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Abstract: Hardy and Unruh constructed a family of non-maximally entangled states of pairs of
particles giving rise to correlations that cannot be accounted for with a local hidden-variable theory.
Rather than pointing to violations of some Bell inequality, however, they pointed to apparent clashes
with the basic rules of logic. Specifically, they constructed these states and the associated measurement
settings in such a way that the outcomes satisfy some conditionals but not an additional one entailed
by them. Quantum mechanics avoids the broken ‘if . . . then . . . ’ arrows in such Hardy–Unruh chains,
as we call them, because it cannot simultaneously assign truth values to all conditionals involved.
Measurements to determine the truth value of some preclude measurements to determine the truth
value of others. Hardy–Unruh chains thus nicely illustrate quantum contextuality: which variables
do and do not obtain definite values depends on what measurements we decide to perform. Using a
framework inspired by Bub and Pitowsky and developed in our book Understanding Quantum Raffles
(co-authored with Michael E. Cuffaro), we construct and analyze Hardy–Unruh chains in terms of
fictitious bananas mimicking the behavior of spin- 1

2 particles.

Keywords: Hardy paradox; quantum contextuality; correlation polytopes; Bell inequalities

1. Introduction

The standard way to show that quantum mechanics allows correlations impossible in
classical (more precisely: local hidden-variable) theories is to point to violations of some
Bell inequality. The classic example is the violation of the Clauser–Horne–Shimony–Holt
(CHSH) inequality [1] by correlations between the outcomes of certain measurements on
pairs of photons in a maximally entangled state. An alternative approach is to show that
quantum mechanics allows correlations that seem to clash with basic logic. The work by
Hardy [2,3] and Unruh [4] that we examine in this paper provides intriguing examples
of this approach (the most famous example, undoubtedly, is due to Greenberger, Horne
and Zeilinger [5]). In this approach, at least in principle, one combination of measurement
outcomes suffices to rule out a local hidden-variable theory for the relevant quantum
correlations, whereas in the more familiar approach, we need to consider the statistics of
many outcomes.

Hardy [2,3] constructed a family of non-maximally entangled two-particle states
and concomitant measurement settings such that the measurement outcomes satisfy two
conditionals, but not a third, which would seem to be a direct consequence of the first
two. Schematically,

A→ C, B→ D, (A & B) 6→ (C & D). (1)

This is what is known as Hardy’s paradox.
Inspired by Hardy, Unruh [4] constructed a family of states and settings such that the

outcomes satisfy three conditionals, but not a fourth, which would seem to follow directly
from the first three on the basis of the transitivity of the ‘if . . . then’ relation. Schematically,

A→ B, B→ C, C → D, A 6→ D. (2)
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Such broken ‘if . . . then . . . ’ arrows are allowed in quantum mechanics for the same
reason that violations of Bell inequalities are. Local hidden-variable theories simultaneously
assign truth values to propositions A, B, C and D above. Quantum mechanics does not. To
assign truth values to all four propositions, one would simultaneously have to measure
observables represented by non-commuting operators. These Hardy–Unruh chains of
conditionals—as we call the sets of conditionals in Equations (1) and (2)—thus illustrate
quantum contextuality: which observables do and do not obtain definite values depends
on what measurements we decide to perform.

In this paper, we use the framework inspired by Bub [6] and Pitowsky [7] and de-
veloped by Janas, Cuffaro and Janssen [8] to construct and analyze these Hardy–Unruh
chains. In Section 2, we review the elements we need from our book. In Sections 3 and 4,
we construct the states and measurement settings giving rise to the broken arrows in
Equations (1) and (2). In Section 5, we examine the relation between these broken arrows
and violations of the relevant Bell inequality, which, as we will see, is a special case of
the CHSH inequality. On the basis of this analysis, we conclude, in Section 6, that broken
arrows and violations of Bell inequalities are different but ultimately equivalent ways of
bringing out quantum contextuality.1

2. Preliminaries

In our book, Understanding Quantum Raffles [8], inspired by Bub’s Bananaworld [6], we
used the imagery of peeling and tasting fictitious bananas mimicking the measurement
of spin components of (half-)integer spin particles. We modified Bub’s banana-peeling
scheme to tighten the analogy between our bananas and particles with spin. In this paper,
as in most of our book, we focus on bananas mimicking the behavior of spin- 1

2 particles.2

Imagine picking a pair of such bananas, connected at the stem, from a particular
species of banana tree, breaking them apart and giving one to Alice and one to Bob. Alice
and Bob then choose a peeling direction, i.e., a direction in which they are required to
hold their banana while peeling it. When finished peeling, they take a bite to determine
whether their banana tastes yummy or nasty. It is a key feature of our banana imagery that,
when the bananas are still on the banana tree, they do not possess a specific taste nor any
properties predetermining their taste upon being peeled and tasted. They somehow only
acquire their taste upon being peeled and tasted. Yummy and nasty are the only possible
values for taste for this species of banana.

