre-
sented as

FS(t) = ν(t) · σ, (17)

where ν(t) is an arbitrary, real or complex, differentiable vector function and σ is the vector
operator with components given by the three Pauli matrices. In the Heisenberg picture this
operator becomes

FH(t) = ν(t) · σH(t), (18)

where σH(t) = U†(t)σU(t) and U(t) is the evolution operator for the qubit in the system
of interest.

We stress that, by definition, FH(t) is an invariant if and only if it is time-independent,
namely, FH(t) = FH(0) at any time. This constrains ν(t) to be related to U(t), which, in
turn, suggests constructing the evolution operator from the knowledge of the invariants.
This conceptual approach is also valid in the Schrödinger picture, where the necessary
and sufficient condition defining an invariant takes the form U(t)FS(0)U†(t) = FS(t). To
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implement this idea, we look for the characteristic equation that rules the time evolution of
the parameter function ν(t). Since the final result does not depend on the picture adopted,
we will conduct our investigation using the Heisenberg picture, omitting the subscript H to
simplify the notation.

The time evolution operator of a single SU(2) qudit (that is, a d-level or spin (d− 1)/2-
like system, which is simply called a qudit) can be constructed straightforwardly by using
two parameters which are nothing more than the two complex parameters appearing in
the time evolution operator of a single qubit subject to the same time-dependent field.
Importantly, this property implies that the quantum invariants of a qudit and a qubit in the
same SU(2) physical context are the same. Therefore, to find the invariants of a qubit in a
time-dependent field, we begin with writing the relevant operators in (14) in terms of Pauli
matrices:

H(t) = B(t) · σ(t), F(t) = ν(t) · σ(t), σ(t) = U†(t)σU(t). (19)

It is important to underline the generality of the Hamiltonian in Equation (19). To this
end, we first note that the Pauli matrices together with the 2× 2 identity matrix form a basis
for the vector space of the 2× 2 complex matrices, which includes the SU(2) Hamiltonian
model describing a (localized) qubit subject to a classical time-dependent field. Therefore,
any 2× 2 Hamiltonian matrix h(t) can generally be written as a traceless matrix such as
H(t) in Equation (19) plus a matrix proportional to the identity matrix, which determines
the trace of h(t). This means that the time evolution of the qubit is governed by H(t) up to

a global time-dependent phase factor e−i
∫ t

0 dt′Tr[h(t′)], whatever the specific realization of
the qubit and the nature of the classical field acting on the qubit. Moreover, H(t) expresses
a local time-dependent interaction between qubit and field, and hence we do not need to
consider the possible spatial variations of the applied classical field.

As a consequence of the above considerations, our analysis (whose main result is
represented by Equation (40) below) applies to any possible physical situation in which
the quantum system can be represented as a qubit, whose Hamiltonian model belongs
to SU(2), regardless of the specific spin-field coupling. Notwithstanding the generality
of our approach, the symbol B(t) used for the field evokes contexts in which a true or
fictitious qubit interacts with a time-dependent magnetic field and there is no (appreciable)
effect of the accordingly varying electric field on the system (for example, this holds for
the time evolution of a neutron spin subject to a variable magnetic field and for other
situations in which the dynamics of a spin in a time-dependent magnetic field is described
by Bloch equations). In particular, the use of this symbol for the field is propaedeutic to the
example of physical system studied in Section 4. Therefore, for definiteness, we will refer
to a magnetic field below.

In Equation (19), F(t) is an invariant if and only if

0 = [ν(t) · σ(t), B(t) · σ(t)] + iν̇(t) · σ(t), (20)

which implies the following three coupled linear differential equations (written in vector
form):

ν̇(t) = 2B(t)× ν(t). (21)

It is well known that the associated Cauchy problem has a unique solution whatever
the initial condition for the parameter ν(t). We point out that the factor 2 on the right-hand
side of Equation (21) would be absent if we described the qubit in terms of the pertinent
spin 1

2 angular momentum operator. Furthermore, it is worth noting that the differential
equation for ν(t) (without the factor 2) only depends on the fact that the Hamiltonian
model belongs to SU(2). That is, the condition that we have obtained holds if we substitute
the qubit with a qudit.

