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Abstract: In the theoretical treatment of crystallization, it is commonly assumed that the relaxation
processes of a liquid proceed quickly as compared to crystal nucleation and growth processes. Actu-
ally, it is supposed that a liquid is always located in the metastable state corresponding to the current
values of pressure and temperature. However, near and below the glass transition temperature, Tg,
this condition is commonly not fulfilled. In such cases, in the treatment of crystallization, deviations
in the state of the liquid from the respective metastable equilibrium state have to be accounted for
when determining the kinetic coefficients governing the crystallization kinetics, the thermodynamic
driving force of crystallization, and the surface tension of the aggregates of the newly evolving
crystal phase including the surface tension of critical clusters considerably affecting the crystal nucle-
ation rate. These factors may greatly influence the course of the overall crystallization process. A
theoretical analysis of the resulting effects is given in the present paper by numerical solutions of
the J(ohnson)–M(ehl)–A(vrami)–K(olmogorov) equation employed as the tool to model the overall
crystallization kinetics and by analytical estimates of the crystallization peak temperatures in terms
of the dependence on cooling and heating rates. The results are shown to be in good agreement
with the experimental data. Possible extensions of the theory are anticipated and will be explored in
future analysis.

Keywords: nucleation; thermodynamics of nucleation; general theory of phase transitions; theory
and models of crystal growth

PACS: 64.60.Bd; 64.60.Q; 81.10.Aj; 82.60.Nh

1. Introduction

In materials science, the understanding of the kinetics of phase transformation pro-
cesses, under varying external and/or internal conditions, is of significant importance.
One example in this respect consists of the widely studied process of phase formation in
glass-forming liquids under cooling and heating by differential scanning calorimetry and
differential thermal analysis methods or fast scanning calorimetry [1–3]. In the respective
experimental investigations, primarily the latent heat of crystallization, melting is measured.
Different attempts have been developed to interpret the experimental data theoretically
and to derive conclusions concerning the dependence of the nucleation and growth rates
on temperature. These studies are of fundamental importance for the understanding of
the glass-forming ability of a given substance or for the specification of the conditions that
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have to be fulfilled to create materials with a well-defined fraction, shape, and distribution
of the crystalline phases possibly evolving in them.

One of the most appropriate methods in this analysis consists of the application of
the J(ohnson)–M(ehl)–A(vrami)–K(olmogorov) equation (see e.g., [4–6]). It is derived by
modeling the basic features of crystallization, i.e., the kinetics of nucleation and of the
further growth of the supercritical clusters. These processes depend (at constant pressure)
on temperature, and their interplay determines the degree of overall crystallization. They
are affected significantly by the rates of cooling and heating. For this reason, a variety of
investigations have been devoted to it [7–16]. Since the JMAK equation is a consequence
of modeling the interplay of the basic processes determining crystallization, we consider
it as being advantageous over other approaches, for example, the Kissinger equation
widely employed in the analysis of crystallization [17–20]. For this reason, we perform our
present analysis utilizing the JMAK equation. The main purpose of our study is described
as follows.

In the application of classical nucleation theory to the theoretical description of the
crystallization of liquids and glasses, it is as a rule assumed that nucleation and the
subsequent growth of the crystal phase proceed only after the supercooled liquid or the
glass have completed structural relaxation processes towards the corresponding metastable
equilibrium state. Only by employing such an assumption can the thermodynamic driving
force of crystallization and the surface tension be determined in the way it is commonly
performed. However, as shown in detail in the first special issue on “Crystallization
Thermodynamics” in Entropy in [21], near and below the glass transition temperature, a
different situation is observed as a rule. In this temperature range, these processes proceed
concomitantly with structural relaxation. As a consequence, nucleation and growth rates
depend not only on temperature but also on the current state of the relaxing melt. A similar
behavior is expected to occur if the glass transition is governed by variations in pressure or
other external control parameters.

To treat the nucleation kinetics theoretically for such cases, adequate expressions for
the thermodynamic driving force and the surface tension are required that account for the
contributions caused by the deviation of the supercooled liquid from metastable equilib-
rium. Utilizing the approach developed by de Donder (see, e.g., [5,6]), these deviations may
be expressed via differences of a set of appropriately chosen structural order parameters
from their equilibrium values as anticipated for the first time in [22]. Relaxation processes
result in changes in the structural order parameters with time. As a consequence, the ther-
modynamic driving force and the surface tension, and other basic characteristics of crystal
nucleation, such as the work of critical cluster formation and the steady-state nucleation
rate, as well as the rates of growth, also become time-dependent. The correct description
of the relaxation of the structural order parameters is consequently a prerequisite of a
correct treatment of nucleation and growth in such cases. As shown in the above-cited
paper [21] and in [23] based on the analysis of experimentally observed nucleation rate
data, temporarily, the liquid may even be trapped in this relaxation process in local minima
of the potential energy landscape resulting in a step-wise change in the work of critical
cluster formation and the steady-state nucleation rate (see also [24–27]). Consequently, the
shape of the potential energy landscape and its change with temperature may significantly
affect crystal nucleation.

The above-described scenario of nucleation and growth—the interplay of structural
relaxation and crystallization—is realized if diffusion (or other appropriate kinetic mech-
anisms controlling nucleation and growth) and viscosity (responsible widely for the α–
relaxation process in the liquid) decouple. Such decoupling occurs as a rule at temperatures
Td near to the conventionally defined glass transition temperature, Tg. Below Td, elastic
stresses evolving in nucleation and growth may also significantly affect the crystallization
kinetics. Consequently, a comprehensive theoretical description of crystal nucleation and
growth near and below the glass transition range has to account appropriately for the
effects of deviations of the liquid from the metastable states and of their relaxation on
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the crystal nucleation and growth of crystals in glass-forming liquids. In addition, in this
temperature range (T ≤ Td), the effects caused by simultaneous stress evolution and stress
relaxation on crystal nucleation and growth have to be taken into consideration [23,28–32].

These theoretical concepts have been successfully applied to the interpretation of
experimental data on nucleation as shown, e.g., in [23,33–35] and in another contribution
to the present special issue [36]. They also allow a new approach to the understanding
of hysteresis effects in crystallization in cooling and heating as partly discussed already
in [37]. In the latter mentioned paper, we drew attention to the dependence of the steady-
state nucleation rate on the interplay of relaxation and crystal nucleation in cooling and
heating. Here, this analysis is extended to the description of the effect of deviations of
the glass-forming liquid from metastable equilibrium and its relaxation on the kinetics of
overall crystallization in cooling and heating, going considerably beyond the analysis of
the effects of the interplay of relaxation and crystallization on the overall crystallization
under isothermal conditions performed in [34,35].

This paper is structured as follows. In Section 2, the basic theoretical relations em-
ployed for the analysis are summarized. The JMAK equation is briefly developed and
the expressions for the thermodynamic and kinetic parameters utilized in the numerical
computations are summarized. Next, possible generalizations of the theoretical treatment
are listed that need to be accounted for in future studies. Some of these are discussed in
detail in the appendices. The results of the numerical solutions of the JMAK equation are
given in Section 3. A theoretical analysis of the obtained results is outlined in Section 4. It
includes the derivation of analytical estimates of the crystallization peak temperatures in
heating and cooling based on the JMAK formalism. A summary of the results and their
discussion given in Section 5 completes the paper.

2. Basic Equations
2.1. Johnson–Mehl–Avrami–Kolmogorov (JMAK) Equation

The degree of overall crystallization, αn(t), at time, t, is defined as the ratio

αn(t) =
Vn(t)

V
, (1)

where Vn(t) is the volume crystallized at time t, and V is the initial volume of the melt
at time t = 0. The Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation describes the
evolution of αn(t) with time. The origin of this relation can be described as follows.

In the interval of time (t′, t′ + dt′) the number

dN(t′) =
(
V −Vn(t′)

)
J(t′)dt′ (2)

of clusters is formed, which may grow up to macroscopic dimensions. Here, J(t′) is
the nucleation rate per unit volume at time t′. The clusters are assumed to grow in n
independent spatial directions with a linear growth rate ui(t′′), which may also depend,
in general, on time. The contribution to the volume of the new phase, v(N = 1, t ≥ t′),
originating from one cluster (N = 1) formed at the moment t = t′ at later times t > t′ is
then given by

v(N = 1, t ≥ t′) = ωn

t∫
t′

u1(t′′)dt′′ ×
t∫

t′

u2(t′′)dt′′ × . . .×
t∫

t′

un(t′′)dt′′ (3)

being equal to

v(N = 1, t ≥ t′) = ωn

 t∫
t′

u(t′′)dt′′

n

(4)

for growth with the same rate, u, in n independent perpendicular directions.
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In any case, one has to substitute here the volume of the new phase, which evolves due
to the growth from one supercritical nucleus formed at t = t′. This condition specifies the
value of the shape factor, ωn, correlating growth rates, and volume of the newly evolving
phase. For three-dimensional growth in a radial direction, we obtain as a special case

v(N = 1, t ≥ t′) = ωn

 t∫
t′

uR(t′′)dt′′

3

, uR(t) =
dR(t)

dt
, ωn =

4π

3
, (5)

i.e., here, v(N = 1, t ≥ t′) is equal to v(N = 1, t ≥ t′) = (4π/3)R3(t). Here, and in most
other applications, it is commonly assumed that the initial size of the clusters is small as
compared with the characteristic sizes at time t, i.e., it is supposed that R3(t)� R3(t′) ∼=
R3

c (t′), where Rc(t′) is the current value of the critical cluster radius.
The total amount of the new phase formed by the dN(t′) clusters nucleating in the

interval (t′, t′ + dt′) is given, consequently, by

dVn(t′) = dN(t′)v(N = 1, t ≥ t′) = (V −Vn(t′))J(t′)dt′v(N = 1, t ≥ t′) (6)

or by

dVn(t′) = ωn J(t′)
(
V −Vn(t′)