Readers put off by our Bananaworld imagery can replace (i) bananas with spin- 1
2

particles; (ii) species of banana trees with states in which we prepare pairs of such particles
(though we will also talk about pairs of bananas in particular quantum states); (iii) peeling
directions (or peelings for short) with orientations of Du Bois (or Stern–Gerlach) magnets;
(iv) the actual peeling with sending particles through a Du Bois magnet; (v) tasting with
having a particle hit a screen with a photo-emulsion behind the magnet; and (vi) yummy
and nasty with spin up and spin down, respectively. Our fictitious bananas, however, are
not just a gimmick. They also underscore that the correlations examined in our book and in
this paper can be realized in many different physical systems.3

Suppose Alice peels a and Bob peels b. The correlations between the tastes they find,
which persist no matter how far apart they are, can be represented by a correlation array (see
Figure 1). In analogy with the values + 1

2 h̄ and − 1
2 h̄ for spin up and spin down (where h̄ is

Planck’s constant divided by 2π), we assign the numerical values + 1
2 and − 1

2 to the tastes
yummy and nasty in some appropriate units. Unless we need these values to calculate
expectation values, we simply use + for yummy and − for nasty. The four entries in the
correlation array give the probabilities of the four possible outcomes for this combination
of peelings.

For now, we restrict our attention to species of banana trees (but this does not include
the species giving rise to Hardy–Unruh chains) on which bananas grow in pairs such that
the correlations between their tastes have two special properties:
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1. No matter what peelings Alice and Bob use, the probability of them finding yummy
or nasty is always 1

2 .
2. If Alice and Bob use the same peeling, they always find opposite tastes.

Property 1 means that the entries in both rows and both columns of the correlation
array in Figure 1 add up to 1

2 . In that case, as shown in Figure 2, the correlation array can
be fully characterized by the parameter −1 ≤ χab ≤ +1, with χab = −1 if the peelings a
and b are the same (property 2).

Figure 1. Correlation array for Alice peeling a and Bob peeling b.

Figure 2. Parametrization of correlation array in Figure 1 given property 1.

We can simulate these correlations for any value of χab with the kind of raffle intro-
duced in our book ([8], Section 2.5) as a model for local hidden-variable theories. In this
case, the raffle consists of a basket with a mix of the two types of tickets shown in Figure 3,
with the tastes of both bananas for both peelings printed on them. We draw tickets from this
basket, tear them in half along the perforation indicated by the dashed line, and randomly
give one half to Alice and one half to Bob. That the values for a and b on the two sides of
the ticket are opposite takes care of property 2. That we randomly decide which half goes
to Alice and which half to Bob takes care of property 1.

Figure 3. Raffle tickets for the simulation of the correlation array in Figure 2.
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A raffle that exclusively has tickets of type (i) will give a perfect anti-correlation
between Alice’s result for a and Bob’s result for b. In that case, the entries on the diagonal
in Figures 1 and 2 are 0, while the off-diagonal ones are 1

2 . Thus, for tickets of type (i),
χab = −1. A raffle that exclusively has tickets of type (ii) will give a perfect correlation. In
that case, the off-diagonal entries in Figures 1 and 2 are 0 and those on the diagonal are 1

2 .
Thus, for tickets of type (i), χab = 1. To simulate the correlation in Figure 2 for arbitrary
values of χab, we need a raffle with a fraction 1

2 (1− χab) of type-(i) tickets and a fraction
1
2 (1 + χab) of type-(ii) tickets.

