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Abstract: The transdisciplinary nature of science as a whole became evident as the necessity for the
complex nature of phenomena to explain social and life science, along with the physical sciences,
blossomed into complexity theory and most recently into complexitysynchronization. This science
motif is based on the scaling arising from the 1/f-variability in complex dynamic networks and the
need for a network of networks to exchange information internally during intra-network dynamics
and externally during inter-network dynamics. The measure of complexity adopted herein is the
multifractal dimension of the crucial event time series generated by an organ network, and the
difference in the multifractal dimensions of two organ networks quantifies the relative complexity
between interacting complex networks. Information flows from dynamic networks at a higher level of
complexity to those at lower levels of complexity, as summarized in the ‘complexity matching effect’,
and the flow is maximally efficient when the complexities are equal. Herein, we use the scaling of
empirical datasets from the brain, cardiovascular and respiratory networks to support the hypothesis
that complexity synchronization occurs between scaling indices or equivalently with the matching of
the time dependencies of the networks’ multifractal dimensions.

Keywords: complexity; synchronization; fractal coding; organ networks; complexity synchronization;
scaling

1. Introduction

The physical concept of synchronization is nearly four centuries old, whereas the idea
of complexity being sufficiently broad to constitute a science on its own is less than four
decades old [1]. In this paper, we follow in the tradition of interdisciplinary studies and
propose conjoining two distinctly different empirical constructs into a single concept,
that being complexity synchronization, with the intention of learning something new. It is
remarkable that complexity synchronization does, in fact, define a new phenomenon, which
in turn provides fresh insight into the health, disease and rehabilitation of living networks.
Complexity science herein produces a simple rule that underpins the complexity of living
networks and how this underpinning is achieved constitutes the theme of this paper:

Traditional science seeks direct causal relations between elements in the universe,
whereas complexity theory drops down a level to explain the rules that govern the
interactions between lower-order elements that in the aggregate create emergent
properties in higher-level systems. [1]

In Computer Science, the concept of a distributed shared-memory network describes
several computers that share a memory area, but because the variability in speed among
computers has no global clock with which to order activities, network synchronization is
introduced to maintain order [2]. The utility of this theoretical concept has been determined
in many natural systems as well. In social sciences, synchronization has been identified as
an empirical mechanism that coordinates activities between events within and between
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networks, but as networks become more complex so too does the concept of network
synchronization. This is particularly true of the amazingly complex living network structure
of the human body and the need to coordinate activities from the microscopic time scales
of the chemical reactions within neural networks constituting the brain, to the mesoscopic
time scales of the cardiac and respiratory networks, to the macroscopic time of circadian
rhythms. For our purposes, here we intend to capture the complexity of living networks in
our discussion by using the more focused and less controversial term organ network (ON).

The data processing approach revealing this new kind of synchronization is based on
time series consisting of random discrete events whose statistics are of the renewal type
and which enable the detection and quantification of synchrony among ONs operating on
different time scales and not necessarily in stationary regimes [3]. The discrete events in
such time series have been named crucial events [4] because they determine the efficiency
of the information exchange between these complex ONs, and for a large class of complex
networks, not necessarily only ONs, crucial events determine network failures—from heart
attacks to stock market crashes.

Crucial event time series are generated by inverse power-law waiting-time probability
density functions ψ(t) ∝ t−µ with an inverse power-law index in the domain 1 < µ < 3.
Asymptotically, the generated crucial event time series describes an ergodic process for
the inverse power-law index µ in the range 2 < µ < 3 with a finite average waiting time.
Ergodic is the technical name for statistical processes for which averages taken over long
time series are equal to those taken over probability density functions. The understanding
of most of the complexity arising in many-body physics is understood using the ‘ergodic
hypothesis’ dating back to Boltzmann.

A crucial event time series having the waiting-time inverse power-law index in the
range 1 < µ < 2 results in an infinite average waiting time and is therefore non-ergodic.
One of the simpler ways to determine whether a time series is non-ergodic is by noting
whether a measurement at two times depends not on the time difference (stationary, ergodic)
but rather on the two time points separately (non-stationary, non-ergodic). Consequently, in
this range of µ < 2, most of the mathematical infrastructure developed using the traditional
many-body theory of physics cannot be transferred and new methods must be sought.

Herein, we show through the data processing of empirical time series that physiologic
ONs generate crucial event time series, that is, the events have statistically independent
time intervals and are therefore of the renewal type. In this paper, we focus on the em-
pirical complexity of electroencephalographic (EEG) data being multifractal, as are the
respiratory and cardiovascular time series, and establish that the three multifractal scalings
are synchronous [3,5]. This remarkable synchrony among the three ONs’ time series is the
empirical evidence for the existence of complexity synchronization, as well as its funda-
mental importance in coordinating the functions of various ONs for the healthy operation
of the human body.

The multifractal behavior of these three time series has previously been identified
using the pairwise correlation of time series to identify a synchronizing mechanism [6].
Note that the synchrony between two time series is not the same as the synchrony of the
scaling parameters which occurs for criticality matching, the latter being a locking of the
scaling indices in time and not necessarily a locking of the time series themselves. However,
complexity synchronization does not require this lower-order synchrony in order for it to
be the mechanism whereby body organs effectively communicate among themselves and
thereby function as a cohesive whole.

The change in fractal dimensions, as determined by the different scaling indices of the
time series, indicates the changing complexity of the ONs as various physiological functions
are performed. For example, information is readily transported within overlapping memory
areas of the heterogeneously complex brain, and at any point in time a given region of
the brain may be able to receive from, or transmit information to, another physiological
ON, depending on their function and instantaneous relative complexities. This ever-
changing hierarchy of complexities is revealed herein by the way in which the multifractal
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nature of each of these three interacting ONs influence one another over time, as we
subsequently show.

Complexity is one of those concepts that although often used in multiple disciplinary
contexts eludes unique formal definition. So, to avoid becoming embroiled in a semantic
debate, we herein adopt a working definition for complexity that appears to be more than
satisfactory for describing ON-generated crucial event time series.

1.1. Working Definition of Complexity

A signal X(t) generated by an ON is given by a time sequence of crucial events, whose
probability density function for the time interval between such events is an inverse power
law [7]. The time series scales with a scaling index δ if for a given parameter λ we can write
the homogeneous scaling relation X(λt) = λδX(t). It is readily determined that a signal’s
level of complexity, as measured by the fractal dimension D, increases for the crucial event
time series as the inverse power-law index µ increases. Consequently, the fractal dimension
of a crucial event time series is given by the relation D = 2− δ and increases with increasing
complexity [8]. Table 1 records the scaling in the power spectral density, the probability
density function and the dynamic variable denoting the time series, as well as the relations
among the various scaling indices µ, β and δ defining the scaling properties of the crucial
event time series.