)
dt′

 t∫
t′

u(t′′)dt′′

n

. (7)

This equation can be rewritten in the form

dαn(t′) = (1− αn(t′))dYn(t′), (8)

dYn(t′) = ωn J(t′)dt′

 t∫
t′

v(t′′)dt′′

n

. (9)

Since clusters are formed in the time interval (0, t), we have to take—in order to determine
the fraction of the crystalline phase at time t—the sum (integral in the range (0, t)) resulting
in Equations (10) and (11),

αn(t) = 1− exp[−Yn(t)], (10)

Yn(t) = ωn

t∫
0

J(t′)dt′

 t∫
t′

u(t′′)dt′′

n

. (11)

In this integration procedure, it is assumed that both αn and Yn are equal to zero at t = 0.
These general relations can be further specified considering particular nucleation and

growth modes. We briefly analyze here two special cases employed later in the theoretical
analysis of overall crystallization in cooling and heating. One of the simplest cases we are
encountered with is if nucleation and growth rates are considered as constant, i.e.,

J(t) = J = constant, u(t) = u = constant. (12)

Under such a condition, the extended volume becomes equal to

Yn(t) = ωn Jun
t∫

0

(t− t′)ndt′, (13)
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leading after integration to the well-known classical result

αn(t) = 1− exp
(
− ωn

(n + 1)
Juntn+1

)
. (14)

A derivation of Equation (14) with respect to time gives the rate of overall crystallization in
the form

dαn(t)
dt

= kn(n + 1)tn exp
(
−kntn+1

)
with kn =

ωn

(n + 1)
Jun. (15)

The parameter kn is the so-called Avrami kinetic coefficient. Employing this notation,
Equation (14) obtains the form

αn(t) = 1− exp
(
−kntn+1

)
. (16)

This relation may be utilized to replace time in Equation (15) via the relations

exp
(
−kntn+1

)
= 1− α, t =

1

k1/n+1
n

[− ln(1− αn)]
1/n+1. (17)

Equation (15) can be rewritten as

dαn(t)
dt

= (n + 1)k1/(n+1)
n f (αn), (18)

f (αn) = (1− αn)[− ln(1− αn)]
n/(n+1). (19)

The rate of change in the degree of overall crystallization, dαn(t)/dt, is equal to zero at both
limits αn = 0 and αn = 1; it has a maximum (for n > 1) at a definite value of αn given by
d(dα/dt)/dt = 0, and it corresponds to the point of inflexion in the αn(t)-curves.

As a second special case, we consider again nucleation–growth under isothermal
conditions, so that the growth rate can be taken as constant. However, nucleation is
assumed now to proceed exclusively at a number Nhet of heterogeneous nucleation cores.
The nucleation rate at time t′ can then be expressed as

dN(t′) = Jhet(t′)dt′ = Nhet(t)J0
hetdt′ =

(
Nhet(0)− N(t′)

)
J0
hetdt′. (20)

Here, J0
het is a combination of kinetic and thermodynamic parameters describing the con-

sidered heterogeneous nucleation process. It is widely independent of time. The solution
of this equation is

(Nhet(0)− N(t′))
Nhet(0)

= exp
(
−J0

hett
′
)

, (21)

resulting in
Jhet(t′) = Jhet(0) exp

(
−J0

hett
′
)

. (22)

In the limiting case of large values of J0
het, we may express the nucleation rate in the form

Jhet(t′) = Nhet(0)δ(t′), (23)

where δ(t) is the Dirac delta function. A substitution into Equation (11) yields

Yn(t) = ωnNhet(0)

 t∫
0

u(t′′)dt′′

n

. (24)
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and for constant values of the growth rate

αn(t) = 1− exp(−ωnunNhet(0)tn). (25)

This equation can be rewritten in the form of Equation (16) again, but with the replacements

kn = ωnunNhet(0), n + 1→ n. (26)

Equations (17)–(19) retain their validity once these replacements are made there.
Note that, accounting for the interplay of relaxation and crystal nucleation and growth,

even at isothermal conditions, the general relations, Equations (10), (11), and (24), have
to be employed, as a rule, for the description of overall crystallization since the nucle-
ation and growth rates may vary with time due to relaxation. The simple relations,
Equations (14) and (25) as described above, are not applicable any more (see also [34–36]).

2.2. Description of the Rates of Nucleation and Growth and the Kinetics of Relaxation

In order to utilize the JMAK equation, appropriate expressions for the rates of nu-
cleation and growth have to be known. In their specification, we employ the methods
discussed in a comprehensive form in [21,37]. Here we reproduce the main results directly
required for the computations referring to cited papers for details.

The kinetics of nucleation, we describe by the steady-state nucleation rate, J, in the
conventional form

J = J0 exp
(
− Wc

kBT

)
, Wc =

1
3

σAc, Ac = 4πR2
c , Rc =

2σ

∆g
. (27)

Here, Wc is the work of critical cluster formation, σ the surface tension of crystallites of
critical size, Ac and Rc are the surface area and the radius of the critical cluster modeled to
be of spherical shape, respectively, ∆g is the change in the bulk contributions to the Gibbs
free energy per unit volume of the crystal phase when the metastable liquid is transformed
into the crystal, kB is the Boltzmann constant, and T the absolute temperature.

Deviations in the state of the liquid from metastable equilibrium are described by a
structural order parameter, ξ. Its equilibrium values in the corresponding metastable state
are denoted by ξe. Deviations from equilibrium are also expressed by the reduced variable

ξ̃ =
(ξ − ξe)

ξe
. (28)

Utilizing a simple lattice-hole model for the description of the configurational contributions
to the thermodynamic quantities, the equilibrium value of the structural order parameter is
given by

(1− ξe)2

ln ξe
= − 1

χ

(
T

Tm

)
. (29)

Here, Tm is the melting temperature, and the parameter χ we set to equal χ = 3.32 again.
The dependence of ξe on the reduced temperature, θ = T/Tm, is shown in Figure 1a; the
method of determination of the temperature dependence of ξ (typically of the form as
shown in Figure 1b) is discussed below.

Accounting for deviations from metastable equilibrium, the work of critical cluster
formation can be written in this case as

Wc(T, p; ξ) = ∆G(nc) =
16π

3
σ3(T, p; ξ)

(c∆µ(T, p; ξ))2 , c =
1
d3

0
, (30)
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where d0 is a characteristic size parameter determined by the particle number density,
c. The dependence of the surface tension and the thermodynamic driving force of the
crystallization process is given by

∆µ(T, pm; ξ) ∼= ∆hm

(
1− T

Tm

)[
1−

∆cp

2∆sm

(
1− T

Tm

)]
+

kBTξe

2
ξ̃2, (31)

σ(T, pm, ξ)

σ(Tm, pm)
=

T
Tm

[
1−

∆cp

∆sm

(
1− T

Tm

)
−
(

kBξe ln ξe

∆sm

)
ξ̃

]
. (32)

Here, ∆sm and ∆hm = Tm∆sm are the melting entropy and melting enthalpy, respectively,
per particle of the crystal at the temperature, Tm, and the pressure, pm, corresponding to
the melting point of the substance; ∆cp is the difference in the specific heat per particle in
the liquid and the crystalline phases, respectively, and also at (Tm, pm). The pressure we
take as being constant and equal to the atmospheric pressure.

Figure 1. Structural order parameter, ξ, and its equilibrium value, ξe, in terms of dependence on
reduced temperature, θ = T/Tm. (a) Dependence of the equilibrium value of the structural order
parameter for the whole range of temperatures between melting or liquidus temperature, Tm, and
absolute zero as obtained in the framework of the lattice model employed here. (b) Typical behavior of
the structural order parameter, ξ, in dependence on temperature in the vicinity of the glass transition
range if the liquid is cooled down and heated with the same constant rate of change in temperature.
The dependencies ξ(T) are shown by full curves if the system is cooled down (blue curve) and heated
(red curve) with a constant rate (here taken as equal to (dT/dt) = 1.3 K/s or (dθ/dt) = 10−3s−1); the
dashed curve shows the equilibrium value of this parameter in the given range of temperature. The
figure is taken from [21] (Creative Commons Attribution License).

With Equations (28), (31), and (32), the work of critical cluster formation can be written
generally as

Wc(T, pm; ξ) = Wc(T, pm; ξe)Θ, (33)

Θ =

1−

(
kBξe ln ξe

∆sm

)
ξ̃[

1−
∆cp

∆sm

(
1− T

Tm

)]


3

1 +

(
kBTξe

2

)
ξ̃2

∆hm

(
1− T

Tm

)[
1−

∆cp

2∆sm

(
1− T

Tm

)]


2 , ξ̃ =
(ξ − ξe)

ξe
. (34)

The change in the work of critical cluster formation caused by deviations in the state of
the liquid from metastable equilibrium is described by the factor Θ being a function of the
structural order parameter, ξ, and its equilibrium value, ξe (see Figure 1). It is equal to one
for ξ = ξe.
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Finally, J0 reflects the kinetic mechanism of cluster formation and growth; in the
present analysis, it is chosen as

J0 = c
√

σ

kBT

(
2D
d0

)
. (35)

Here, D is the diffusion coefficient governing the aggregation kinetics. We suppose that
the kinetic mechanism of aggregation is the same for both nucleation and growth and is
governed by a diffusion coefficient, D, which can be written, in general, as

D = D0 exp
(
− ED

kBT

)
. (36)

The activation energy for diffusion, ED = ED(T), depends on temperature, pres-
sure, and composition. For the macroscopic linear growth rate, u, we use the commonly
employed relation

u =
D

4d0

[
1− exp

(
− ∆µ

kBT

)]
(37)

setting ωn = 1.
In the numerical computations, we express the diffusion coefficient for the description

of both nucleation and crystal growth as

D =



(
d2

0
τ0

)
exp

(
−7.5

Tg
T − T0

)
for T ≥ Td

(
d2

0
τ0

)
exp

(
−7.5

Tg
T

( Td
Td − T0

))
for T ≤ Td

(38)

with
τ0 =

h
kBT

, T0 =
Tm

2
. (39)

Here, h is Planck’s constant and Td is the temperature of the decoupling of diffusion and
viscosity (relaxation), i.e., the temperature at which the Stokes–Einstein–Eyring equation
breaks down. We set it equal to Td = 1.2Tg, where Tg is the glass transition temperature
according to the definition by Tammann (see, e.g., [5,6,38]) correlating it with a Newtonian
viscosity, η, equal to η(T) ∼= 1012 Pa s at T = Tg. In the absence of deviations of the liquid
from metastable equilibrium, the dependence of the steady-state nucleation and growth
rates on temperature have a form in this model approach as illustrated in Figure 2.