The exact solution of this equation for an arbitrary time-dependent magnetic field is a
very difficult problem. Furthermore, to find the time evolution operator of a qubit subject
to a given field B(t), we need to obtain an expression for U(t) in terms of the invariants
found. We will address this aspect of the problem in the next section, by making use
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of considerations based on Euclidean geometry and simple mathematical tools, through
which we will derive the exact expression of U(t) circumventing the difficulties related to
the explicit solution of Equation (21). Here, we limit ourselves to highlighting remarkable
properties of the set of solutions of Equation (21) obtained by varying the initial conditions
ν(0).

It is easy to see that both ν2(t) = ν(t) · ν(t) and |ν(t)|2 = ν∗(t) · ν(t) are conserved
during the system evolution, since

d
dt

ν2 ∝ ν · ν̇ = 2ν · (B× ν) = 0,
d
dt
|ν|2 = 2ν∗ · (B× ν) + 2(B× ν∗) · ν = 0. (22)

A direct consequence of the conservation of |ν(t)| is that Equation (21) can be recast in the
form

ė = 2B× e, (23)

where e = ν̂(t) is the time-dependent unit vector associated with ν(t).
Since ν is generally a complex vector, the conservation of F = ν · σ implies that both

the real and imaginary parts of ν are conserved. Therefore, we can limit our considerations
to a real ν, or Hermitian F, without loss of generality. If two quantities parameterized by ν1
and ν2 are conserved, their inner product is also conserved:

d
dt
(ν1 · ν2) = 2(B× ν1) · ν2 + 2ν1 · (B× ν2) = 0. (24)

Similarly, quantities parameterized by ν1× ν2 are conserved during the system evolution, as

d
dt
(ν1 × ν2) = 2B× (ν1 × ν2). (25)

3.1. Invariants Directly Lead to the Evolution Operator

The main goal of this study is to find a closed expression for the unitary evolution
operator U(t) of a qubit in an arbitrary time-dependent magnetic field. In principle, the
possibility of constructing the evolution operator from system invariants is in itself well
known and has been explored beyond SU(2) models. Typically, given a specific time-
dependent Hamiltonian model, one first searches for explicit expressions of one or more
invariants and then attempts the construction of the evolution operator using them. We
present here a general recipe for deriving the evolution operator which is based on the mere
existence of invariants and on some key geometric considerations. Since each invariant of
our SU(2) Hamiltonian model is identified by a specific vector ν(t), this vector will play
the role of a parameter in the final expression of U(t). The unitary operator can certainly
be written in the form (2)

U(t) = e−
i
2 u(t)·σ , (26)

since the operatorH(t) defined in Equation (2) can always be represented in terms of Pauli
matrices as 1

2 u(t) · σ. The operator U(t) represents a rotation in the Hilbert space of the
qubit around the instantaneous axis u(t) = ϕû, where the angle ϕ = |u| and the unit vector
û generally depend on time. The time independence of F = ν · σ requires (as a necessary
and sufficient condition) that

ν(t) · σ(t) = e
i
2 u(t)·σ(ν(t) · σ)e− i

2 u(t)·σ = ν(0) · σ. (27)

By expanding the unitary exponential operator (which leads to an expression linear in σ),
we obtain, after some algebra, the following transcendent equation for the unknown u(t):

ν(0) = ν cos |u| − sin |u|
|u| (u× ν) +

u · ν
u2 (1− cos |u|)u

= ν cos |u| − (û× ν) sin |u|+ û(û · ν)(1− cos |u|). (28)
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All quantities on the right side of Equation (28) depend on t, but this dependence is not
explicitly shown in Equation (28) and hereafter to simplify the notation. Can we extract
some information about u(t) = ϕû from this relation, given ν0 ≡ ν(0) and ν?