Table 1. This table makes easy reference to the scaling index δ from the above homogeneous scaling
relation for the scaled variable X(t), relating it to the inverse power-law spectral density Sp(f) index β

through the waiting-time probability density function ψ(t) index µ in the two asymptotic regimes.
The value µ = 2 is the boundary between the underlying process having a finite (µ > 2) or an
infinite (µ < 2) average waiting time and is also the point at which β = 1 where the process is that of
true 1/ f -noise. Consequently, β and µ are interchangeable measures of complexity. For an ergodic
time series such as that determined by the waiting-time inverse power-law index, µ increases with
decreasing scaling index δ and the complexity decreases. From [5] with permission.

Scaled Functions Parameter Relations Parameter Range

waiting-time PDF ψ(t) ∝ t−µ 1 6 µ 6 3
power spectrum S( f ) ∝ f−β µ = 3− β

scale variable X(t) ∝ tδ µ = 1 + δ 1 6 µ 6 2 non-ergodic
µ = 1 + 1/δ 2 6 µ 6 3 ergodic

δ = 0.5 µ ≥ 3

It was hypothesized [7] and later proven [9,10] that the information flow between
interacting networks depends on their relative complexity, then called the ‘complexity
matching effect’. In a fashion analogous to the flow of energy following a negative energy
gradient, the flow of information follows an information (negative entropy) gradient.
Consequently, the information exchanged between two such interacting fractal ONs is
maximally efficient when the two complexity measures given by their respective fractal
dimensions are equal [7].

We show herein that at each instant of time a local complexity of the brain (as measured
by the fractal dimension of a local EEG channel time series) is either tracked or driven by
the complexity of the respiratory and cardiovascular ONs, with the relative complexity of
these and other physiologic ONs being task dependent. Information is readily transported
within the heterogeneously complex brain, as described above. This changing hierarchy of
the local complexity is revealed herein by the way in which the multifractal nature of each
of these three interacting ONs influences the other two ONs over time.

1.2. Multiple Measures of Complexity

The previous paragraph might give the mistaken impression that because the power
spectrum for a crucial event time series has a unique value for its inverse power-law
index β, as does the scaling index δ, that the inverse power-law index for the waiting-time
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probability density function µ shares this property of uniqueness. It does not. There are,
in fact, at least two ways to measure this last index.

The first way is to use the relation given in Table 1 and to assume that at a given time
tj the trajectory X(t) has the value Xj. How much time do we wait before the trajectory
takes on this value again? This recrossing probability density function is the waiting-time
probability density function given in the table, which we will denote by replacing the
generic inverse power-law index for the waiting-time probability density function µ by µD.
From the other parameter relations in Table 1, it is clear that

µD = 2− δ, (1)

where the scaling index is that given in the table. The crossing and recrossing of the
trajectory at the fixed value of the diffusion process Xj has been shown to be a renewal
process [11]. To establish a connection between the waiting-time index µD with the scaling
probability density function index given in the Methods Section, we address the specific
cases of super-diffusion and sub-diffusion.

It is important to stress in the field of fractal dynamics [8] the relation between the
fractal dimension D and the Hurst exponent H: D = 2− H, which Mandelbrot and Van
Ness [12], using the fractional calculus, interpreted to be a dynamic fractal process, which
they named fractional Brownian motion (FBM). This suggests interpreting µD to be a fractal
dimension by interpreting H as the scaling index δ, as is often done, thereby yielding the
fractal dimension

D = 2− δ, (2)

thereby establishing a general connection between the fractal dimension and scaling
D = µD. The argument given here attracts our attention to the field of complexity re-
search by which we realize that FBM presents a singularity. Recall that Equation (2) was
obtained using algebra alone from the relations recorded in Table 1, without the insight
provided here.

The second way to obtain the inverse power-law index for the waiting-time probability
density function is to examine the situation for the extremes of anomalous diffusion, those
being super-diffusion (δ > 0.5) and sub-diffusion (δ < 0.5). The super-diffusion case is
addressed using the crucial events described by the inverse power-law index denoted by
µS replacing the generic index µ in Table 1. Using Equation (1), with the left side of the
equation interpreted as the fractal dimension and the scaling index δ on the right side
expressed in terms of µS < 2, yields µD = 2− 1/[µS − 1], which after rearranging the
terms yields

µS = 1 + 1/[2− µD]. (3)

In order for the condition specified by this equation to be satisfied requires that between
the consecutive crucial events in the signal driving the diffusion process is assumed either
the value of +1 or −1 by means of an equal probability coin toss.

The case of sub-diffusion with δ < 0.5 is addressed as performed by Failla et al. [11] by
assuming 1 < µS < 2. The fluctuating driver of the diffusion process is assumed to vanish
between consecutive crucial events and to take on the value of either +1 or −1 with equal
probability at the time of a crucial event occurring. This yields the relation µD = 2.5− µS/2
so that, again, rearranging the terms gives us

µS = 5− 2µD. (4)

It is important to notice the increasing interest in the emergence of µS, heralding the non-
ergodic behavioral dynamics along with criticality in the discussion of scale-free cortical
dynamics [13].

The Self-Organized Temporal Criticality model spontaneously generates temporal
complexity by means of the criticality of a network’s dynamics. The global fluctuations
around the mean are calculated as in the inverse power-law probability density function.
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Of particular interest to us is the monitoring of the times at which the fluctuations cross
the origin, giving rise to the first passage time power-law index [14] µD = 1.3. Inserting
this value into Equation (4) yields µS = 2.4, which explains why the inverse power-law
index lies in the interval 2 < µS < 3 and the crucial event time series is therefore ergodic as
well as being of the renewal type. It is important to stress that the well-known model of
criticality and complexity given by Vicek et al. [15] and characterized by Vanni et al. [16]
yields essentially the same results.

In summary, the interpretation of µD as a fractal dimension is always correct. The in-
terpretation of the fractal dimension of the time series D as the first passage time index µD
as a renewal process does not apply to fractional Brownian motion. We stress that it is not
easy to assess if a fractal process also satisfies the renewal condition, thereby emphasizing
the significance of the results found for the triad of empirical time series studied herein.