The change in the structural order parameter with time is given by

dξ

dt
= − 1

τR(T, p, ξ)
(ξ − ξe). (40)

In the computations, we employ the relation

τR = τ0 exp
(

7.5
Tg

T − T0

)
. (41)

Below Td, more complex relaxation laws may have to be utilized for a quantitatively correct
description of relaxation [5,6,22,39,40]. As a rule, they enhance the effective relaxation times.
The basic qualitative conclusions of our analysis are not affected by the approximation
employed in our study.

Assuming a certain (constant) rate of change in temperature,

q =
dT
dt

, (42)
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with different signs of the parameter q (q < 0 for cooling and q > 0 for heating processes);
Equation (40) then takes the form

dξ

dT
= − 1

qτR
(ξ − ξe). (43)

Solving this equation, we can determine ξ(T) for any desired temperature below the
melting temperature, Tm, of the substance under consideration.

Figure 2. Dependence of the steady-state nucleation rate, J, and the growth rate, u, on temperature in
reduced coordinates, θ = T/Tm, for the model employed here in the computations in the limiting
case that the liquid is always in a metastable state.

The typical course of the ξ(T)–curves in cooling and heating is shown in Figure 1b.
Note that ln ξe < 0 always holds (cf. Equation (29) and Figure 1a) and, while ξ̃ is ap-
proaching zero in the course of an isothermal relaxation process, the parameter Θ in
Equations (33) and (34) tends to one. Deviations in the state of the liquid from metastable
equilibrium may lead to both an increase (for ξ > ξe) and a decrease (for ξ < ξe) in the
surface tension. In contrast, deviations from metastable equilibrium always result in an
increase in the thermodynamic driving force. It follows that, in isothermal relaxation, Θ
may approach the final value from above (for ξ > ξe leading to Θ ≥ 1) or from below (for
ξ < ξe leading to Θ ≤ 1).

2.3. Possible Extensions

For a quantitatively more correct analysis, more general relations may have to be used.
In particular, (i) in cooling and heating, both thermal and athermal nucleation have to be
taken into consideration having the following meaning. In classical nucleation theory, the
term nucleation rate is usually identified with the rate of the formation of critical clusters.
For constant external and internal conditions, this rate is at the same time equal to the
change in the total number of clusters exceeding the critical size, jc.

However, if the state of the system is changed in the course of the transformation, either
due to a variation in the external conditions or internal processes (decrease in supersaturation),
then the rate of the formation of critical clusters is not equal to the rate of change in the total
number of clusters exceeding the critical size. Indeed, if we introduce the notations

N(j ≥ jc, t) =
∞∫

jc

N(j, t) dj, (44)
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where N(j ≥ jc, t) is the number of clusters with sizes j ≥ jc at time t in the system, and

J(j ≥ jc, t) =
dN(t)

dt
(45)

for their rate of formation, then

J =
∂

∂t

∞∫
jc

N(j, t) dj (46)

holds.
With the continuity equation connecting flux in cluster size space and the number of

supercritical clusters (c.f. [5,6]), for time-independent supersaturations (jc = constant), one
obtains

J(j ≥ jc, t) = J(jc, t), (47)

while for time-dependent situations

J(j ≥ jc, t) = J(jc, t)− N(jc, t)
∂jc
∂t

(48)

is obtained. The first term in Equation (48) describes the stochastic process of the formation
of supercritical clusters connected with thermal fluctuations in the system. The second term
accounts for the process of athermal nucleation, which is a consequence of the change in the
critical cluster size caused here by variations in temperature. In cooling, the critical cluster
size decreases with decreasing temperature, giving an additional positive contribution to
the total number of clusters; in heating, we have the opposite situation.

In order to employ the above equation, we have to specify the values of the critical
cluster size, jc, and the value of the number of critical clusters per unit volume, N(jc, t), at
some given time, t. The latter parameter can be determined via classical nucleation theory.
In order to have an estimate for N(jc, t), we can use the expression for the steady-state
cluster size distribution [5,6]

N(jc, t) =
N(1)

2
exp

(
− Wc

kBT

)
, (49)

where N(1) is the number of monomers per unit volume in the system and Wc the actual
value of the work of critical cluster formation. This approach implies that the change in the
external parameters is not too fast so that steady-state conditions can be established in the
range up to the critical cluster size at each moment of time. Combining the above given
relations and Equations (10) and (11), we obtain

αn(t) = 1− exp(−Yn(t)), (50)

Yn(t) = ωn

t∫
0

{
J(t′)− N(1)

2
exp

(
−Wc(t′)

kBT

)
∂jc(t′)

∂t′

}
dt′

 t∫
t′

u(t′′)dt′′

n

, (51)

or, with Equation (27),

Yn(t) = ωn

t∫
0

{
J(t′)

[
1− N(1)

2J0

∂jc(t′)
∂t′

]}
dt′

 t∫
t′

u(t′′)dt′′

n

. (52)

The account of athermal nucleation leads, consequently, to a change in the prefactor,
J0, in the expression for the steady-state nucleation rate (cf. Equation (27)).
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As a second possible generalization, (ii) time-lag effects in nucleation have to be
accounted for [5,6,34,41–44]. Its incorporation requires an appropriate description of the
approach to steady-state conditions and estimates of the time lag in nucleation, τns. The time
lag in nucleation is the time required to reach steady-state cluster size distributions [5,6,45].
Assuming that initially the liquid consists only of monomers (atoms, molecules), the time
lag in nucleation can be estimated as [5,6,21]

τns =
ω

2

(
kBT
σd2

0

)(
R2

c
DτR

)
τR. (53)

The numerical factor ω varies in the range 1 ≤ ω ≤ 4 depending on the method
employed in the derivation of Equation (53). Above the decoupling temperature, Td, the
product DτR becomes widely independent of temperature since in this range the Stokes–
Einstein–Eyring relation may be employed, below Td it does not. However, considering
cooling and heating, the value of the time lag depends also on prehistory [42,43]; it will be
smaller in general as compared to the estimate given by this relation. Time-lag effects can
for sure be neglected if the characteristic time of change in the temperature, τT , in cooling
and heating is small as compared with the time lag in nucleation, i.e., if the condition

τns � τT =
T

|dT/dt| (54)

holds.
In general, the average time of the formation of the first supercritical nucleus can be

expressed in a good approximation as [41]

〈τ〉 ∼= τns + 〈τ〉ss, 〈τ〉ss =
1

JstV
. (55)

Provided steady-state conditions with respect to nucleation are established, the following
relation,

〈τ〉 = 〈τ〉ss =
1

JstV
, (56)

holds for the time required to form the first supercritical cluster under such conditions.
The condition 〈τ〉 � τR is fulfilled in the temperature range near to the glass transition
temperature and below. In this temperature range, moreover, 〈τ〉 ∼= τns is a good approxi-
mation. The effects of relaxation of the liquid on the overall crystallization can be expected,
theoretically, to occur at T ≤ Tg. They then also affect the overall crystallization kinetics at
higher temperatures.

In a third direction of advancement of the theoretical approach, (iii) the effect of the in-
terplay of elastic stress evolution and stress relaxation on nucleation and growth [5,6,28–32]
in the temperature range near and below the glass transition temperature has to be ac-
counted for. For crystal nucleation in viscous liquids, the effective value of the stress
parameter ε, the elastic energy per particle of the crystal phase, is determined by the in-
terplay of stress evolution (caused by the formation of a crystallite) and stress relaxation
accompanying this process. Assuming, as carried out here, that relaxation is described by
Maxwell’s relaxation law, the effective value of ε for a crystallite of critical size is given by

ε(jc)
ε0
∼=

τR
τns

[
1− exp

(
−τns

τR

)]
. (57)

Here, ε0 is the respective value for crystallization in a Hookean solid. More general
relations accounting for more complex relaxation laws are given in [5,6,28–32]. They lead
to qualitatively similar results. The effect of the interplay of the evolution of elastic stresses
caused by crystal nucleation and relaxation in the description of nucleation is determined
by the ratio τR/τns. It also results in an increase in the surface tension as described in [21].
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The effect of the interplay of stress evolution and relaxation in crystal growth in glass-
forming liquids is described in [46,47]; it is also determined by this ratio of characteristic
timescales, τR/τns.