It turns out that, for all values between −1 and +1, χab is the (Pearson) correlation coeffi-
cient of the variables Aa and Bb, the taste Alice finds when peeling a and the taste Bob finds
when peeling b.4 The correlation coefficient of two stochastic variables X and Y is defined
as the covariance, Cov(XY) ≡ 〈(X− 〈X〉)(Y− 〈Y〉)〉, divided by the standard deviations,
σX and σY, the square roots of the variances, 〈(X− 〈X〉)2〉 and 〈(Y− 〈Y〉)2〉. What simpli-
fies matters in the case of the variables Aa and Bb is that they are balanced, i.e., their two
possible values are each other’s opposite and these two values are equiprobable ([8], p. 68).
This means that their expectation values, 〈Aa〉 and 〈Bb〉, vanish and that the correlation
coefficient is given by

ρAaBb =
〈AaBb〉√
〈A2

a〉
√
〈B2

b〉
. (3)

Inspection of the correlation arrays in Figures 1 and 2 tells us that

〈AaBb〉 = 1
4

(
Pr(++|ab) + Pr(−−|ab)

)
− 1

4

(
Pr(+−|ab) + Pr(−+|ab)

)
= 1

4 ·
1
2
(
1 + χab

)
− 1

4 ·
1
2
(
1− χab

)
= 1

4 χab; (4)

that

〈A2
a〉 = 1

4

(
Pr(++|ab) + Pr(+−|ab)

)
+ 1

4

(
Pr(−+|ab) + Pr(−−|ab)

)
= 1

4 ; (5)

and that, similarly, 〈B2
b〉 =

1
4 . Substituting these results into Equation (3), we see that the

correlation coefficient is indeed equal to the parameter characterizing the correlation in
Figure 2:

ρAaBb =
1
4 χab
1
2 ·

1
2
= χab. (6)

As noted above, unless χab = ±1, we need a mix of tickets to simulate the correlation
array in Figure 2 with one of our raffles. With our quantum bananas, as we will show
below, we can produce this correlation array for arbitrary values −1 < χab < 1 with pairs
of bananas in the familiar fully entangled singlet state, but with different choices for the peeling
directions a and b.

Using the bases {|±〉a} and {|±〉b} of eigenvectors of the operators representing the
observables ‘taste when peeled in the a-direction’ and ‘taste when peeled in the b-direction’
for the one-banana Hilbert space to construct bases for the two-banana Hilbert space, we
can write the singlet state as:

|ψsinglet〉 =
1√
2

(
|+−〉aa − |−+〉aa

)
=

1√
2

(
|+−〉bb − |−+〉bb

)
, (7)

where |+−〉aa, etc., is shorthand for the tensor product |+〉a ⊗ |−〉a, etc.
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Figure 4. Eigenvectors for ‘taste when peeled in the a-direction’ and ‘taste when peeled in the b-
direction’ in the one-banana Hilbert space, where ϕab = 2α is the angle between the peeling directions
a and b.

The relation between the a-basis and the b-basis is illustrated in Figure 4. The angle
α between these pairs of eigenvectors is equal to half the angle ϕab between the peeling
directions a and b. The transformation from the b-basis to the a-basis is given by:

|+〉a = cos α |+〉b − sin α |−〉b,

|−〉a = sin α |+〉b + cos α |−〉b ;
(8)

its inverse by:
|+〉b = cos α |+〉a + sin α |−〉a,

|−〉b = − sin α |+〉a + cos α |−〉a.
(9)

To find the probabilities of the various combinations of tastes when Alice peels a and
Bob peels b, we use these transformation equations to write the singlet state in the ab-basis:

|ψsinglet〉 =
1√
2

(
sin α |++〉ab + cos α |+−〉ab − cos α |−+〉ab + sin α |−−〉ab

)
. (10)

The Born rule tells us that the probabilities of finding the various combinations of
tastes for this combination of peelings are given by the squares of the coefficients of the
corresponding terms of the singlet state in this basis. Recalling that α = ϕab/2, we thus
arrive at the correlation array in Figure 5.

Figure 5. Correlation array for taste-and-peel experiment with bananas in the singlet state.
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Using this correlation array to calculate the correlation coefficient (see Equation (3)),
we find:

ρAaBb =

1
4 · sin2

( ϕab
2

)
− 1

4 · cos2
( ϕab

2

)
1
2 ·

1
2

= − cos ϕab. (11)

We saw earlier (see Equation (6)) that ρAaBb is equal to the parameter χab characterizing
the correlation array in Figure 2. With the appropriate choice of peeling directions, we
can thus obtain this correlation array for any value −1 ≤ χab ≤ 1 with the appropriate
measurements on the same quantum state, whereas we needed a mix of tickets to obtain
this correlation array with one of our raffles.