1.3. Brief History of Synchronization

The first recorded articulation of the concept of synchronization, separate and distinct
from that of complexity, was provided in a letter by the Dutch physicist Huygens in 1665.
He observed what he called ‘the sympathy of two clocks’, wherein, despite independent
initial conditions, the pendulums of two clocks hanging from the same beam synchronized
in the anti-phase within thirty minutes. At this time, 22 years before Newton’s Principia, a
consistent vocabulary of mechanical forces with which to understand the synchronization
phenomenon did not yet exist. The concept of synchronization has since evolved from the
physical similarity of two oscillatory time series to more abstract measures of similarity
based on recent advances in the nonlinear dynamics of many-body networks. Thus, today’s
notion of synchronization differs from Huygen’s original concept introduced over nearly
four centuries ago.

At the turn of this century, Strogatz chronicled in his excellent book SYNC [17] the
evolution of the synchronization concept and from which we freely draw with attribution.
In the 1950s, the mathematician Norbert Wiener [18] identified the interaction of a spectrum
of frequencies measured from the human brain using EEG time series as being the basis of
human consciousness. However, although largely correct, his intuition did not anticipate
the way in which the application of mathematics would be used. That distinction is credited
to Art Winfree [19], a mathematical biologist who in the 1960s identified the fundamental
nature of the nonlinear interactions of oscillators. Importantly, he showed that critical dy-
namics produced transitions from the disordered random behavior of microscopic degrees
of freedom to highly ordered macroscopic degrees of freedom undergoing synchronous
motion. He was thus able to identify dynamic self-organization as the mechanism underly-
ing biomedical synchronization as in circadian rhythm, the entrainment of the pacemaker
cells in the sinoatrial node of the beating heart, and elsewhere in the body’s physiological
ONs. Strogatz credits Winfree with explaining that the resulting synchronization produced
an alignment in time as distinct from the spatial alignment previously observed in physical
phase transitions, e.g., the transition of a material from its fluid to its gas or solid phase.

A simplified oscillator model of self-organization in time was devised by Kuramoto [20]
in the 1970s, which included the insights of both Wiener and Winfree, but with a symmetric
interaction among the oscillator modes. The symmetry assumption enabled Kuramoto
to obtain analytic solutions and thereby be the first to determine that a population of
entities, from fireflies to brain cells, must have ‘sufficiently similar properties’ to synchro-
nize their complex dynamics. While the individual oscillators in the Kuramoto model are
regular, the emergence of global synchronization is independent of whether the individual
oscillators are regular or stochastic.

The term ‘normal synchronization’ refers to the entrainment of the emergent dynamic
global variables of two or more interacting networks. Consequently, this would include
the critical dynamics of many-body phase transitions in the taxonomy of the expanding
definition of synchronization. The individual dynamic networks in the process of chaos
synchronization are chaotic and surprisingly do synchronize with other such networks
while simultaneously maintaining the chaotic dynamics they had in isolation.
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It was thought for a long time that chaos was incompatible with synchronization, that
is until Pecora and Carroll [21] decided to apply chaos theory to encrypting messages in
a chaotic signal for the purpose of communications. The ‘sufficiently similar properties’
are the fractal manifolds (attractors) of the sender and receiver. The chaotic fluctuations
mask the message of the sender, which is retrievable using the deterministic dynamics of
the second chaos generator identical to the first in the receiver. This strategy of driving
a computer simulation of a receiver (a system with a strange attractor solution) with a
chaotic signal transmitted from a duplicate of itself was indeed sufficient to coax the two
into synchrony. Note that this kind of synchrony is quite different from the instantaneous
time tracking of two deterministic trajectories, and both these forms of synchrony are
separate and distinct from complexity synchronization. It also provides a rationale for
complexity synchronization for two or more interacting ONs, that being the exchange of
fractal information with the fractal dimension providing the coding.

Examples of this form of chaotic synchronization appear in chemical oscillations by
means of a Belousov–Zhabotinsky reaction [22]; heat relaxation oscillator [23]; chaotic
systems [24]; and control for chaotic systems [25]. The forerunner of these applications
is discussed in the excellent text on the universality of synchronization in nonlinear sci-
ence [26].

1.4. Rehabilitation and Complexity

We have defined complexity in terms of the fractal dimension of crucial event time
series having a form of temporal complexity, and we have elsewhere proven that perfect
synchronization results from interactions between the two complex networks, with the
more complex network restoring the temporal complexity of the less complex network [27].
Quite generally, this restoration of the fractal dimension can be interpreted as a form of
rehabilitation [4], an example of which is given by the therapeutic effect of arm-in-arm
walking. Almurad et al. [28] demonstrated that if an aged patient walks in close harmony
with a young companion, the ‘complexity matching effect’ results in the restoration of com-
plexity in the gait of the elderly. Mahmoodi et al. [29] proved that scaling synchronization
is a consequence of the fact that a crucial event time series has a µ index in the interval
2 < µ < 3 using the modified diffusion entropy analysis data processing technique (see
Section 2 Methods). However, in the ‘complexity matching effect’, the level of complexity
of the interacting ONs are often out of balance in a healthy individual, and the ON with
the greater complexity drives the ON with the complexity deficit. The driver perturbs the
index of the driven to a higher level, and when the complexity of the driven becomes equal
to the driver, the maximal transfer of information occurs, and the two are in synchrony,
with their fractal dimensions becoming stable and equal [7,28].

This notion of matching in the ‘complexity matching effect’ has developed into the
idea of management resulting in the ‘Principle of Complexity Management’ [29] to include
the influence of one ON on the other in the sense of an ensemble average for non-ergodic
time series. On the other hand, complexity synchronization is realized through the scaling
of single time series and occurs when the interaction between the two ONs is strong enough
that transfers of information between the two change the driven ON’s statistics induced
by the driver. But, surprisingly, the inverse power-law index of the driver is changed as
well as that of the driven. Consequently, the scaling indices of the two ONs dance around a
value which is between that of the driver and that of the driven [27], indicating that the
two ONs have equal strength in transferring information among ONs in the more general
case of healthy NoONs. This coordination of time series is observed experimentally among
the triad of ONs [5], subsequently discussed (in Section 3 on Results).

2. Methods

Let us consider a useful way to characterize how the brain exchanges information
with the two other major physiological ONs depicted in Figure 1. The three ONs whose
time series are explicitly considered are the brain, heart and lungs ONs. Even a casual view
of the typical ten-second time series shown along with a cartoon of the ON generating it
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reveals that they share no apparent features in common, much less the existence of any
synchrony with one another. The brain’s EEG looks like a random signal; the heart’s ECG
gives the impression of a two-state periodic oscillator, a normal sinus rhythm; and the
normal breathing time-series pattern resembles the kind of nonlinear water wave observed
heading in toward the shore and eventually crashing on the beach. Yet Mahmoodi et al. [5]
showed that when these three time series are simultaneously measured, they in fact possess
a remarkably new kind of synchrony in their normal healthy interactive state.