Further extensions of the approach described above will eventually be required to
account for (iv) the possible dependence of the bulk properties of critical clusters on
supersaturation [37,48], (v) self-consistency corrections of the steady-state nucleation
rate [49], (vi) the possible dependence of the kinetic coefficients on the structural order
parameter [5,6], (vii) a more precise description of the scenario and the kinetics of relaxation
(see e.g., [5,6,21,28,34]), (viii) a more detailed description of the glass-forming melts includ-
ing the extension of the model to several structural order parameters, (ix) the account of
Ostwald’s rule of stages (or Ostwald’s step rule) [50], of secondary nucleation [51] leading
also to modifications of the growth rate as compared to Equation (37), of both bulk and
surface crystallization [10,52], and of the evolution of rigid amorphous fractions [53] on
the overall crystallization process. Another circle of questions is connected with (x) the
problem as to whether a spinodal or a pseudo-spinodal may exist and, consequently, affect
melt crystallization [43,54–57]. The latter question is addressed in detail in Appendix A.

From our point of view, all of these (and possible further) factors are expected to
eventually affect, quantitatively, the results of our analysis but not the general qualita-
tive features of the effect of deviations of the liquid from metastable equilibrium and its
relaxation to this state on overall crystallization as described in the next sections.

3. Results of Numerical Computations

In Figures 3 and 4, we present the results of numerical computations modeling the
evolution of the degree of overall crystallization, αn, for the model considered assuming
steady-state nucleation and growth in three (n = 3) independent directions. In the com-
putations shown in these figures, it is assumed that deviations in the state of the liquid
from metastable equilibrium can be neglected. The steady-state nucleation rate and the
growth rates are then described by a dependence on temperature as shown in Figure 2. In
cooling, the process is started at the melting temperature, and in heating, at sufficiently
low temperatures equal to T = Tm/2. In the initial states, the liquid is considered to be
free of crystalline particles. In Figure 3, the process is shown in terms of dependence on
temperature, while in Figure 4, the same quantities are given as functions of the reduced
temperature, θ = T/Tm. A significant dependence of the shapes of the respective curves on
cooling and heating rates is observed. In particular, the crystallization peak temperatures
(corresponding to d2αn/dt2 = 0 or d2αn/dθ2 = 0) are shifted to lower temperatures with
increasing values of the cooling rate, qc. In contrast, for heating processes, the crystallization
peak temperature is shifted to higher values with increasing heating rates, qh.

For the next step, we again present the results of numerical computations modeling
the evolution of the degree of overall crystallization, αn, for the model considered assuming
steady-state nucleation and growth in three (n = 3) independent directions. However, in
the computations shown in these figures, it is now assumed that deviations in the state
of the liquid from metastable equilibrium have to be accounted for. Deviations of the
thermodynamic driving force and the surface tension caused by deviations from metastable
equilibrium are described in a first approach by Equations (32) and (33). A comparison
with Figures 3 and 4 shows that deviations in the curves occur but they are relatively small.
For comparison, we present them anyway in Appendix B (in Figures A1 and A2).
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Figure 3. Determination of the degree, α3, and the rate, dα3/dt, of overall crystallization in depen-
dence on time, t, in cooling (left side) and heating (right side) for sets of cooling (qc) and heating
(qh) rates as shown in the figures. In the presentation of the results of the numerical computations,
we always express the heating rate in reduced variables as q = d(T/Tm)/dt. Cooling is started at a
temperature equal to T = Tm, while heating is supposed to start at a temperature T = (Tm/2).
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Figure 4. Determination of the degree, α3, and the rate, dα3/dt, of overall crystallization in depen-
dence on temperature, θ = T/Tm, in cooling (left side) and heating (right side) for sets of cooling
(qc) and heating (qh) rates as shown in the figures.
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In addition, we employ here an alternative model: an independent approach for the
determination of the effect of deviations in the thermodynamic driving force and surface
tension caused by deviations from metastable equilibrium as described in detail in [37]. In
this approach, we determine these quantities via the relations

∆g(T, p; ξ) ∼= ∆hm

(
1− T

Tm

)[
1−

∆cp(Tm, pm)

2∆sm

(
1− T

Tm

)
+ Ω∆g ξ̃2

]
(58)

and
σ(T, p, ξ)

σ(Tm, pm)
=

T
Tm

[
1−

∆cp

∆sm

(
1− T

Tm

)
+ Ωσ ξ̃

]
. (59)

Different models are characterized here by different values of the parameters Ω∆g and
Ωσ. The results of computations shown in Figures 5 and 6 are obtained setting Ω∆g = 1
and Ωσ equal to two different values, Ωσ = 1 (Figures 5 and 7) and Ωσ = 10 (Figures 6
and 8), correspondingly. The results obtained in such a way are shown by dashed curves;
the curves shown in Figures 3 and 4 are given for comparison as full curves again. The
dependence of the crystallization peak temperatures on the cooling and heating rates
obtained numerically for the different cases discussed is presented in Figure 9.
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Figure 5. Determination of the degree, α3, and the rate, dα3/dt, of overall crystallization in depen-
dence on time, t, in cooling (left side) and heating (right side) for sets of cooling (qc) and heating
(qh) rates as shown in the figures. In contrast to Figure 3, here the effect of deviations in the state of
the liquid from metastable equilibrium is accounted for. The computations are performed utilizing
Equations (58) and (59) with Ω∆g = 1 and Ωσ = 1. The results obtained in such a way are shown by
dashed curves; the curves shown in Figures 3 and 4 are given for comparison as full curves again.
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Figure 6. Determination of the degree, α3, and the rate, dα3/dt, of overall crystallization in dependence
on temperature, θ = T/Tm, in cooling (left side) and heating (right side) for sets of cooling (qc) and
heating (qh) rates as shown in the figures. In contrast to Figure 4, here the effect of deviations in the state
of the liquid from metastable equilibrium is accounted for. The computations are performed utilizing
Equations (58) and (59) with Ω∆g = 1 and Ωσ = 10. The results obtained in such a way are shown by
dashed curves; the curves shown in Figures 3 and 4 are given for comparison as full curves again.

The main conclusions can be summarized as follows: (i) Deviations in the liquid from
metastable equilibrium may significantly affect the overall course of the crystallization
kinetics. (ii) The influence of these deviations is more important for heating as compared
to cooling processes. (iii) Both in cooling and heating, the overall crystallization process
may not be completed for sufficiently high cooling and heating rates in agreement with
the experiment. This effect determines to a large degree the glass-forming ability of a
given substance as discussed in connection with the kinetic criteria of glass formation in
terms of the TTT diagrams [5,6,58] utilizing the JMAK equations. It is also found in the
computations that the critical heating rate is about one order of magnitude higher than
the critical cooling rate, as observed commonly in experiments [59–62]. (iv) In heating,
deviations from metastable equilibrium originally inhibit nucleation (as far as the condition
ξ̃ ≥ 0 holds). This effect occurs for relatively low temperatures (cf. Figure 1). For higher
temperatures (at ξ̃ ≤ 0), we have the opposite situation. Deviations from equilibrium
accelerate nucleation. The mentioned effects increase with an increase in the value of the
parameter Ωσ determining the magnitude of changes in the surface tension caused by
deviations from metastable equilibrium. (v) The nucleation peak temperatures depend
significantly on the cooling and heating rates. The peak temperatures in cooling are weakly
affected by the degree of deviation of the liquid from equilibrium; in heating, the effect
is large. These dependencies and the origin of the mentioned differences are studied
theoretically in detail in the subsequent section (Section 4).
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Figure 7. Determination of the degree, α3, and the rate, dα3/dt, of overall crystallization in dependence
on temperature, θ = T/Tm, in cooling (left side) and heating (right side) for sets of cooling (qc) and
heating (qh) rates as shown in the figures. In contrast to Figure 4, here the effect of deviations in the state
of the liquid from metastable equilibrium is accounted for. The computations are performed utilizing
Equations (58) and (59) with Ω∆g = 1 and Ωσ = 1. The results obtained in such a way are shown by
dashed curves; the curves shown in Figures 3 and 4 are given for comparison as full curves again.
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Figure 8. Determination of the degree, α3, and the rate, dα3/dt, of overall crystallization in depen-
dence on time, t, in cooling (left side) and heating (right side) for sets of cooling (qc) and heating (qh)
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rates as shown in the figures. In contrast to Figure 3, here the effect of deviations in the state of
the liquid from metastable equilibrium is accounted for. The computations are performed utilizing
Equations (58) and (59) with Ω∆g = 1 and Ωσ = 10. The results obtained in such a way are shown by
dashed curves; the curves shown in Figures 3 and 4 are given for comparison as full curves again.
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Figure 9. Crystallization peak temperatures, θp = Tp/Tm, in dependence on cooling (blue) and
heating (red) rates as obtained from the numerical computations. The results are given for nucleation
and growth in metastable liquids (presented in Figures 3 and 4) and accounting for deviations from
metastability in the form as shown in Figures 5 and 7 (Ωσ = 1), respectively, and Figures 6 and 8
(Ωσ = 10).

4. Theoretical Analysis
4.1. Some General Considerations

In the preceding section, the results of numerical computations are presented showing
the change in the degree of crystallization of a liquid in cooling and heating modeled in
terms of the JMAK equation, Equations (10) and (11),

αn(t) = 1− exp(−Yn(t)), Yn(t) = ωn

t∫
0

J(t′)dt′

 t∫
t′

u(t′′)dt′′

n

. (60)

The main attention is devoted, hereby, to the analysis of the problem with regards to
under which conditions and to what extent is crystallization affected by the relaxation of
the glass-forming liquid to the respective metastable equilibrium state. As discussed in
detail in previous papers [21,23,37,43], it is determined by the ratio of the average time of
formation of the first supercritical nucleus, 〈τ〉, and the relaxation time, τR, being equal to
the timescale in the approach to thermodynamic equilibrium. Deviations from metastable
equilibrium and relaxation processes to it may affect crystal nucleation and growth if the
condition 〈τ〉 � τR is fulfilled. In cooling and heating, the interplay of relaxation and
nucleation and growth significantly affects the whole course of overall crystallization;
in particular, the dependence of the crystallization peak temperatures on cooling and
heating rates. These dependencies are shown in Figure 9 as obtained via the numerical
computations. Section 4.2 is devoted to an analytical description of these results.
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4.2. Cold Crystallization Peak Temperature in Heating as a Function of the Heating Rate:
Homogeneous Nucleation

Solving the above given relations numerically, we can determine, as a special case,
the temperatures of the crystallization peaks, Tp, widely discussed in the analysis of the
experimental data in cooling and heating (e.g., [1–3,17–20,63,64]). In the present section,
we derive simple relations for the dependence of the cold crystallization peak temperature
on the heating rate, and, similarly, for the crystallization peak temperature in cooling
for the case of heterogeneous nucleation, extending the analysis performed in [63]. In
this procedure, certain approximations are employed connected with the locations of the
maxima of nucleation and growth rates in terms of dependence on temperature.