In Understanding Quantum Raffles [8], we used the tools introduced above to analyze
the correlations found in an experimental setup due to Mermin [10] in which Alice and
Bob peel and taste bananas in the singlet state choosing between three different peeling
directions, a, b and c. The correlations between the tastes found by Alice and Bob in this
Mermin setup can be represented by a 3×3 correlation array with cells of the form shown
in Figure 2 with χab = − cos ϕab, etc. (see Figure 5 and Equation (11)).

Because of the symmetry of the singlet state, the cells of the correlation array on one
side of the diagonal (ab, ac and bc) are the same as those on the other side (ba, ca and
cb). In the cells on the diagonal, we have a perfect anti-correlation (if a = b, ϕab = 0 and
χab = −1). A correlation array for this Mermin setup can thus be characterized by the
correlation coefficients for half of its off-diagonal cells, χab, χac and χbc, with all three taking
on values between −1 and +1.

Inspired by Pitowsky [7], we used these coefficients as coordinates of a point in a
2×2×2 cube, the non-signaling polytope (P) for the Mermin setup (see Figure 7). The part of
P allowed by quantum mechanics is called the quantum convex set (Q); the part allowed by
local hidden-variable theories the local polytope (L).5

We derive the inequalities defining L and Q in this case. As our model for a local
hidden-variable theory, we use a raffle with a mix of the four types of tickets shown in
Figure 6.

Figure 6. Tickets for a raffle meant to simulate the correlation array for the Mermin setup.

The values of the correlation coefficients for raffles with only one type of ticket can be read
directly off that ticket. For example, if the values for a and b on opposite sides of the ticket
are the same, χab = 1; if they are opposite, χab = −1. Table 1 collects the values of χab, χac
and χbc for ticket types (i)–(iv).

Table 1. Values of the anti-correlation coefficients for raffles with just one of the four types of tickets
shown in Figure 6.

Ticket χab χac χbc

(i) −1 −1 −1
(ii) −1 +1 +1
(iii) +1 −1 +1
(iv) +1 +1 −1
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The correlations produced by raffles with just one of these four ticket-types are repre-
sented by the vertices that are labeled (i) through (iv) in the non-signaling cube in Figure 7.
The local polytope (L) for the Mermin setup is the tetrahedron formed by these four vertices.

Figure 7. The non-signaling polytope (P), the quantum convex set (Q) and the local polytope (L) for
the Mermin setup.

The Bell inequality for the Mermin setup corresponds to one of the four facets of the
tetrahedron, the one with the vertices (ii), (iii) and (iv). The pair of inequalities associated
with this facet, which can be read off Table 1, is:

−3 ≤ χab + χac + χbc ≤ 1. (12)

This is the direct analogue of the CHSH inequality, the Bell inequality for a setup
involving four rather than three different peelings, with Alice peeling a or b and Bob peeling
a′ or b′ (cf. Equation (48) below and Chapter 5 in our book [8]). To fully characterize the
local polytope for the Mermin setup, we need three more pairs of inequalities such as the
ones in Equation (12), corresponding to the other three facets of the tetrahedron in Figure 7.

To find the quantum convex set (Q) for the Mermin setup, we consider the 3×3 matrix
formed by the correlation coefficients characterizing the nine cells of its correlation array.
Using that χab = − cos ϕab = −~ea ·~eb, etc. (where~ea and~eb are unit vectors in the peeling
directions a and b), we can write this correlation matrix as:

χ ≡


−1 χab χac

χba −1 χbc

χca χcb −1

 = −


~ea ·~ea ~ea ·~eb ~ea ·~ec

~eb ·~ea ~eb ·~eb ~eb ·~ec

~ec ·~ea ~ec ·~eb ~ec ·~ec

. (13)

This is (minus) a Gram matrix, which has the property that its determinant cannot be
negative: −det χ ≥ 0. This gives us the constraint we are looking for:

1− χ2
ab − χ2

ac − χ2
bc − 2 χab χac χbc ≥ 0. (14)

This non-linear inequality defines the elliptope representing the quantum convex set (Q)
for the Mermin setup in Figure 7. Taking a slice of this figure by setting one of the χ’s
to zero, we obtain the Vitruvian-man-like cartoon in Bananaworld for P , Q and L in an
arbitrary setup ([6], p. 107, Figure 5.2).