Figure 1. (Left) panel: The schematic depicts the three time series from the ONs of interest here,
the brain, heart and lungs. Note that the three typical time series share no obvious common features.
Also be aware that the information is exchanged simultaneously among all three as well as pairwise
between the three ONs. Top is ten seconds of one channel of EEG time series; bottom left is ten
seconds of respiration time series; bottom right is ten seconds of ECG time series; all three datasets are
measured simultaneously. (Right) panel: The corresponding diffusion entropy analysis was used to
process the diffusion random walks constructed from the three datasets depicted in the left panel (see
Appendix A.1 for details or Mahmoodi et al. [5]). The entropy ∆S(w) is plotted versus the log of the
time w as predicted in Appendix A.1 by Equation (A2) for a scaling probability density function, such
that the three slopes between the dashed vertical lines yield the scaling indices for the corresponding
time series. The slope is the measure of temporal complexity of the time series given by δj, see Table 1.
From Mahmoodi et al. [5] with permission.

To demonstrate this new kind of synchronization, let us consider the ten-second time
series for each of the three simultaneous measurements of the brain, heart and lungs
depicted in Figure 1. The three time series depicted therein are denoted by Xj(t) as
well as the 63 other channels in the EEG measurement that are not shown in the figure.
The subscript on the variable in this exemplar therefore denotes the output from channel
j (=1, 2, 3) and the variable scales when the time t is multiplied by a constant λ resulting in
Xj(λt) = λδj Xj(t). Here, δj is the scaling index for channel j. Note that the scaling index
is independent of time when the time series is a monofractal and is related to the fractal
dimension of the neural network in the brain generating the time series in the vicinity
of channel j. It is the scaling index δj of the empirical channel j crucial event time series,
or equivalently the fractal dimension of the channel j time series Dj = 2− δj, that the
modified diffusion entropy analysis technique enables us to find; see Table 1 for the many
relations among the four parameters characterizing the time series.

The left panel of Figure 1 depicts the three time series to be processed using the
modified diffusion entropy analysis technique. The results of this analysis of the time series
on the left are depicted in the panel on the right, which anticipates the theoretical findings
detailed in Appendix A.1. The empirical probability density function is obtained using
the histograms from the diffusion argument and from which the Shannon/Wiener (SW)
entropy for the three time series is constructed. Graphing the diffusion entropy versus the
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logarithm of the time yields a straight line with a positive slope. The results of the data
processing indicate the existence of a deep structural relation common to these three very
different looking time series.

The structural relation revealed by the modified diffusion entropy analysis data pro-
cessing strongly suggests that the above homogeneous scaling be replaced with their
average values,

〈
Xj(λt)

〉
= λδj

〈
Xj(t)

〉
, which means that the scaling is a property of the

probability density function and not of the individual trajectories. In the next section,
we examine the implications of the scaling probability density, one of which is that the
empirical slopes in Figure 1 are, in fact, given by the three scaling indices δj, j = 1, 2, 3. So,
let us now examine the source of this remarkable result.

Modified Diffusion Entropy Analysis (MDEA)

MDEA measures the complexity of the diffusion trajectory made by turning the
empirical crucial event time series into a diffusion process. To avoid an unnecessary
duplication of effort, we define the steps in the MDEA operating on a single heartbeat
dataset but one significantly longer than the example just given. MDEA was applied to the
post-processed continuous data from all 64 EEG channels, the electrocardiogram channel
and the respiration channel of one participant in one session of neurofeedback training;
for a more detailed description of the experimental protocol underlying the empirical
dataset, see [5] as well as Appendix A.1.

For a stochastic process, the scaling equality is in terms of average values interpreted
in terms of a scaling probability density function which can be written as [30]

P(x, τ) =
1
τδ

F
( x

τδ

)
, (5)

where P(x, τ)dx is the probability that the random diffusion variate X(τ) is in the interval
(x, x + dx) at time τ. In Appendix A.2, we show that the scaling probability density function
is the general solution to a simple fractional kinetic equation [31,32], that is, a fractional
equation in both time (having intrinsic memory) with an index α [4,30]

Dα
τ [P(τ)] = −λαP(τ), (6)

and space (long-range inhomogeneity) with an index β. Equation (6) is a typical linear
fractional rate equation with a solution given by the Mittag-Leffler function. The mathe-
matical details from the fractional calculus are not of concern to us here; we note, however,
that at early times the Mittag-Leffler function has the form of a stretched exponential, and
asymptotically it becomes an inverse power law in time with an index α. We also note that
the series expression for the Mittag-Leffler function has the analytic form of an exponential
for α = 1. Thus, the further α is from 1 (α < 1), the slower the decay of the memory, which
is to say the longer the intrinsic memory of the dynamic process reaches back in time.

The fractional equation which has the scaling probability density function as the renor-
malization group solution is a fractional kinetic equation, as we discuss in Appendix A.2 [30].
The scaling index δ is shown in Equation (A9) to be the ratio of the fractional derivative
index at time α to the fractional derivative in space β, which is to say δ = α/β. The case
(α, β) = (1,2) corresponds to a simple diffusion, with δ = 1/2 having the fractal dimension
D = 1.5.

The scaling probability density function F(.) is unknown in general; however, for
δ = 0.5, it is Gaussian in the scaled variable x/t0.5 and the process is diffusive. If the
probability density function is Gaussian but δ 6= 0.5, the process is said to describe a form of
anomalous diffusion called fractional Brownian motion by Mandelbrot and Van Ness [12],
who first described it using fractional calculus. We note that fractional Brownian motion
events are not of the renewal type because there is a long-term memory in the generating
process, and therefore such a process cannot contain crucial events. Consequently, the more
interesting case is when the unknown function is not Gaussian, but the statistics are of the
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renewal type and therefore cannot be fractional Brownian motion but can be either crucial
events or non-crucial events, both of which can be of the renewal type, e.g., a Poisson
process consists of non-crucial events that are of the renewal type.

You may have noticed that because crucial event time series are renewal they cannot
have memory in the sense that fractional Brownian motion has memory, but these two kinds
of memory can be distinguished by separately shuffling the two time series. A time series
with a scaling index δ > 0.5 and normal memory, such as fractional Brownian motion, when
shuffled, will yield a scaling index of δshu f f led = 1/2, whereas a time series consisting solely
of crucial events with a scaling index δ > 0.5 will, when shuffled, not change its scaling
index δshu f f led = δ. This counter-intuitive result was named ‘memory-beyond-memory’ by
its discoverers Allegrini et al. [33] and is explained in varying levels of detail by West and
Grigolini [4] and Bohara et al. [34], among others, but its existence has not been universally
embraced by the theoretical community who study such things.