To answer the above question, we note that, because of the conservation of F = ν · σ,
the magnitude of ν is a constant, and therefore solving Equation (28) amounts to finding the
set of all possible unit vectors û at any time t. Each of these vectors defines the instantaneous
(out of infinitely many) axis for the rotation through an angle ϕ that causes ν0 at time t = 0
overlap ν at time t. The angle ϕ depends on t and is the same for all possible vectors û in
the set.

One can convince oneself that the solutions of Equation (28) belong to the two-
dimensional vector space spanned by the unit vector n1 orthogonal to the plane of ν
and ν0

n1 =
ν0 × ν

|ν0 × ν| , (29)

and the unit vector n2 along the bisector of the angle between ν and ν0

n2 =
ν0 + ν

|ν0 + ν| . (30)

The vector u appearing in Equation (26) must be independent of ν0. We must therefore
consider a second invariant operator whose parameter ν is linearly independent of the one
defining the first invariant. Since the two planes described by the bidimensional vector
spaces associated with the two invariants have a common point (that is, the common origin
of the two ν0 vectors), the particular solution of Equation (21) that uniquely determines
U(t) is given by

u = ϕn, (31)

where n is a unit vector lying along the intersection line of the two support planes.
At this point, we need to determine n and ϕ = |u|. Based on the previous arguments,

we write
n = an1 + bn2, (32)

where the real coefficients a(≥ 0) and b generally depend on time and satisfy the normal-
ization condition a2 + b2 = 1.

By construction, ϕ is the rotation angle between the two unit vectors (orthogonally
drawn from the rotation axis n):

ν̂⊥ =
ν− (ν · n)n
|ν− (ν · n)n| =

ν̂− b
√

1+ν̂·ν̂0
2 n√

1− b2 1+ν̂·ν̂0
2

, ν̂0⊥ =
ν0 − (ν0 · n)n
|ν0 − (ν0 · n)n|

=
ν̂0 − b

√
1+ν̂·ν̂0

2 n√
1− b2 1+ν̂·ν̂0

2

, (33)

that is,

cos ϕ = ν̂⊥ · ν̂0⊥ =
ν̂ · ν̂0 − b2 1+ν̂·ν̂0

2

1− b2 1+ν̂·ν̂0
2

. (34)

Next, we need to determine the values of the a and b coefficients. To this end, we
consider another solution ν′(t) of the differential Equation (21) that corresponds to a
different initial condition ν′0 6= ν0. The vectors ν′ and ν′0 satisfy the same relations as those
satisfied by ν and ν0. In particular, the unit vector along the rotation axis can be written as
a linear combination of ν′ and ν′0 as in Equation (32), with coefficients a′ and b′, and thus

n = an1 + bn2 = a′n′1 + b′n′2. (35)

Solving Equation (35) together with the normalization conditions on a, b and a′, b′, we
obtain

a = ± R32√
1−R2

33

, b = ∓ R31√
1−R2

33

, (36)
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and
a′ = ∓ R23√

1−R2
33

, b′ = ± R13√
1−R2

33

, (37)

whereRij ≡ n′i · nj are the elements of a rotation (i.e., orthogonal) matrix that leads from
the unprimed to the primed coordinate system, and where we defined

n3 = n1 × n2 =
ν̂− ν̂0

|ν̂− ν̂0|
, n′3 = n′1 × n′2 =

ν̂′ − ν̂′0
|ν̂′ − ν̂′0|

. (38)

This means that, once two solutions of Equation (21) with different initial conditions have
been given, the unitary operator (26) characterized by vector u is uniquely determined. In
short, the need for a second pair of unit vectors is easily understood considering that, while
three independent parameters are required to fix a vector, ν̂ and ν̂0 only provide us with
the two independent degrees of freedom that define their relative orientation. This is the
reason why another pair of unit vectors is required. Rewriting n = û as