We now have all the ingredients we need from Understanding Quantum Raffles [8] to
analyze the correlations found with Hardy and Hardy–Unruh states.
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3. Hardy States

Hardy [2] cooked up a family of two-particle states, each member with its own
combination of measurements to be performed on it, to illustrate the apparent breakdown
of basic logic in quantum mechanics (see Equation (1)). We construct the states for a branch
of this family in Bananaworld, in which Alice and Bob both use the same pair of peelings a
and b. As we will see when we turn to the intimately related Hardy–Unruh family of states,
other members of the Hardy family involve Alice and Bob using different pairs of peelings,
which we will label (a, b) and (a′, b′), respectively.

3.1. Hardy Chain of Conditionals

Hardy states have four special properties that translate into corresponding properties
of the correlations between the tastes found by Alice, peeling a or b, and Bob, peeling a′ or
b′, which can but do not have to be the same as a and b.

1. There is no |+−〉 component in the ba′-basis. Thus, if Alice peels b and finds +, then
Bob will also find + when he peels a′. Schematically: Ab+ → Ba′+

. Of course, this
property of the state also implies Ba′−

→ Ab− , but this conditional is not part of the
Hardy chain.

2. There is no |−+〉 component in the ab′-basis. Thus, if Bob peels b′ and finds +, then
Alice will also find + when she peels a. Schematically: Bb′+

→ Aa+ .
3. There is no |++〉 component in the aa′-basis. Thus, if Alice peels a and Bob peels a′,

they cannot both find +. Schematically: we cannot have Aa+& Ba′+
.

4. There is both a |++〉 and a |+−〉 component in the bb′-basis. Thus, if Alice peels b
and Bob peels b′, it is possible for both of them to find +. Schematically: we can have
Ab+ and Bb′+

.

These four properties place contradictory demands on the design of tickets for a raffle
simulating these correlations. This is illustrated in Figure 8. Since Alice and Bob use
different pairs of peelings, the left side of the ticket always goes to Alice and the right side
to Bob. Because of property 4, our raffle must contain some tickets with + for both b and b′.
Because of properties 1 and 2, such tickets must also have + for both a and a′. However,
because of property 3, our raffle is not allowed to contain any such tickets!

Figure 8. Conflicting demands on the design of a ticket for a raffle simulating the correlations found
in measurements on Hardy states.

Following Hardy ([2], p. 1666), we can bring out the problem in a slightly different
way (see also Kwiat and Hardy [16], p. 34). The conditionals Ab+ → Ba′+

(property 1) and
Bb′+
→ Aa+ (property 2) entail the composite conditional(

Ab+ and Bb′+

)
→
(

Aa+ and Ba′+

)
. (15)

However, this conditional is false: it is possible for the antecedent to be true (property
4) and the consequent to be false (property 3). Quantum mechanics avoids the broken
arrow in Equation (15) by not allowing truth values to be assigned simultaneously to the
antecedent and consequent. The same pair of bananas cannot be peeled and tasted twice:
Alice cannot peel hers both a and b, and Bob cannot peel his both a′ and b′.
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At this point, our banana imagery may suggest that we would run into the same
problem with ordinary bananas, which, after all, can also only be peeled once. However,
this is not the case. First of all, the taste of ordinary bananas does not depend on the
direction in which they are held when peeled. Still, one could easily imagine bananas with
this property. Their taste might depend, for instance, on their orientation with respect to
the earth’s magnetic field when they are being peeled. Even for such bananas, however,
we would expect the taste upon being peeled in whatever direction to be predetermined
by some property that the banana already possesses before it is peeled. But the ticket
in Figure 8 shows that, if these bananas have properties 1–4 above, their tastes cannot
be predetermined. Thus, the explanation of how the Hardy chain of conditionals can be
broken crucially hinges on contextuality and not just on the property, which our quantum
bananas share with ordinary bananas, that they can only be peeled once.