Thus, if the empirical probability density has the scaling form given by Equation (5),
we note that a graph of the diffusion entropy ∆S(τ) versus the log of time (ln τ) makes
it reasonable to interpret the slope of the empirical curve in Figure 1 to be given by the
scaling index in Equation (A2) for the SW entropy. The three scaling indices indicate the
values for the EEG, respiration and the ECG, for these simultaneously measured ten-second
datasets make it also reasonable to interpret the brain to be the most complex, the heart
the least complex and the lungs to have complexity between the other two members of the
interacting triad. We emphasize that this ordering is not universal but does suggest that
during this short time interval the part of the brain generating this signal was driving the
other two ONs.

The results obtained for the three short datasets indicating that each of the time series
has a constant fractal dimension entails that these time series are given by fractal scaling
processes. If that were the end of the story it would still be a valuable result, but it would
be a very restricted one because it would not allow for the ONs to adapt to new situations,
which is an obvious capability of healthy ONs. The monofractal behavior of the three
ONs observed for the ten-second time interval are due to intra-ON interactions that do not
change their fractal behavior in this time interval because they have not been alerted to do
so by any inter-ON information exchange and therefore they do not change their fractal
dimensions. In the next section, we apply the modified diffusion entropy analysis to a
significantly longer total time dataset for this triad of simultaneously measured time series
and find they are substantially richer in information, and this longer total time reveals the
ONs true nature, which is multifractal. In this way, each of the 66 ONs generates a separate
multifractal but does so in a coordinated way under the influences of the other 65 ONs.

So, let us now examine how the monofractal behaviors of these 66 ONs are modi-
fied over longer times by the information exchange during their mutual interactions. In
Appendix A.1, the modified diffusion entropy analysis data processing technique for mul-
tifractal crucial event time series is briefly reviewed using the electrocardiogram time series
from the triad of measurement types as an exemplar. The results of this analysis applied to
the 66 simultaneously measured time series are depicted in figure in Section 3.

3. Results

In this section, we present a new way to characterize how the brain exchanges
information with two other major physiological ONs, those being the respiratory and
cardiovascular ONs with the results of their interactions portrayed in Figure 2. This figure
depicts a quasi-periodic time dependence of the scaling indices δj, j = 1, 2, . . . , 66 for the
processed datasets, as discussed in the Section 2 on Methods, from each of the 64 channels
of a standard EEG, along with the those from the cardiovascular and respiratory ONs that
were simultaneously measured. Note that the time scale is such that if we randomly select
a point along the time axis and magnified the time series in the vicinity of that point, we
would obtain something similar to the three constant fractal dimensions in Figure 1 but not
necessarily as closely aligned as the results depicted therein. It is clear from the left panel
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of Figure 2 that the quasi-periodic behavior of the scaling indices from the EEG channels
are in synchrony with those from the cardiovascular and respiratory ONs.

Figure 2 affords a clear answer to the following question: How does complexity
synchronization occur in scaled metrics from empirical datasets of brain, cardiovascular
and respiratory networks? There are 64 different EEG channels, corresponding to the green
lines. For each of them, using stripes of a proper size was possible to find the scaling
δj, j = 1, 2, . . . , 64 in a sufficiently small bin of time ∆t to define an ‘instantaneous’ value of
δj(t), j = 1, 2, . . . , 64. This by itself is a significant benefit of using modified diffusion entropy
analysis. The same method of analysis was applied to the respiration (red curve) and ECG
(blue curve) time series. While the interaction between the brain and the physiology ONs
of the body has a number of conjectured forms in the physiology literature, Figure 2 firmly
establishes that the complexity of these different physiological processes as measured by
their respective multifractal dimensions are synchronized.

The visual impression of the synchrony of the processed datasets in this last figure is
borne by the cross-correlation coefficients of the three scaling index types recorded in the
right-side panel being in the narrow interval [0.70, 0.73]. This synchrony of the multifractal
behavior is a clear manifestation of the complexity synchronization phenomenon, which is
not a strict deterministic phenomenon but is a statistical regularity.

Note that it is the scaling indices that are changing over time in Figure 2, thereby
indicating the coordinated multifractal behavior of the time series from the brain, ECG
and respiratory ONs. The neuroscientist Buzsaki [35] commented that transient coupling
between various parts of the brain supports an information transfer to, and from, other
ONs. We draw this to the readers’ attention because the scaling results shown in the figure
support this conjecture. But a word of caution is appropriate here in that the synchrony
observed in Figure 2 for the scaling indices does not necessarily have anything to do with
the synchronous behavior observed from the central moment correlation properties of
the time series observed in the insightful paper on the ‘complexity matching effect’ by
Delgnieres et al. [36].

The quasi-periodic nature of the scaling parameter depicted in Figure 2 provides
insight into the way the dynamic information from the brain, heart and lungs is exchanged
during their mutual interactions. The gray curves in this panel depict the instantaneous
scaling index over all 64 EEG channels, which is compared with the scaling index for the
cardiovascular network (blue curve), the scaling index of the respiratory network (pink
curve) and the ‘scaling index for the brain’ obtained by averaging over the 64 channels of
the EEG (black curve). This figure indicates that all the ONs (or 66 network channels) have
dramatic changes in complexity over time, being a direct consequence of their inter-ON
and intra-ON interactions. This time dependence of the scaling indices means that the
fractal dimensions become multifractal dimensions with quasi-periodic time dependencies.
To properly interpret the behavior depicted in Figure 2 requires that we answer the follow-
ing question: What is a scaling parameter and what does it entail regarding the underlying
dynamic network? A question we partially answer in the Discussion Section.
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Figure 2. (Left) Panel: Light gray curves are the scaling indices δj, j = 1, . . . , 64 obtained by processing
the 64 time series from the EEG channels and the black curve is the average over the 64 scaling indices
at each point in time. The red and blue curves are the scaling indices obtained by processing the
time series of the respiration and ECG channels, respectively. Modified diffusion entropy analysis
processing was performed on each channel time series with stripe size of 0.01 for the ECG and
respiratory data and 0.1 for the EEG data, using the jumping ahead rule, and on data windows
of one-minute length of data (windows in increments of 20 s steps), respectively. The data were
simultaneously collected while the participant was conducting the Go-NoGo shooting task (for
details, see [5]). (Right) Panel: The corresponding pairwise cross-correlation coefficients (CCs) are
calculated among the depicted EEGs channels, ECG and respiration scaling coefficients, with all
calculated values of the three correlation coefficients falling within the interval 0.70 < CC < 0.73.