û =
(n′3 · n2)n1 − (n′3 · n1)n2√

1− (n′3 · n3)2
=
−(n′2 · n3)n′1 + (n′1 · n3)n′2√

1− (n′3 · n3)2

=
−n2 × (n′3 × n1) + n1 × (n′3 × n2)√

1− (n′3 · n3)2
=

n′2 × (n3 × n′1)− n′1 × (n3 × n′2)√
1− (n′3 · n3)2

=
n′3 × n3√

1− (n′3 · n3)2
. (39)

It is now clear that the difference vectors ν− ν0 ∝ n3 and ν′ − ν′0 ∝ n′3 fix the rotation axis û,
because both of them lie on planes perpendicular to û. Once û is fixed, b is given by û · n2,
thus resulting in the determination of the rotation angle ϕ (which is the magnitude of u)
through Equation (34).

In conclusion, the legitimately assumed knowledge of two independent invariants of
the form F = ν · σ leads to the following parametric expression for the evolution operator

U(t) = e−
i
2 u(t)·σ = 12×2 cos

|u(t)|
2
− i(û(t) · σ) sin

|u(t)|
2

= 12×2

√
1 + cos ϕ(t)

2
− i(û(t) · σ)

√
1− cos ϕ(t)

2
, (40)

with û and ϕ given by Equations (39) and (34), respectively. This is our main result, namely,
the exact, closed, explicit, and easy-to-use parametric expression for the evolution operator
U(t) of a qubit in a generic time-dependent magnetic field. In the next section, we will
illustrate the application of Equation (40) to solve exactly the dynamics of a qubit in a
physical context of experimental interest.

4. An Intriguing Example

The purpose of this section is an application of our general recipe to determine the
evolution operator of a qubit in a nontrivial time-dependent SU(2) scenario. To solve a
specific dynamical problem using expression (40), we first need to solve Equation (23). In
fact, Equation (40) provides a general expression for the evolution operator irrespective of
any specific realization of ν(t), but we must obtain ν(t) to apply Equation (40) to a specific
dynamical problem.
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Here, we consider the case of a magnetic field B that lies in a plane, which we choose
as the x-z plane (i.e., By = 0), with a constant z component Bz = Ω and a time-dependent x
component proportional to tan ωt. The differential equation for e reads

ė = 2B× e ⇔


ėx = −2Ωey,
ėy = 2Ωex − 2Bxez,
ėz = 2Bxey.

(41)

Our approach requires finding two linearly independent solutions of (41). A direct inspec-
tion of this system of differential equations suggests the existence of a particular solution
in which the three components of e exhibit a sinusoidal temporal behavior. Substituting
ex = sin ωt (2Ω > ω) in the first equation gives ey = − ω

2Ω cos ωt which, in turn, substituted
into the third equation, yields ez = Ω′

Ω cos ωt, where Ω′ is the value of Bx when ωt = π
4 .

This is a feasible particular solution of Equation (41) if and only if Ω′ is related to Ω and ω

so as to satisfy the second equation of the system. In fact, one easily finds Ω′ =
√

Ω2 − 1
4 ω2.

Therefore, the particular solution of Equation (41) corresponding to the initial condition

e0 =
(

0,− ω

2Ω
,
√

1−
( ω

2Ω
)2
)

(42)

and to the magnetic field

B =
(√

Ω2 − 1
4

ω2 tan ωt, 0, Ω
)

. (43)

has the form

e =
(

sin ωt,− ω

2Ω
cos ωt,

√
1−

( ω

2Ω
)2 cos ωt

)
. (44)