Indeed, from a theoretical point of view, it can be shown that intensive homogeneous
nucleation occurs in a relatively small range, ∆T, of temperatures (see Figure 10), with a
maximum near to the glass transition temperature, Tg, defined in the classical form pro-
posed by Tammann [38] as related to a viscosity of 1012 Pa s. This maximum is caused by the
interplay of thermodynamic and kinetic factors dominating the crystal nucleation process.
The kinetic factor is correlated with the diffusion coefficients significantly decreasing with
decreasing temperature. The maximum of the growth rates is located, as a rule, at much
higher temperatures [65–67].
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Figure 10. Normalized steady-state nucleation rate, Jss/J(max)
ss , and normalized crystal growth rate,

u/umax, in dependence on reduced temperature, T/Tm. Here J(max)
ss is the maximum nucleation

rate and umax is the maximum growth rate obtained via experiment; Tm is the melting or liquidus
temperature. The blue curve (1) shows the theoretical result when the kinetic term in the expression
for the nucleation rate is determined via appropriate diffusion coefficients; the green curve (2) is
drawn under the assumption of validity of the Stokes–Einstein–Eyring equation, allowing one to
replace the diffusion coefficient with viscosity. Its wide coincidence with experimental data is reached
by employing appropriate expressions for the curvature dependence of the surface tension (for
details, see [43]). The reduced thermodynamic driving force, ∆g(T)/∆g(TK), is also shown; it has a
maximum at the Kauzmann temperature, TK [68]. It is evident that crystallization occurs only in a

relatively small temperature range. Typically, the maximum of the growth rate, T(growth)
max , is located at

temperatures much higher than the maximum of the steady-state nucleation nucleation rate [65–67],
as shown here in the figure. The figure is taken from [56] (Creative Commons Attribution License).



Entropy 2023, 25, 1485 19 of 35

For this reason, in experiments, Tammann’s development method (see e.g., [5,6,59–62,65])
is commonly employed in the analysis of crystal nucleation. The formation of crystal nuclei
is stimulated by choosing some well-defined nucleation temperatures; then, in order to
detect these nuclei, the temperature is switched to higher values to allow them to grow
to detectable experimental sizes over reasonable experimental timescales. However, for
heterogeneous nucleation, the maximum of the nucleation rate may be located at higher
temperatures compared to the maximum of the growth rate quite near to the melting
temperature [66,67]. These differences in the locations of the maxima of nucleation and
growth rates supply us, as will be shown, with the key to understanding the differences in
the overall crystallization behavior in cooling and heating observed experimentally and
reflected also in the numerical computations.

Considering first crystallization in heating with a constant rate, q = dT/dt, Equa-
tions (60) may be reformulated as

αn(T) = 1− exp[−Yn(T)], Yn(T) =
ωn

qn+1

T∫
0

J(T′)dT′

 T∫
T′

u(T′′)dT′′

n

. (61)

We can then approximately describe the number of supercritical crystallites, N, formed via
homogeneous nucleation in heating, by the relation

N(q) =
t∫

0

J(t′)dt′ ∼=
1
q

J(T(nucl)
max )∆T(nucl). (62)

Here, T(nucl)
max is the temperature corresponding to the maximum of the steady-state nucle-

ation rate, and ∆T(nucl) the temperature range, where nucleation effectively occurs. It can
be determined by

∆T(nucl) ∼=
Tm∫
0

J(T)

J(T(nucl)
max )

dT. (63)

Increasing the heating rate, consequently, results in a decrease in the number of supercritical
clusters formed in a given heating run.

Utilizing these relations, Equation (61) can be reformulated as

αn(T) = 1− exp[−Yn(T)], Yn(T) =
ωn

qn+1 J(T(nucl)
max )∆T(nucl)

 T∫
T(nucl)

max

u(T′′)dT′′


n

. (64)

Accounting for the mathematical identity

b∫
a

y(x)dx = y(〈x〉)(b− a), a ≤ 〈x〉 ≤ b, (65)

the second term in this relation can be rewritten as

Yn(T) =
ωn

qn+1 J(T(nucl)
max )∆T(nucl)

(
u(〈T〉)

(
T − T(nucl)

max

))n
. (66)

Here, 〈T〉 obeys the condition Tnucl
max ≤ 〈T〉 ≤ T. Setting 〈T〉 in u(〈T〉) approximately equal

to 〈T〉 = T(nucl)
max + (1/2)(T − T(nucl)

max ), we obtain in this way a simple first estimate for the
dependence of the change in the overall crystallization on temperature. However, here we
concentrate the attention on one particular feature of the αn(T)–curves, the dependence of
the crystallization peak temperature, Tp, on the heating rate, q.
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The cold crystallization peak in heating corresponds to the maximum of the derivatives,
(dαn/dT), of the overall crystallization curves or, equivalently, the inflexion point of the
αn(T)–curves. It is determined by (d2αn(T)/dT2) = 0. Utilizing Equation (64), we obtain
as a consequence (

dYn(T)
dT

)2

− d
dT

(
dYn(T)

dT

)
= 0. (67)

This is the most general relation for the determination of the crystallization peak temper-
ature. However, its application leads to quite complex expressions. On the other hand,
Equation (67) implies that

Yn(Tp, q) = constant (68)

is fulfilled.
The latter condition is realized if

Ỹn(Tp, q) =
1

q(n+1)

 Tp∫
T(nucl)

max

u(T)dT


n

= constant. (69)

Taking the differential of Ỹn(Tp, q), we obtain

dỸn(Tp, q)
dTp

dTp +
dỸn(Tp, q)

dq
dq = 0 (70)

and, computing the derivatives,

dTp

dq
=

1
q

(n + 1
n

)
1

u(Tp)

Tp∫
T(nucl)

max

u(T)dT

. (71)

Employing Equation (65), we may rewrite this relation as

dTp

dq
=

1
q

((
n + 1

n

)
u(〈T〉)
u(Tp)

(
Tp − T(nucl)

max

))
. (72)

Here, 〈T〉 obeys the condition Tnucl
max ≤ 〈T〉 ≤ Tp. Setting 〈T〉 in u(〈T〉) approximately equal

to 〈T〉 = T(nucl)
max + (1/2)(Tp − T(nucl)

max ), we obtain a simple first estimate for the dependence
of the change in the peak temperature in overall crystallization. In any of these relations, the
crystallization peak temperature increases with increasing heating rate and is determined
widely by the dependence of the growth rate on temperature and, in particular, by the
value of the activation energy for diffusion, ED (cf. Equations (36) and (37)).

For q → 0, Equation (69) predicts Tp = T(nucl)
max , and from Equations (71) and (72),

we arrive at the dependence (∂Tp/∂ ln q) ∼= 0 in this limit. Both limiting conditions are
fulfilled in the dependence of Tp on heating rate obtained numerically and shown in
Figure 9. Accounting for deviations from metastability, then, in particular, the maxima
of the nucleation rates also become dependent on the heating rate. Qualitatively, it can
be stated that the maxima of the nucleation rate are shifted to higher values, and for this
reason, the crystallization peak temperatures are also located at higher temperatures under
the same heating rates.

An alternative description of the dependence of the crystallization peak temperature,
Tp, on the rate of change in temperature can be obtained in the following way. For that
purpose, we note that Equation (64) can be rewritten (for T = Tp) as

αn(Tp) = 1− exp[−Yn(Tp)], (73)
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Yn(Tp) =
ωn

qn+1 J(T(nucl)
max )∆T(nucl)

(
u
(

T(growth)
max

))n

 Tp∫
T(nucl)

max

u(T)

u
(

T(growth)
max

)dT


n

. (74)

Taking the nth root of both sides of the second of these equations, we generally obtain

Tp∫
T(nucl)

max

u(T)

u
(

T(growth)
max

)dT = Aq
n+1

n (75)

with

A =

(
Yn(Tp)

ωn J(T(nucl)
max )∆T(nucl)

)1/n
1

u
(

T(growth)
max

) > 0. (76)

Computing the derivative with respect to the heating rate q and accounting for the depen-
dence Tp = Tp(q) results in

dTp

dq
= A

(
n + 1

n

)
q1/n

u
(

T(growth)
max

)
u(Tp)

 (77)

or
dTp

dq
=

(
n + 1

n

)(
qYn(Tp)

ωn J(T(nucl)
max )∆T(nucl)

)1/n
1

u
(
Tp
) , (78)

respectively, (cf. Equation (62)),

dTp

dq
=

n + 1
n

(
Yn(Tp)

ωnN(q)

)1/n 1
u
(
Tp
) . (79)

In the analysis, it was assumed that Yn depends only slightly on Tp as also performed in
the derivation of Equation (72).