4. Discussion

Healthy ONs being hosted by a healthy living network have equal strength in trans-
ferring information among ONs in a NoONs but give rise to time series whose fractal
fluctuations contain control information that guides both the internal behavior and external
information exchange of these complex ONs within the NoONs. In fact, the health of the
human body is determined by the multifractal dimensions or alternatively by the scaling
indices δj(t). The scaling index has the value 1 as the ideal condition for the health of the
human body. It is a singular condition corresponding to the largest possible scaling and has
been used in the analysis of heart rate variability (HRV) time series as a diagnostic indicator
separating patients who have congestive heart failure from those that are healthy [34,37].
More generally, the brain may also explore the condition µ < 2 and the condition µ > 2,
with a decrease in the scaling value.

It bears repeating that Figure 2 provides a clear description of how complexity syn-
chronization occurs in the empirical datasets from the brain, cardiovascular and respiratory
networks using modified diffusion entropy analysis. One of the significant benefits of
using this data processing technique is that it reveals the crucial event character of these
66 channels or ONs. As mentioned, the matter as to how information is exchanged among
the channels of the brain and the ONs of the body is presently a matter of scientific con-
jecture; however, Figure 2 proves that the complexities of these 66 different channels are
synchronized. It is this synchrony of the multifractality of the interacting ONs that enables
the efficient exchange of coded information among the ONs within the human body.

It is the fractal statistics of physiological fluctuations that determine the spatial proper-
ties of the tree-like branching structures of the human lung, arterial and venous systems
and other ramified structures [38]. Statistical fractals also determine the waiting-time
distribution of the time intervals successive beats of the human heart [4,33,39,40], in res-
piration [37], in dyadic conversation [41], in the human nervous system [42,43], in the
dynamics of the brain [44,45], in the walking rehabilitation of the elderly [28,46], in motor



Entropy 2023, 25, 1393 12 of 19

control [36,47] and in interpersonal coordination [48,49], to name just a few. But it is worth
quoting Buzsaki on the fractal nature of the brain [50]:

No matter what fraction of the brain web we are investigating, neuronal loops
are the principle organization at nearly all levels. A physicist would call this
multilevel, self-similar organization a fractal of loops.

The fractal paradigm is captured by the statistics of the scaling probability density
function and is a consequence of the fact that the scaling probability density function is the
solution to a fractional kinetic equation, as sketched out in Appendix A.2. The dominant
characteristics of fractal statistics are spatial (x) inhomogeneity, temporal (t) intermittency
and the phase-space trajectory (x; t) replacement of the dynamic variable X(t). In the phase
space, the scaling of the dynamic variable is replaced by a scaling probability density
function of the form given by Equation (5), which is true quite generally for ON statistical
phenomena [51]. The first moment of X(t), using the scaling probability density function,
recaptures the homogeneous scaling form of the dynamic variable, 〈X(λt)〉 = λδ〈X(t)〉,
whose solution has the same power-law time dependence discussed in connection with the
scaling relations recorded in Table 1. Such processes have monofractal statistical behavior.

So, what does it mean when we obtain a multifractal statistical process, which is to say
a time-dependent scaling parameter δ(t)? The short answer is that the statistics are given
by the scaling probability density function but with the constant scaling index replaced
with the time-dependent scaling index. The longer answer is, well, longer, because it must
provide an understanding for the time dependence.

Lloyd et al. [52] argue in their review that biological systems are homeodynamic (or
homeorhetic) as a manifestation of an ON’s ability to self-organize at behavior bifurcation
points where an ON loses stability and restabilizes in a new state. As a result of this self-
organization, ONs display complex behaviors with a spectrum of emergent characteristics,
including bistable switches, thresholds, mutual entrainment, as well as periodic behavior.
These processes may proceed on different time scales, from very rapid processes at the
molecular level to the enormously long time scales of evolutionary change; see, for example,
Steven Gould’s long discussion on punctuated equilibrium theory in his 1400 page book
The Structure of Evolutionary Theory [53]. It is apparently the dynamic self-organization
under homeorhetic conditions that makes possible the organized complexity of life. Given
the changeable behavior of the underlying complexity of NoONs, it is not surprising and is
to be expected that the statistics are multifractal rather than monofractal in living networks.

The identification of fractal statistics was a major step away from the signal-plus-noise
model that had dominated the engineer’s view of the disruptive role of fluctuations in
complex phenomena. The scaling behavior of biomedical time series entails the fact that the
fractal fluctuations are not normally disruptive but are rich in information that is exchanged
in the interactions among ONs. The strength of the fractal paradigm lies in the fact that no
single scale or frequency carries the signal, but rather pieces of the signal are encoded across
a spectrum of scales. In this way, when noise does disrupt the signal, the repetitive nature of
the fractal scaling ensures that, although the signal may be weakened, the information will
not be totally lost. One way the resilience of a fractal structure to both internal and external
normally disruptive fluctuations was understood involved using a fractal scaling model of
the airways within mammalian lungs [54,55]. These mathematical results prompted the
adoption of the interpretation that fractal structures are preadapted to such disruption,
which meant that a fractal structure already possessed the scale being presented by the
disputer, or a scale reasonably close to it. However, the modern term ‘resilience’ is more
neutral with respect to a causal mechanism than is the more descriptive term ‘preadapted’.

However, even this generalization of the engineering paradigm was shown to be too
restrictive to properly describe the richness in the statistics of physiologic time series. Most
if not all physiologic time series are found to be characterized by time-dependent scaling
parameters and therefore belong to the broader class of complex processes of multifractals.
The time series from the heart, lungs and brain give some indication of the reasonableness
of this interpretation. The scaling indices for the brain, heart and lungs have a range of
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variation (min:max) given by ∆δ ≈ 0.267 (brain); 0.122 (heart); and 0.121 (lungs). This
increased flexibility of the range of variation in the brain’s multifractal scaling index may
well be a reflection of the brain’s multi-task functionality, given the fact that the brain is
itself a living NoON.

The health of the living NoONs that comprise the human body is determined by the
scaling properties of the various ONs. It is the fractal scaling that determines how well the
overall harmony is maintained, because the ideal health condition of the body is represented
by δ = 1. This singular condition corresponds to the largest value of the scaling index.
The brain may also explore the conditions µ < 2 and µ > 2 with a decrease in the value of
the scaling index δ. Consequently, it was recognized that disease and injury are described
by the loss of variability (complexity) [54,56], and for that reason, the strategies used for
combating disease/injury are being critically re-examined. For example, experiments show
a preference in the response of physiologic ONs to 1/f-signals over that of white noise,
indicating a sensitivity of these ONs to fractal scaling control [42,44,57]. In the more general
rehabilitation context, the strategy determining how we develop life support equipment is
another important example of the need for re-examination. The tradition in applying life
support strategies is to supply blood at the average rate of the beating heart, to ventilate the
lungs at their average rate and so on for the other ONs necessary for sustaining life [54,58].