To obtain the evolution operator of the qubit, we need to find another particular
solution of Equation (41) that is linearly independent of the previous one. To this end, we
set a procedure, based again on geometrical and analytical tools, which will produce the
exact expression of the evolution operator U(t) for the system under study. We denote e0
the solution of ė = 2B× e in Equation (44) and introduce other two unit vectors that form
with e0 an orthonormal basis set as follows:

e0 =
(

sin ωt,− ω

2Ω
cos ωt,

√
1−

( ω

2Ω
)2 cos ωt

)
, (45)

e1 =
(

cos ωt,
ω

2Ω
sin ωt,−

√
1−

( ω

2Ω
)2 sin ωt

)
, (46)

e2 =
(

0,
√

1−
( ω

2Ω
)2,

ω

2Ω

)
. (47)

By construction, e0 and e1 identify a time-independent plane orthogonal to e2 and it is

ė0 = 2B× e0 (48)

and

ė0 = ωe1, ė1 = −ωe0, e0 = e1 × e2, B · e0 =
Ω
√

1− ( ω
2Ω )2

cos ωt
. (49)

Another solution of the same differential equation ė = 2B× e is sought in the form

e = ae0 + be1 + ce2, (50)



Entropy 2023, 25, 96 11 of 17

where the time-dependent real coefficients a, b and c satisfy the normalization condition
a2 + b2 + c2 = 1. Inserting e into the differential equation, we see that these coefficients
must satisfy

(ȧ−ωb)e0 + ḃe1 + ċe2 = 2B× (be1 + ce2), (51)

which yields

ȧ−ωb = e0 ·
(
2B× (be1 + ce2)

)
= −ė0 · (be1 + ce2)

= −ωe1 · (be1 + ce2) = −ωb, (52)

ḃ = e1 ·
(
2B× (be1 + ce2)

)
= −2cB · (e1 × e2) = −2cB · e0, (53)

ċ = e2 ·
(
2B× (be1 + ce2)

)
= 2bB · (e1 × e2) = 2bB · e0. (54)

Solving these equations, we get

a = a0, b =
√

1− a2
0 cos Φ, c =

√
1− a2

0 sin Φ, (55)

where a0 (a2
0 ≤ 1) is a constant and the phase Φ is given by

Φ =
∫ t

0
dt′

2Ω
√

1− ( ω
2Ω )2

cos ωt′
+ φ0 =

2Ω
ω

√
1−

( ω

2Ω
)2 ln

∣∣∣ tan ωt
2 + 1

tan ωt
2 − 1

∣∣∣+ φ0 ≡ θ + φ0, (56)

with a constant φ0. It is immediate to see, e.g., that e0 is the normalized solution of
Equation (41) which is obtained for a0 = 1. Incidentally, it is also easy to verify, by direct
substitution, that the vector e

e = a0e0 +
√

1− a2
0(e1 cos Φ + e2 sin Φ) (57)

satisfies the differential vector equation ė = 2B× e for arbitrary a0 and φ0.
At this point, using the general recipes developed in the previous section, we construct

the unit vector û and cos ϕ. Based on Equation (38), we can choose two difference vectors
n3 ∝ e1 cos θ − e1(0) + e2 sin θ and n′3 ∝ e1 cos Φ− e1(0) cos φ0 + e2(sin Φ− sin φ0). (The
time dependence of the quantities is omitted to simplify the notation, unless it is necessary
to show such a dependence explicitly, e.g., to distinguish quantities calculated at different
times.) The unit vector is proportional to n′3 × n3:

û ∝ n′3 × n3 ∝
(
e0 + e0(0)

)
(1− cos θ) + e2 sin θ sin ωt. (58)

Since e0 + e0(0) = 2 cos ωt
2 e0(

t
2 ), we perform a normalization to obtain û as

û =
e0(

t
2 ) sin θ

2 + e2 cos θ
2 sin ωt

2√
sin2 θ

2 + cos2 θ
2 sin2 ωt

2

. (59)

It can be shown that any difference vector e − e(0) is orthogonal to û, that is,
(e − e(0)) · û = 0. Next, we insert e0 and e0(0) into Equation (34) to obtain the angle
ϕ from

cos ϕ =
e0 · e0(0)− (e0(0) · û)2

1− (e0(0) · û)2 = − sin2 θ

2
+ cos2 θ

2
cos ωt. (60)