3.2. Constructing Hardy States

We construct a branch of the family of Hardy states in Bananaworld with a = a′ and
b = b′. Members of this branch can be labeled by the angle α, which is half the angle ϕab
between the peeling directions a and b. The angle α thus runs from 0 to π/2. We start with
property 3: the state has no |++〉 component in the aa-basis:

|ψH(α)〉 = N(α)
(
− sin α |+−〉aa + cos α |−−〉aa − sin α |−+〉aa

)
, (16)

where the factor
N(α) =

1√
1 + sin2α

(17)

normalizes the state. The coefficients of the three components in the aa-basis were chosen
with malice aforethought. Given our choice of peeling b to go with peeling a, these
coefficients ensure that |ψH(α)〉 also has properties 1 and 2. Combining the first and
the second term on the right-hand side of Equation (16) and using Equation (9), the
transformation from the a- to the b-basis, we can write |ψH(α)〉 as

|ψH(α)〉 = N(α)
({
− sin α |+〉a + cos α |−〉a

}
⊗ |−〉a − sin α |−+〉aa

)
= N(α)

(
|−−〉ba − sin α |−+〉aa

)
, (18)

which shows that |ψH(α)〉 has no |+−〉 component in the ba-basis (property 1). Combining
the second and the third term on the right-hand side of Equation (16), we can also write
|ψH(α)〉 as

|ψH(α)〉 = N(α)
(
− sin α |+−〉aa + |−〉a ⊗

{
cos α |−〉a − sin α |+〉a

})
= N(α)

(
− sin α |+−〉aa + |−−〉ab

)
, (19)

which shows that |ψH(α)〉 has no |−+〉 component in the ab-basis (property 2).
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Finally, starting from Equation (18) (but we could also have started from Equation (19))
and using Equation (8), the transformation from the b- to the a-basis, we can write |ψH(α)〉
in the bb-basis:

|ψH(α)〉 = N(α)
(
|−〉b ⊗

{
sin α |+〉b + cos α |−〉b

}
− sin α

{
sin α |+〉b + cos α |−〉b

}
⊗
{

cos α |+〉b − sin α |−〉b
})

= N(α)
(
− sin2α cos α |++〉bb + sin3α |+−〉bb

+ sin3α |−+〉bb + cos α (1 + sin2 α) |−−〉bb

)
. (20)

This shows that |ψH(α)〉 has both |++〉 and |+−〉 components in the bb-basis (property 4).
To construct a correlation array for the results of Alice and Bob peeling pairs of bananas

in the Hardy state, we need |ψH(α)〉 in the aa-, ab-, ba- and bb-basis. Equations (16) and (20)
give the state in the aa- and bb-basis, respectively. Starting from Equations (18) and (19),
we find the state in the ba- and ab-basis, respectively:

|ψH(α)〉 = N(α)
(
|−−〉ba − sin α

{
sin α |+〉b + cos α |−〉b

}
⊗ |+〉a

)
= N(α)

(
|−−〉ba − sin2α |++〉ba − sin α cos α |−+〉ba

)
(21)

|ψH(α)〉 = N(α)
(
− sin α |+〉a ⊗

{
sin α |+〉b + cos α |−〉b

}
+ |−−〉ab

)
= N(α)

(
− sin2α |++〉ab − sin α cos α |+−〉ab + |−−〉ab

)
(22)

Using the Born rule, we can read off all probabilities entering into the correlation array
in Figure 9 from Equations (16) and (20)–(22). One readily checks that (i) in each of the
four cells the four entries sum to 1 and (ii) in each row and column the sum of the first two
entries is equal to the sum of the last two (though verifying this for the last row involves
some tedious algebra). Property (ii) guarantees that the correlation is non-signaling: the
marginal probabilities Pr(Aa±) and Pr(Ab±) for Alice do not depend on the peeling chosen
by Bob and vice versa (cf. [8], pp. 25–26).6

Figure 9. Correlation array for the tastes ± 1
2 of pairs of bananas in the Hardy state in Equations

(16)–(22), both peeled a or b by Alice and Bob.



Entropy 2023, 25, 1568 11 of 25

We can read the properties of Hardy states listed in Section 3.1 (with a′ = a and b′ = b)
directly off the correlation array in Figure 9. Pr(+−|ba) = 0 gives the conditional Ab+ →
Ba+ (property 1). Pr(−+|ab) = 0 likewise gives the conditional Bb+ → Aa+ (property 2).
The aa and bb cells show that the composite conditional is false: (Ab+& Bb+) 6→ (Ba+& Aa+).
Pr(++|bb) 6= 0 means that we can have Ab+& Bb+ (property 4); Pr(++|aa) = 0 means we
cannot have Ba+& Aa+ (property 3).7

We cannot simulate this correlation array with one of our raffles because a raffle that
gives the 0s in the aa, ab and ba cells must also give a 0 for the ++ entry in the bb cell (cf.
the ticket in Figure 8). Finding one instance (or a few to allow for experimental error) of
Alice and Bob both finding + when peeling b would thus rule out a local hidden-variable
theory capable of producing this correlation array.