It is clear from Figure 2 that the condition δ > 0.5 is always true, namely, all the
physiological activities of the body adopt a super-diffusion approach of different intensity.
The parameter µ referring to the time distance between two consecutive crucial events
remains smaller than µ = 3, which is the border with the region µ > 3 corresponding to the
ordinary statistical behavior of thermodynamic equilibrium. The condition µ > 3 entails
Gaussian statistics for the time series, thereby losing the renewal statistics of the empirical
time series. This loss of crucial event time-series status entails that the ON undergoing
such a transition is either diseased or has been damaged by an external cause.

We must consider the way nature has resolved the difficult problems of providing
robust methods for ONs to exchange information with one another, with information
flowing from the more complex to the less complex network [7]. Then, that knowledge
is applied to the least invasive kind of intervention necessary for recovery. The way ONs
exchange information provides guidance on how medical devices ought to intervene to
facilitate recovery from illness/injury through rehabilitation. The least invasive method
of rehabilitation is one that uses an ON’s own strategies to establish the road from illness
or injury back to health. The lungs respond best to the natural driving of fractal bio-
ventilators and the heart to the fractal cardiopulmonary bypass bio-pumps, each driven
by the appropriate spectrum of fractal bio-frequencies; see the experiments successfully
carried out as well as the clinical successes of Mutch and colleagues [58–60].

5. Conclusions

We conclude that an ON’s emergent time series, whose fractal properties are deter-
mined by its scaling index, not by its detailed microscopic dynamics, determines the health
of that ON and ultimately of the human body. This scaling codifies the success of that
ON in carrying out its function. Moreover, the index quantifies the information shared
with the other ONs within the NoONs. We draw this conclusion from what we have
learned by processing the interacting time series from the triad of the brain, heart and
lungs, whose overall health is determined by the information shared among the three
over time [5]. Given this result, what can we further conclude about the universality of
complexity synchronization?

A possible mechanism for the quasi-periodic complexity synchronization among the
time series generated by the brain, heart and lungs was suggested by reading Buzsaki’s
2006 book. The thalamus, being a hub in cortical–thalamic network interactions, serves
as an integration center through which ‘reciprocal causality’ exists among various brain
regions and likely among the brain and various ONs [50]:
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‘The thalamus is a large collection of relay nuclei, a kind of customs and border
patrol agency. These nuclei are the only source of information for the neocortex
about the body and the surrounding physical world . . . The principal mechanism
of the cortical-thalamic-cortical flow of activity is self-sustained oscillations . . . ’

The meaning derived from this quote is that the integration center is inherently
oscillatory, so that the interaction of multiple networks is coordinated and oscillatory.
The above insight was taken from Cycle 7 of Buzsaki’s Rhythms of the Brain in his discussion
of resting and sleep states void of external sensory stimulation or motor activity, but we
think it readily generalizes to waking and task states, although such states would be
constrained or influenced by sensory input and motor output.

The statistical analysis of the 66 empirical ON time series, in fact, support the con-
clusion that ONs generate crucial event time series, a condition necessary for complexity
synchronization. Moreover, we may also conclude that such crucial event time series have
fractal statistics, which also facilitates complexity synchronization in multi-ON interactions.
However, the fractal nature of these time series is not constant, which is to say they are
not monofractal but change with the vagaries of the interactions of one ON with another,
because other ONs are the environment in NoONs. These multifractal time series are
produced by the internal dynamics of the individual ONs and can be described using
Self-Organized Temporal Criticality models. The critical self-organization generated by an
ON’s internal dynamics produces in time [27] what the Self-Organized Criticality model
produces in space [61]. Consequently, physiologic phenomena are always multifractal
and their spectral width is a measure of the state of health of that network [51,62–64] and
consequently the overall health of the individual.

ONs use fractal statistics to preadapt their dynamics to potentially disruptive pertur-
bations [54], whereas multifractality generalizes that adaptability to the breakup of classical
trajectories into fractal trajectories with the onset of chaos [32]. This kind of adaptation en-
ables going beyond what Taleb labeled ‘antifragile’ behavior [65]. The antifragility concept
encompasses how things, in our case the ‘thing’ would be an ON time series, gain from
disruption rather than being weakened by it. The increase in uncertainty that antifragility
promotes in order for an ON to become stronger, i.e., increase its complexity, in the face of
disruption and adversity, whether produced inside or outside the ON, is precisely what is
measured by the width of the multifractal spectrum.

A remarkable aspect of multifractality is that it is not just a consequence of the critical
dynamics of ONs, in which Self-Organized Temporal Criticality would be a reasonable
driver for such behavior. The scaling behavior of these three physiologic time series is
invisible to most data processing techniques and thereby so too are the crucial events.
The hidden interdependence is above the level of time-series scaling generated by the
interactions of the three ONs, those being the heart, lungs and brain. It is only after
the modified diffusion entropy analysis processing of the time series that the complexity
synchronization mechanism tying the three ON time series together is revealed.

Complexity synchronization is a newly identified evolutionary mechanism ‘Nature
devised’ to enable NoONs to continue performing their global functioning behaviors by
incorporating the complex dynamic feedback from the host NoON into the guest ON’s
individual dynamics. The multifractal dimension indicates how information is encoded
within ON time series and which guarantees a proper response regardless of the complexity
of the healthy host state. The time-dependent fractal dimensional encoding insures efficient
communication across multiple interacting ONs. The quasi-periodic oscillations are each
statistically disrupted by distinct inverse power-law temporal frequency perturbations.

In summary, we conclude that a time series generated by the critical dynamics of a
healthy ON is a homogeneous random fractal, with independent time intervals, and is
consequently a crucial event time series. Furthermore, such a time series is modulated by
a self-similar scaling index δ, giving rise to a fractal dimension µD = 2− δ that directly
measures the complexity of the ON time series. The full complexity of an ON connected
within a NoON is captured by the time dependence of the scaling index δ(t), resulting
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in a multifractal dimension of the interacting ON time series. We stress here that the
quasi-periodicity of the three time series observed is necessary to carry out the distinct
task in which the triad of ONs are engaged, and we expect even richer time dependencies
to be revealed as the variety of tasks of differing levels of difficulty are carried out under
controlled conditions or perhaps more coordination under conditions of complete rest
or sleep.