Equations (78) and (79) supply us with a straightforward description of the depen-
dence of the crystallization peak temperature on heating rate and the main factors de-
termining it, and the total number of supercritical clusters formed and their growth rate.
However, one has to take into account in the evaluation of this relation that Tp = Tp(q),
respectively, q = q(Tp) holds, and N(q) is also not known in advance. In addition, in line
with Equations (36) and (37), the growth rate is a complex function of temperature contain-
ing two exponential terms. Consequently, an analytical determination of the dependence
Tp = Tp(q) by this relation is, in general, not possible without further detailed considerations.

In the limit of low temperatures, when the growth rate can be described by u ∼= D/4d0,
Equation (78) can be approximated by

dTp

dq
=

(
n + 1

n

)(
qYn(Tp)

ωn J(T(nucl)
max )∆T(nucl)

)1/n
4d0

D
(
Tp
) . (80)

In this limit, the dependence of the crystallization peak temperature on the heating rate is
widely determined by the diffusion coefficient, Equation (36), and the activation energy for
diffusion, ED. However, even for this case, an integration of this equation or the equivalent
to it relation,

Tp∫
T(nucl)

max

exp
(
− ED

kBT

)
dT = C

q∫
0

q1/ndq, (81)
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C =

(
n + 1

n

)(
Yn(Tp)

ωn J(T(nucl)
max )∆T(nucl)

)1/n
4d0

D0
(
Tp
) ,

in the limits from (T(nucl)
max , Tp), respectively, (0, q) seems to be possible only numerically.

With the approximation

Tp∫
T(nucl)

max

exp
(
− ED

kBT

)
dT ∼= exp

(
− ED

kBTd

)(
Tp − T(nucl)

max

)
(82)

we obtain an analytical relation for the dependence Tp = Tp(q) of the form,

Tp ∼= T(nucl)
max +

3
4

Cq4/3 exp
(

ED
kBTd

)
, (83)

being in, at least, qualitatively good agreement with the respective curve for overall crystal-
lization in a metastable liquid given in Figure 9. The account of the effects of thermodynamic
factors on the growth rate may lead to significant variations in the respective dependencies
as is evident from the curves for the overall crystallization of melts not being in metastable
equilibrium as also given in the figure mentioned.

Note also that in [63,64] it was shown experimentally that at sufficiently high heating
rates the crystallization peak temperature may become independent of the heating rate after
an initial increase; instead, as shown here in Figure 9, a plateau is reached. Such behavior
obviously requires the incorporation of additional factors such as, eventually, athermal
nucleation into the description via the JMAK equation. This problem will be analyzed in
detail in a future study.

4.3. Crystallization Peak Temperature in Cooling as a Function of the Cooling Rate:
Heterogeneous Nucleation

Considering homogeneous nucleation in cooling starting at the melting temperature,
Tm, the situation is quite different when compared to heating. Perceptible nucleation oc-
curs only at low temperatures, and the clusters formed in this range already cannot grow
significantly in further cooling. However, for heterogeneous nucleation, the situation is
quite different [66,67]. Here, for cooling, we can have a scenario that is quite similar to
that discussed for homogeneous nucleation in heating. Indeed, assuming that all heteroge-
neous nucleation sites become active immediately at the beginning of the cooling process,
Equations (23) and (60) result in

αn(t) = 1− exp(−Yn(t)), Yn(t) = ωnNhet(0)

 t∫
0

u(t′′)dt′′

n

. (84)

With
T = Tm − |q|t, (85)

we obtain

αn(T) = 1− exp(−Yn(T)), Yn(T) = ωn
Nhet(0)
|q|n

 Tm∫
T

u(T′)dT′

n

. (86)
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The analysis of these relations can now be performed practically in an identical way
as performed in the previous section for overall crystallization in heating. Instead of
Equation (69), we can now utilize the relation

Ỹn =
1
|q|n

 Tm∫
Tp

u(T′)dT′


n

= constant. (87)

Similarly to Equations (70)–(72), we arrive at

dTp

d|q| = −
n
|q|

1
u(Tp)

Tm∫
Tp

u(T)dT = − n
|q|

u(〈T〉)
u(Tp)

(
Tm − Tp

)
. (88)

Here, 〈T〉 obeys the condition Tp ≤ 〈T〉 ≤ Tm. For |q| → 0, we have Tp = Tm and
dTp/d ln |q| = 0 again. For zero cooling rates, the peak temperature should be located at
T = Tm in the present case. This necessary condition of the validity of the approach is,
consequently, fulfilled again.

Similarly to Equations (75)–(76), we may also write

Tm∫
Tp

u(T)dT = |q|
(

Yn(Tp)

ωnNhet(0)

)1/n

, (89)

resulting, in comparison to Equation (79), in

dTp

d|q| = −
(

Yn(Tp)

ωnNhet(0)

)1/n 1
u(Tp)

. (90)

In the computations, Yn(Tp) ∼= constant was assumed again. The crystallization peak
temperature decreases with increasing cooling rate. The dependence Tp = Tp(|q|) is
determined widely by the number of supercritical crystallites formed by heterogeneous
nucleation and the dependence of their growth rate on temperature. Equation (90) supplies
us in this way with the possibility to estimate the number of heterogeneously formed
supercritical nuclei in the system under consideration if Tp = Tp(|q|) is experimentally
determined. Note also that in cooling under the conditions considered, the growth rate
is determined not only by the activation energy for diffusion but also by thermodynamic
factors. In this way, not just one exponential term but more than one determine the
dependence Tp = Tp(|q|).

5. Summary of Results and Discussion

The results of the present analysis can be summarized as follows: (i) Relations in
the form of Equation (14) and their consequences, such as in Equations (15)–(19), are not
applicable any more to the description of the overall crystallization kinetics if relaxation
processes of the glass-forming liquid to the respective metastable equilibrium state have to
be accounted for. The analysis has to be performed based on the general relations given by
Equations (10) and (11). The same statement is valid for heterogeneous nucleation since
the growth rates become dependent on time. In line with the latter two relations, the degree
of crystallization at some given time is not a function of temperature but a function of
combinations of the nucleation and growth rates. (ii) Under both isothermal conditions
and cooling and heating with some given rate of change in temperature, the overall crystal-
lization processes may significantly depend on the degree of deviation of the liquid from
equilibrium. This effect is more pronounced for nucleation as compared to growth as far as
the commonly observed location of the maxima of nucleation and growth rates is realized
for the system under consideration. The maximum of the nucleation rate for homogeneous
nucleation is commonly located at lower temperatures as compared to the maximum of the
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growth rates. For this reason, nucleation proceeds predominantly in temperature ranges
where deviations from metastable equilibrium are of significant importance. This effect
is less pronounced for growth processes proceeding at higher temperatures. (iii) For both
cooling and heating, the thermodynamic driving force is, as a rule, larger as compared with
the case when the liquid is in the corresponding metastable equilibrium state. However,
the surface tension behaves differently; it is larger for cooling processes, and in heating may
become smaller when compared with the value corresponding to nucleation in a metastable
liquid. These differences in the surface tension and the thermodynamic driving force of
crystallization as compared with the case that the liquid is in a metastable state are the origin
of the hysteresis effects in crystal nucleation discussed here. They may result in nucleation
flashes and, more generally, in the “flare-up” of fluctuations under heating as discussed
first long ago by Porai-Koshits, Mazurin, and coworkers and noted also by Davis [69–72]
(for details see also [73,74]). These effects are of particular significance if driving force and
surface tension deviate significantly for cooling and heating, i.e., if deviations of the liquid
from metastable equilibrium considerably affect the thermodynamic driving force and sur-
face tension. The mechanism of nucleation and growth, as outlined here, gives in this way
a principally new method for the treatment of hysteresis effects in overall crystallization
under cooling and heating, and of the nucleation flashes in heating in particular. (iv) The
analysis of nucleation–growth processes at changing temperatures is a much more complex
problem as compared to the theoretical treatment of this process under isothermal process
conditions. Extending the previously obtained results in [13], the average time of formation
of the first supercritical nucleus in cooling and heating was specified. These results allow
one to determine the time and temperature when the nucleation–growth processes become
of importance. The crystallization peak is determined, then, as the result of nucleation and
the subsequent growth of the supercritical clusters proceeding after the first nucleus has
been formed. Different approaches have been developed in the past to describe this overall
crystallization process analytically [7–20]. In most of these attempts, the degree of crystal-
lization or the location of the crystallization peak temperature is expressed as some function
of temperature introducing some activation energy chosen in such a way that the degree
of crystallization and the crystallization peaks are specified more or less correctly. From a
mathematical point of view, the degree of crystallization is then described as a function of
temperature. However, such treatment is, from a principal point of view, not correct and
can only be an approximation. Indeed, the degree of overall crystallization is, as evident
from Equations (10) and (11) or Equation (61), a functional of nucleation and growth rates.
As evident from these relations, several parameters, such as the work of critical cluster
formation, the thermodynamic driving force for cluster growth, and the activation energy
for diffusion, significantly affect the values of the functionals. Employing the differences in
the locations of the maxima of the nucleation and growth rates in terms of the dependence
of temperature, in the present approach, the degree of crystallization could be expressed as
a functional only of the growth rates. This method leads to adequate expressions for the
dependence of the crystallization peaks on the rates of change in temperature as shown
in the present paper. In line with the approximation, the effective activation energy for
diffusion is the dominant parameter determining the mentioned dependence. As shown,
this approach is appropriate for dominant homogeneous nucleation in heating and domi-
nant heterogeneous nucleation in cooling. The possibility of modeling the crystallization
peak temperature in heating via the Kissinger equation can be correlated in this way with
the validity of the model employed by us for heating (and similarly for heterogeneous
nucleation in cooling). In general, attempts to model the crystallization peak temperature
with the aid of the Kissinger equation are quite problematic [20]. In all fairness, Kissinger
proposed his equation to be used for describing the kinetics of decomposition [17] and
never mentioned the possibility of its use for the crystallization kinetics. Nevertheless,
the equation has been applied broadly to analyze the crystallization kinetics occurring
on heating as well as on cooling. The major problem with such applications is that the
Kissinger equation was derived for the processes whose rate depends on temperature in
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accord with the Arrhenius equation. The latter represents an exponential function with a
temperature-independent parameter called the activation energy. In reality, the temperature
dependence of the crystallization rate is much more complex, as is evident from the general
relations, Equations (10) and (11). Per Equations (27) and (35)–(37), it is represented by
a combination of two exponential functions whose parameters (ED, Wc, σ, and ∆µ) are
temperature-dependent. Even utilizing the simplified model approach as advanced here,
two temperature-dependent exponential terms remain in the description. As a result, the
Kissinger equation can work only as an approximation and only in the case when the
crystallization kinetics is dominated by the rate of diffusion. In principle, this situation can
be realized when crystallization occurs at temperatures far below Tm, i.e., when ∆µ becomes
large enough to turn the bracketed term in Equation (37) into one. Such conditions can
be at least partially met when crystallization is performed by heating glassy samples but
not when cooling the melts. The problem with crystallization upon cooling is exacerbated
further by the fact that the derivations used for obtaining the Kissinger equation make it
inapplicable to the conditions of cooling [19]. (v) A variety of additional factors may have
to be incorporated into the present theory as reviewed briefly in Section 2.3. They may lead
to quantitative modifications of the results. However, the general conclusions concerning
the necessity to account for deviations in the state of the liquid from metastable equilibrium
for a correct description of the kinetics of overall crystallization will remain, as we deeply
believe, unchanged. The approach to such a quantitatively more correct treatment is a task
that we consider will be solved in future analysis.
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Appendix A. Characteristic Times of Relaxation and Crystallization: Some
General Considerations