The relevant quantities in the expression (40) for the unitary operator now read√
1 + cos ϕ

2
= cos

θ

2
cos

ωt
2

,

√
1− cos ϕ

2
=

√
1− cos2 θ

2
cos2 ωt

2
. (61)
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Therefore, the unitary operator corresponding to the magnetic field in Equation (43) is

U(t) = 12×2 cos
θ

2
cos

ωt
2
− i(û · σ)

√
1− cos2 θ

2
cos2 ωt

2
, (62)

where the unit vector û is given by Equation (59) and

θ =
2Ω
ω

√
1−

( ω

2Ω
)2 ln

1 + tan ωt
2

1− tan ωt
2

(63)

for ωt < π
2 .

If we are interested in the system evolution from a time t0 6= 0, we consider an initial
vector e(t0) instead of e(0). Following the same procedure, we obtain the unit vector

û(t) =
e0(

t−t0
2 ) sin ∆θ

2 + e2 cos ∆θ
2 sin ω(t−t0)

2√
sin2 ∆θ

2 + cos2 ∆θ
2 sin2 ω(t−t0)

2

, (64)

where

∆θ =
∫ t

t0

dt′
2Ω
√

1− ( ω
2Ω )2

cos ωt′

=
2Ω
ω

√
1−

( ω

2Ω
)2 ln

1 + tan ωt
2

1− tan ωt
2

1− tan ωt0
2

1 + tan ωt0
2

= θ(t)− θ(t0). (65)

We also obtain
cos ϕ = − sin2 ∆θ

2
+ cos ω(t− t0) cos2 ∆θ

2
, (66)

which implies √
1 + cos ϕ

2
= cos

∆θ

2
cos

ω(t− t0)

2
. (67)

The evolution operator U(t, t0) with the initial condition U(t0, t0) = 1 is

U(t, t0) = 12×2 cos
∆θ

2
cos

ω(t− t0)

2
− i(û(t) · σ)

√
1− cos2 ∆θ

2
cos2 ω(t− t0)

2
, (68)

where û(t) is given by Equation (64). These are straightforward generalizations of the
previous results.

We emphasize that the value of the results achieved in this section goes far beyond
the exemplified method to construct the evolution operator. In fact, the time-dependent
problem that we have exactly solved (it was previously treated in a different way [89])
investigates a physical situation today realizable in the laboratory, especially because of
the simple time dependence of the controllable magnetic field acting on the qubit. The
dynamical properties of the qubit system in other physical conditions will be investigated
using the same approach in a forthcoming paper.

5. Concluding Remarks

The main results of this paper are the construction of the exact and closed expression
(40) for the time-evolution operator of a bare qubit subject to a time-dependent classical
field and its application to the case of a time-dependent magnetic field that can be realized
experimentally but is not fixed a priori.

The peculiar and original feature of our result is that the operator U(t) is derived in a
ready-to-use form, which contains in parametric form a pair of independent dynamical
invariants whose existence can be legitimately assumed (see discussion in Section 3.1). Two
independent invariants are necessary and sufficient for the purpose, because the qubit
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system only possesses two (nonclassical) degrees of freedom. Two specific invariants were
used to build U(t), but the expression for U(t) clearly does not change if a different pair of
independent dynamical invariants is used.

In our method, the control magnetic field is not explicitly assigned. Therefore, our
derivation of U(t) does not use the powerful method introduced by Lewis and Riesenfeld
in 1969 [22], which, ever since, has been a point of reference for many studies of quantum
dynamics in non-stationary physical systems. This method requires the explicit deter-
mination of the eigensolutions of suitable independent dynamical invariants which, in
turn, depend on the specific characteristics of the magnetic field applied to the qubit. Our
method is instead entirely based on easy-to-follow geometric arguments using properties
that are shared by all dynamical invariants of the SU(2) Hamiltonian model of the system
under study, as shown in Section 2.