We hypothesize that complexity synchronization is the mechanism necessary to coor-
dinate the multiple time dependencies of the many interacting ONs composing NoONs,
under changing conditions. Consequently, the degree of disruption of an ON’s time series
produced by illness or injury may be quantified by the degree to which the complexity syn-
chronization level among the ONs deviates from their value during their normal operation
in a healthy NoON.
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Appendix A

Appendix A.1. Modified Diffusion Entropy Analysis (MDEA)

In the MDEA technique, the first step is to project the data of each channel onto the
interval [0, 1] by normalizing each time series by the total time interval of the dataset. This
enables the processing of each time series to be directly compared. The data profile over
the unit interval is then divided into parallel stripes (Figure A1a, ECG data). (The inset in
the figure displays what the events would look like when the stripe size is 0.1. Note that
a slowly varying feature of the data trace would have relatively few events well-spaced
in time. However, a sharply peaked feature would have a large number of closely spaced
events). Next, the events are extracted by defining them as unit amplitude pulses if the
signal at that time is in a different stripe with respect to its previous value (Figure A1b) and
zero if it remains in the same stripe. Using the time series of the extracted events, we create
a diffusion trajectory (Figure A1c), i.e., the cumulative sum of the events in Figure A1b.
The statistics of a single diffusion trajectory (blue curve in Figure A1c) are determined by
selecting a window size w and partitioning the diffusion trajectory into many pieces, each
starting from an event. By initiating all the segments from an event, they can all be shifted
to start from a common origin (Figure A1d). Finally, we evaluate the ensemble distribution
of histograms at a given time (Figure A1e) because the events are statistically independent.

To make the statistics of the single time-series diffusion trajectory correspond to that
performed in the MDEA processing of the data, we pick a window size τ and slice the
empirical signal into many pieces, each of length w = τ, and start from an event (panel d).
By shifting all the slices to start from this origin, we evaluate the distribution of trajectories
at time τ (panel e). Denoting the probability density function for different window sizes as
P(x, τ), we can define the SW entropy as follows:

S(τ) = −
∫

dxP(x, τ) log2 P(x, τ) (A1)

https://github.com/Korosh137/MDEA.git
https://github.com/Korosh137/MDEA.git
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Assuming that P(x, τ) is the probability density function corresponding to window size τ,
we can define the diffusion entropy using the SW entropy as being the information con-
tained in the time series. Using the scaling probability density function, without knowing
the F(.) function, the deviation of the SW entropy from its reference state defined by the
unknown function is

∆S(τ) ≡ S(τ)− Sre f = δ ln τ (A2)

Consequently, if a graph of the SW entropy for an empirical process versus the logarithm of
the time yields a curve with a positive slope, which we interpret to be the scaling index δ.

Figure A1. A schematic of the steps for the processing of time series using the technique of modified
diffusion entropy analysis. Panel (a): The blue curve is the heart rate signal which is projected onto
the interval [0, 1] and then divided to the stripe size of 0.1, which is magnified in the inset. Note that
sharply peaked features in the ECG have a cluster of events in (b), whereas a sloping feature has
well-spaced events; see the inset for a visual verification of this explanation. The horizontal lines
define the stripes. Panel (b): The events (represented as distinct separated unit amplitude pulses)
are extracted from the passage of the continuous blue curve from one stripe to others. Panel (c): The
diffusion trajectory made by the cumulative summation of the events of panel (b). The vertical lines
show a selected set of windows with a size of 100 that sliced the diffusion trajectory. Panel (d): The
partitioned trajectories of panel (c) shifted to initiate each trajectory from a common origin and
terminate each after a time w, the length of the window. Panel (e): The histogram of the position of
the trajectories at the end of the windows (to create this histogram we used 60 s of data and a stripe
size of 0.01). Taken from [5] with permission.

Appendix A.2. Fractional Kinetic Equation

In this Appendix, a sketch of the formal solution to a fractional equation of evolution
for the scaling probability density function is presented employing renormalization group
theory. The equation to be solved was first derived using the continuous-time random-
walk model of Montroll and Weiss (MW), who generalized the random-walk process to
continuous time. West and Grigolini [66] outline this approach in which the time interval
for successive steps is given by an inverse power law in time and the step length is an
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inverse power law in space. Consequently, the fractional equation describing the space-time
evolution for the probability density function is determined to be [66]

Dα
t [P(x, t)] = KβDβ

|x|[P(x, t)] (A3)

where the Caputo fractional derivative in time is operating on the left side of the equation
and the Riesz–Feller fractional derivative in space is operating on the right side of the
equation. This fractional kinetic equation is solved as an initial value problem for the
probability density function, where P0(x) = P(x, t = 0).

Zaslavsky [31,32] applied the renormalization group transformation R to the network
dynamics such that the scaling properties of the incremental changes are

R : δx = λxδx, R : δt = λTδt, (A4)

which apply, after some averaging, to a restricted space-time domain, and the scaling
parameters are (λx, λT).

He continues with the observation that the fractional kinetic Equation (A3) given
above is invariant under the renormalization group transformation:

R : Dα
t [P(x, t)] = KβR : Dβ

|x|[P(x, t)], (A5)

which implies that the transformed fractional equation satisfies the scaling behavior:

λα
T Dα

t [P(x, t)] = λ
β
x KβDβ

|x|[P(x, t)]. (A6)

The lowest-order renormalization group solution is given by equating the renor-
malization parameters raised to their respective powers: λα

T = λ
β
x . The solution to the

renormalized fractional equation is given in terms of the Fourier transform of the probabil-
ity density function, which is the characteristic function φ(k, t), expressed in terms of the
Mittag-Leffler function Eβ(.) to be

φ(k, t) = Eα(−Kβ|k|βtα). (A7)

Consequently, taking the inverse Fourier transform of this characteristic function and
expressing the Mittag-Leffler function as a series results in, after some algebra [30,32], the
scaling solution for the probability density function:

P(λα/β
T x, λTt) = P(x, t)/λ

α/β
T . (A8)

Selecting the ratio of the scaling parameters to be

δ = α/β, (A9)

and
λT = 1/t, (A10)

enables us to rewrite Equation (A8) in the form of the scaling probability density function
given by Equation (5). Thus, the solution to the simplest fractional kinetic equation yields
the scaling probability density function used, along with the MDEA data processing
technique, to interpret the datasets from the brain, heart and lungs in the text as crucial
event time series with synchronized levels of complexity as measured by their respective
multifractal dimensions.
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