A variety of specific features of crystal nucleation and growth as compared with
other types of first-order phase transformations are caused by the possibility that the
liquid may not crystallize with increasing deviations in its state from equilibrium but
may be transferred into a glass. One particular problem in this connection is found in the
analysis of possible ways of resolution of the Kauzmann paradox [54], i.e., in the discussion
of the question as to whether liquids under cooling may or may not reach metastable
equilibrium states with lower volume density of entropy as compared to the crystal. The
temperature at which the entropy densities of liquid and crystal become identical is denoted
today as the Kauzmann temperature, TK. As one of the mechanisms preventing such a
seemingly paradoxical situation, Kauzmann suggested that intensive crystallization takes
place slightly above this temperature (at the pseudo-spinodal curve as was denoted by
him), precluding the realization of such states.

Kauzmann himself also originally denoted the temperature of the occurrence of the
pseudo-spinodal as Tk and also discussed different possibilities of the location of the,
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defined by him, temperature Tk as compared to the glass transition temperature, Tg, and its
consequences ([54], pp. 247–248 (I would like to thank Gyan P. Johari for reminding me of
this point)). In particular, he wrote:

“Let us denote by Tk the temperature at which the two kinds of barriers become equal.
Tk may be above or below the glass–transformation point, Tg, as defined in terms of
the ’conventional’ duration of an experiment. If Tk is above Tg, it will be impossible for
the liquid to be studied as a liquid at temperatures between Tk and Tg, other than by
experiments of much shorter duration than the ’conventional’ one, since it will crystallize
spontaneously during any experiments requiring more time than the average time between
simple molecular jumps. According to the concepts presented in the previous part of
this paper, adequate measurements under these circumstances would result in glass-
like properties for the liquid. On the other hand, if Tk is below Tg, it is still possible
to distinguish between a glassy state and a true metastable liquid between Tg and Tk.
But below Tk no such distinction is possible; the glass is then the only experimentally
attainable form of the liquid . . . Accordingly, provided the free energy barriers vary with
the temperature in the way that we have postulated, it is not permissible to extrapolate
the curves in figures 3 to 6 indefinitely below Tg and to infer thereby the existence of a
’thermodynamic’ glass–like transition”.

In this discussion [54], Kauzmann distinguished two sources for metastability in
glass-forming systems: metastability connected with the work of critical crystal cluster
formation required for liquid crystal phase transitions and metastability caused by the
necessity to form an activated complex in order to realize transport processes such as
diffusion or viscous flow. Discussing the dependence of both types of activation barriers
on temperature, he wrote:

“Suppose that when the temperature is lowered a point is eventually reached at which the
free energy barrier to crystal nucleation becomes reduced to the same height as the barriers
to the simpler motions. . . At such temperatures the liquid would be expected to crystallize
just as rapidly as it changed its typically liquid structure to conform to a temperature or
pressure change in its surroundings . . . There are good theoretical reasons for believing in
the existence of such a ’pseudo-critical temperature”’ ([54], pp. 220 and 247).

Kauzmann distinguishes such pseudo-critical states from critical points or states along
the spinodal curve noting:

“In the past there has been a considerable amount of speculation concerning the existence
of a critical point between crystalline and liquid states analogous to the critical point
between liquids and gases. No experimental evidence for or against such a critical point
has ever been found [75], though there is reason to believe that none is possible (Bernal
[76]; but see Frenkel . . . [77]). It is apparent, however, that the behavior with which we are
here concerned has a certain similarity to the behavior at a critical point in that here, as at
a true critical point, the free energy barrier between the crystal and the liquid disappears.
On the other hand, there is a fundamental difference in that the two states do not really
merge and their free energies are decidedly different . . . , so that one cannot go reversibly
from the one state to the other without a normal phase change” ([54], p. 248).

Meanwhile, the absence of a spinodal in one-component melt crystallization was
established by Skripov and Baidakov based on a thorough analysis of experimental data,
first in [78] and reconfirmed in [4,79]. The absence of the spinodal is connected with the
absence of an equilibrium critical point on the liquid–solid coexistence curve as formulated
first based on symmetry concepts by Landau [80,81]. Employing the basic concepts of
classical nucleation theory (CNT) utilizing the thermodynamic theory of heterogeneous
systems as developed by Gibbs [82], the conclusion of the absence of a spinodal in melt
crystallization can be extended to multi-component systems as performed in [43]. In brief,
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according to CNT, the steady-state nucleation rate, J, can be expressed via the work of
critical cluster formation, Wc, as

J = J0 exp
(
− Wc

kBT

)
, Wc =

1
3

σAc, Rc =
2σ

∆g
. (A1)

The steady-state nucleation rate, J, is equal to the average number of supercritical crystal
clusters formed per unit time in a unit volume of the melt; J0 is a kinetic prefactor deter-
mined by the kinetics of aggregation. In Equation (A1), kB is the Boltzmann constant, and
T the absolute temperature. Assuming a spherical shape (choosing the surface of tension as
the dividing surface), the surface area of the critical cluster is given by Ac = 4πR2

c , where
Rc is the critical cluster radius. It is determined by the ratio of the surface tension, σ, and
the thermodynamic driving force of crystallization, ∆g, as Rc = 2σ/∆g. The thermody-
namic driving force of nucleation in dependence on temperature is given generally in the
form [5,6]

∆g(T, pm) = −
T∫

Tm

∆s(T, pm)dT. (A2)

Here, Tm is the melting or liquidus temperature and pm the melting pressure corresponding
to it. Approximately, it may be written as

∆g(T, pm) ∼= ∆hm

(
1− T

Tm

)[
1−

∆cp

2∆sm

(
1− T

Tm

)]
. (A3)

Assuming validity of the Stefan–Skapski–Turnbull relation [5,6], for moderate deviations
from equilibrium, the surface tension can be approximately expressed by [43]

σ(T, pm)

σ(Tm, pm)
∼=

T∆s(T, p)
Tm∆sm(Tm, pm)

. (A4)

It may be transformed to

σ(T, pm)

σ(Tm, pm)
∼=
(

T
Tm

)[
1−

∆cp

∆sm

(
1− T

Tm

)]
. (A5)

At the Kauzmann temperature, the thermodynamic driving force approaches a maximum [43],
and employing the approximation for the surface tension, the latter quantity tends to zero.
Despite the surface tension approaching zero (which may not be correct in a more accurate
description), the crystallization of liquids does not exhibit features indicating the possible
identity of the liquid and crystal states, as is the case at the critical point and the spinodal
in liquid–gas transitions or segregation processes in solutions.

The existence of a spinodal curve requires a simultaneous approach of setting both
thermodynamic driving force and surface tension to zero since both phases become indis-
tinguishable here. These conditions are not fulfilled.

A similar point of view was expressed by Kelton and Greer ([83], p. 107) in their
discussion of the behavior of the work of critical cluster formation, Wc, for some model
computations, where the latter quantity also tends to zero. They note:

“The decrease of Wc to zero is a failing of this particular model, since there is no point at
which the liquid becomes unstable relative to the solid.”

They then continue:

“Nonetheless, it does indicate that a properly constructed density-functional model
could describe the transition from a nucleation and growth mechanism to a spinodal
transformation, which the CNT cannot do”.
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Some eventually possible scenarios in this direction (taking account of the dependence
of the bulk state parameters of the critical clusters on supersaturation, crystallization via
preferential segregation of the liquid) are discussed in [37].