The advantage of the new parametric representation of U(t) is twofold. On the one
hand, in a given physical scenario, the explicit determination of two suitable solutions
of (23) allows one to study directly the quantum dynamics of a qubit prepared in any pure
or mixed initial state, without using the strategy of [22]. The value of Equation (40) is that
every SU(2) problem is practically traced back to our ability to solve a non-autonomous
vector differential equation of the first order in normal form, that is, Equation (23). This
fact enhances the significance of our approach, as it establishes a direct interplay between
an evergreen chapter of mathematics and the exact solution of the quantum dynamics of a
generic SU(2) problem.

On the other hand, the parametric expression of U(t), by reason of its derivation,
allows us to design experimental setups for controlling the quantum dynamics of a system.
To clarify this point, let us choose the parameter vectors defining two operators that we want
to be (independent and Hermitian) integrals of motion for the qubit in a time-dependent
magnetic field. This choice sets the properties that we want to conserve, and hence strictly
control, during the time evolution of our system. At the same time, this choice delimits
the magnetic field that can be used through Equation (21) or Equation (23), and therefore
it defines the Hamiltonian model describing a qubit in a magnetic field for which the
physical properties corresponding to the chosen invariants of motion are conserved. In
other words, by substituting into Equation (40) any two arbitrarily chosen independent and
Hermitian invariants, it is easy to derive the Hamiltonian model analytically from U(t),
and consequently to extract the necessary information on the specific time dependence of
the magnetic field required to control a qubit dynamics as desired. We emphasize that H(t)
and the consequent properties of the modeled system do (do not) change if one selects
different pairs of mutually independent parameter vectors ν(t) which are functionally
independent of (dependent on) each other, since the different pairs of associated dynamical
invariants lead to a different (the same) U(t).

In the context of our approach, which was formulated in the Heisenberg picture,
controlling the qubit dynamics means that any relevant observable follows a constrained
evolution reflecting the two independent dynamical invariants used to uniquely determine
U(t). In the Schrödinger picture, the same manipulation of U(t) implies a control on the
state evolution dictated by the Schrödinger–Liouville equation. This statement can be
understood considering, e.g., that, if FS(t) is one of the two Hermitian dynamical invariants
prescribing U(t) (and hence the time-dependent Hamiltonian model) and ρ(0) evolves
into ρ(t), then the density matrix (FS(0)ρ(0)FS(0)) follows a constrained path towards
(FS(t)ρ(t)FS(t)).

The control capability inherent in our approach makes it relevant to the field of
investigation of quantum control theory, which has deepened and highlighted fundamental
aspects of dynamic behaviors at the nanoscale in the past forty years, demonstrating a
central role for field control strategies in designing devices based on quantum technology
for practical uses.

In Section 4, we exactly determined the time-evolution operator of a qubit interacting
with the time-dependent magnetic field of Equation (43) to illustrate the general treatment
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exposed in Section 3.1 and to provide a novel complete solution to a dynamical problem of
known interest. We wish to remark here that to reach this goal we first solved Equation (41).
The many studies using the so-called method of dynamical invariants, or the method of
Lewis and Riesenfeld [22], must complete their task by building the evolution operator
even in the simplest case of a qubit. The main result reported in this paper is the easy-
to-use recipe of Equation (40) to directly write the evolution operator U(t), once the class
of dynamical invariants has been determined. Furthermore, the method here developed
for a qubit can be straightforwardly extended to obtain the time-evolution operator of a
single particle qudit, and the results of recent studies suggest that it may be applied to
more complex spin Hamiltonian models for systems of interacting qubits with adequate
symmetry properties. We finally note that our approach to solving exactly the dynamics
of a closed and finite SU(2) quantum system could be useful for finding the parametric
form of the evolution operator for other classes of dynamical problems characterized by
different Lie algebras (e.g., SU(1, 1)), or even for investigating the dynamic behavior of
finite quantum systems described by non-Hermitian spin Hamiltonians.
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