The second item we would like to analyze is whether a pseudo-spinodal exists,
whether its existence results in an intensive increase in the rates of crystallization, or
whether the pseudo-spinodal may have some other implications. As is well-known from
CNT, the dependence of the steady-state nucleation rate on temperature is determined
according to Equation (A1) by the interplay of the thermodynamically based term (pro-
portional to the probability of thermal fluctuations required to form a critical cluster, i.e.,
∝ exp(−Wc/kBT)) and the kinetic term (J0 ∝ D = D0 exp(−ED/kBT), where D is the
diffusion coefficient determining the kinetics of aggregation in crystallization). The first
term approaches zero at the melting temperature and (for Wc 6= 0) in the limit T → 0.
Under typical conditions, it exhibits a maximum in between both limits as discussed, for
example, by Tammann [65] and Turnbull (Figure 2 in [84]). The kinetic term decreases
monotonically and significantly with decreasing temperature due to the decrease in the
diffusion coefficient or the increase of the viscosity with decreasing temperature. As a
consequence, the temperature dependence of the steady-state nucleation rate is charac-
terized by a maximum [66] where the kinetic term (decrease in the diffusion coefficient)
starts to overestimate the increase in the thermodynamic term. This maximum is generally
found to be located near to the glass transition temperature, Tg, according to the definition
by Tammann [38], and is equal to Tg ∼= (2/3)Tg for a variety of glass-forming melts and
equal to Tg ∼= (1/3)Tm for metallic glass-forming alloys [5,6,54]. There are no indications
in Equation (A1) of a renewed dramatic increase in the nucleation rate at temperatures
significantly below this maximum, which could be correlated with a pseudo-spinodal as
suggested by Kauzmann. A huge amount of experimental data on crystallization proves
that such a type of dependence of the steady-state nucleation rate on temperature is not an
exception but the rule, and, experimentally, no exceptions are observed.

As noted earlier, Kauzmann introduced his hypothesis of the existence of a pseudo-
spinodal in melt crystallization based on the assumption of the possible near equality of the
activation energies for diffusion and crystal nucleation at low temperatures, respectively,
the approach of characteristic timescales for relaxation, τR, and crystallization, correspond-
ingly, i.e., τR ∼= 〈τ〉. Following Kauzmann’s original argumentation, the relation of these
characteristic timescales has been discussed intensively (for an overview, see [43]). As
the characteristic timescale for crystallization, commonly, the average time, 〈τ〉, of the
formation of the first supercritical nucleus is chosen as identified by different authors either
with the time lag, τns for steady-state nucleation at the given temperature (e.g., [85]) or,
alternatively, as the time required to form the first supercritical crystallite under steady-
state conditions, 〈τ〉ss = 1/(JssV) (e.g., [55]). Note that the second approach, also actually
followed by Kauzmann, does not give a unique definition of the pseudo-spinodal. The
result depends significantly on the volume, V, of the liquid. Moreover, the average time of
formation of the first supercritical nucleus, 〈τ(T)〉, is determined, in general, as the sum of
both these terms. As an approximate analytical estimate (see Equation (11) in [41]), we can
express 〈τ(T)〉 as

〈τ(T)〉 ∼= τns(T) + 〈τ(T)〉ss, 〈τ(T)〉ss =
1

Jss(T)V
, (A6)

τns =
ω

2

(
kBT
σd2

0

)(
R2

c
DτR

)
τR. (A7)

The numerical factor ω varies in the range 1 ≤ ω ≤ 4 depending on the method employed
in the derivation of Equation (A7). Above the decoupling temperature, Td, the product
DτR becomes widely independent of temperature since, in this range, the Stokes–Einstein–
Eyring relation may be employed; below Td, it cannot. Numerical estimates accounting, as
necessarily required, for the decoupling of diffusion and relaxation lead to the conclusion
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that the condition for the pseudo-spinodal curve, 〈τ〉 ∼= τR, as formulated by Kauzmann, is
generally fulfilled near to the glass transition temperature.

This result can also be given an alternative verification. For crystal nucleation in
viscous liquids, the effective value of the stress parameter ε, the elastic energy per particle
of the crystal phase, is determined by the interplay of stress evolution (caused by the
formation of a crystallite) and stress relaxation accompanying this process. Assuming, as
carried out here, that relaxation is described by Maxwell’s relaxation law, the effective
value of ε for a crystallite of critical size is given by

ε(jc)
ε0
∼=

τR
τns

[
1− exp

(
−τns

τR

)]
. (A8)

As shown in [5,6] and the papers cited there, the effect of elastic stresses on crystal nucleation
in glass-forming liquids is determined by the ratio τR/τns. ε0 is the respective value for
crystallization in a Hookean solid. For temperatures sufficiently above the glass transition
temperature, elastic stresses can be expected to be of minor importance; for glasses, they
have to be of the same order of magnitude as for Hookean solids. Consequently, under
a decreasing temperature, the ratio τns/τR has to change from zero near to the melting
temperature to very large values below the glass transition temperature to appropriately
fulfill the mentioned general condition. Consequently, the condition for the occurrence
of the pseudo-spinodal as formulated by Kauzmann will be fulfilled as the rule near to
the glass transition temperature Tg. The steady-state nucleation rate has a maximum there
but its dependence on temperature is well-reflected by the standard equations of CNT.
As shown in [21,23,37] and demonstrated also in the present paper, upon further cooling
of the liquid to states below the glass transition temperature, the steady-state nucleation
rate is additionally decreased due to the interplay of relaxation and crystal nucleation.
Consequently, knowledge of the ratio τns/τR is really of significant importance in modeling
crystal nucleation but in quite another context compared to that supposed originally by
Kauzmann.

Appendix B. Application of the Lattice-Hole Model in the Computations and Some
Possible Generalization of this Model

In this appendix, we present the results of numerical computations modeling the
evolution of the degree of overall crystallization, αn, for the lattice-hole model considered
here assuming steady-state nucleation and growth in three (n = 3) independent directions
again. The deviations of the state of the liquid from metastable equilibrium are described
by Equations (32) and (33). The results are presented in Figures A1 and A2. A comparison
with Figures 3 and 4 shows that deviations in the curves occur but they are relatively small.
For this reason, we would like to anticipate here a possible generalization of this model
leading eventually to more pronounced results.

For the specification of the thermodynamic properties of glass-forming melts, we
employ here relations derived from a simple lattice-hole model of liquids discussed in
detail in [5,6]. The structural order–parameter is connected in the framework of this model
with the free volume of the liquid and defined via the number of unoccupied sites (or
holes), N0, per mole of the liquid, with each of them having a volume, v0(T, p), identical to
the volume of a structural unit of the liquid at the same values of pressure and temperature.
According to this model, the molar volume of the liquid is determined as

V(T, p, ξ) ∼= NAv0(T, p)(1 + ξ), ξ =
N0

NA + N0
∼=

N0

NA
. (A9)

Here NA is the Avogadro number.
The thermodynamic functions of the system are described in the framework of this

model by the sum of contributions resulting from the thermal motion of the molecules
of the liquid and, in addition, from the configurational contributions described by the
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structural order parameter, ξ. The configurational contribution to the volume is given,
consequently, by

Vξ
∼= NAv0(T, p)ξ. (A10)

The configurational contribution to the enthalpy, Hξ , of one mole of the liquid is described
in the framework of this lattice-hole model via the molar heat of evaporation, ∆Hev(Tm), of
the liquid at the melting temperature as

Hξ = χ1∆Hev(Tm, p)ξ. (A11)

χ1 is a parameter that has to be determined appropriately. Experimental data show that the
molar heat of evaporation can be expressed for a wide class of liquids in accordance with
Trouton’s rule as

∆Hev(Tm, p) ∼= χ2RTm with χ2 = 20. (A12)

Figure A1. Determination of the degree, α3, and the rate, dα3/dt, of overall crystallization in depen-
dence on time, t, in cooling (left side) and heating (right side) for sets of cooling (qc) and heating
(qh) rates as shown in the figures. In contrast to Figure 3, here the effect of deviations in the state of
the liquid from metastable equilibrium is accounted for. The computations are performed utilizing
Equations (32) and (33).

According to Equation (A11), Hξ is taken as a function of the melting temperature, Tm.
A much more reasonable and better assumption would be to take it as being equal to the
respective value at the current temperature. In this way, we may formulate a generalization
of Equation (A11) in the form

Hξ = χ1∆Hev(T, p)ξ. (A13)
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Furthermore, we can make the substitution

∆Hev(T, p) = ∆Hev(Tm, p) + ∆Cp(Tm, p)(T − Tm) (A14)

with
∆Cp(Tm, p) = C(vapor)

p − C(liquid)
p . (A15)

The configurational contribution to the entropy per mole is described in this model
via the conventional mixing term

Sξ = −R
(

ln(1− ξ) +
ξ

1− ξ
ln ξ

)
. (A16)

With H = U + pV, for the configurational contribution to the internal energy and the Gibbs
free energy, we obtain

Uξ =
[
χ1(χ2RTm + ∆Cp(Tm, p)(T − Tm))− pv0(T, p)

]
ξ, (A17)

Gξ = χ1(χ2RTm + ∆Cp(Tm, p)(T − Tm))ξ + RT
(

ln(1− ξ) +
ξ

1− ξ
ln ξ

)
. (A18)

Figure A2. Determination of the degree, α3, and the rate, dα3/dt, of overall crystallization in depen-
dence on temperature, θ = T/Tm, in cooling (left side) and heating (right side) for sets of cooling (qc)
and heating (qh) rates as shown in the figures. In contrast to Figure 4, here the effect of deviations in
the state of the liquid from metastable equilibrium is accounted for. The computations are performed
utilizing Equations (32) and (33).
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The equilibrium value of the structural order parameter, ξ = ξe, is determined via the
relation (∂Gξ /∂ξ)T,p = 0 resulting in

(1− ξe)2

ln ξe
= −

(
T

Tm

)
1

χ1

[
χ2 +

∆Cp(Tm, p)
R

(
T

Tm
− 1
)] . (A19)

It is different from the result employed in the present analysis (Equation (23)) and may lead
to a more pronounced effect of deviations of the liquid from equilibrium on crystallization.
A detailed analysis is considered to be of interest but out of the scope of the present paper.
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