3.3. Hardy States between Maximally Entangled and Product States

The Hardy states |ψH(α)〉 in Equations (16) and (20)–(22) result in the broken arrow in
Equation (15) unless α = 0 or α = π/2. What happens in those two cases?

For α = 0, N(α) = 1 and Equations (16) and (18)–(20) reduce to

|ψH(0)〉 = |−−〉 (23)

in all four bases (aa, ab, ba and bb). The state thus becomes a product state (a property
independent of the basis we choose) and the correlations it gives rise to can easily be
simulated with one of our raffles.

For α = π/2, N = 1/
√

2 and Equations (16) and (20) reduce to

|ψH(
π
2 〉 = −

1√
2

(
|+−〉aa + |−+〉aa

)
=

1√
2

(
|+−〉bb + |−+〉bb

)
. (24)

This is a maximally entangled state (cf. the singlet state in Equation (7)). That the expansion
in the aa-basis differs by a minus sign from the expansion in the bb basis reflects that,
if α = π/2, |+〉b = |−〉a and |−〉b = −|+〉a. It may sound paradoxical that we can
simulate the correlations for this maximally entangled state whereas for the non-maximally
entangled Hardy states we cannot. Remember, however, that for α = ϕab/2 = π/2, the
peeling directions a and b are exactly opposite. In this case (as when α = 0 and the peeling
directions are the same) we can easily simulate the correlations with one of our raffles.

Kwiat and Hardy [16] consider the special case that cos α =
√

2/5 and sin α =
√

3/5,
which means that α ≈ 51o. In that case (see Equation (17)),

N(α) sin α =
sin α√

1 + sin2α
=

√
3
8

, N(α) cos α =
cos α√

1 + sin2α
=

1
2

, (25)

and Equation (16) becomes:8

|ψH(α ≈ 51o)〉 = −
√

3
8 |+−〉aa +

1
2 |−−〉aa −

√
3
8 |−+〉aa. (26)

The Born rule tells us that the probability of Alice and Bob both finding + when both are
peeling b is equal to the square of the coefficient of |++〉 of |ψH(α)〉 in the bb-basis. For
α ≈ 51o, this coefficient is (see Equation (20)):

− sin2α cos α√
1 + sin2α

= −
3
5 ·
√

2
5√

8
5

= − 3
5 · 2 . (27)

Hence Pr(++|bb) = 0.09 ([16], p. 34). As Mermin ([17], p. 885) notes, this is “only a shade
[≈0.0002] less than the maximum possible” for the square of the expression on the left-hand
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side of Equation (27). Mermin ([17], p. 884) gives this maximum as (2/(1 +
√

5))5; Hardy
([2], p. 1667) as 1

2 (5
√

5− 11).
This is as far as we will take our analysis of the Hardy family of states. In the next two

sections, we scrutinize the intimately related Hardy–Unruh family more closely, especially
the dependence of the correlations generated by a branch of this family on the angle α
parametrizing this branch.

4. Hardy–Unruh States

Inspired by Hardy, Unruh [4] cooked up a family of states providing an even more
striking example than Hardy [2] and Kwiat and Hardy [16] of the apparent breakdown
of basic logic in quantum mechanics (see Equation (2)). Since the Unruh family turns out
to be the same as the Hardy family, we call these states Hardy–Unruh rather than Unruh
states. Our discussion in this section mirrors but will be more general than our discussion
in Section 3.

4.1. Hardy–Unruh Chain of Conditionals

Hardy–Unruh states have four special properties that translate into corresponding
properties of the correlations between the tastes found by Alice, peeling a or b, and Bob,
peeling a′ or b′, which can but do not have to be the same as a and b:

1. There is no |+−〉 component in the ab′-basis. Thus, if Alice peels a and finds +, Bob
will also find + when he peels b′. Schematically: Aa+ → Bb′+

.
2. There is no |−+〉 component in the bb′-basis. Thus, if Bob peels b′ and finds +, Alice

will also find + when she peels b. Schematically: Bb′+
→ Ab+ .

3. There is no |+−〉 component in the ba′-basis. Thus, if Alice peels b and finds +, Bob
will also find + when he peels a′. Schematically: Ab+ → Ba′+

.
4. There is both a |++〉 and a |+−〉 component in the aa′-basis. Thus, if Alice peels a

and finds +, Bob might find + or − when he peels a′. Schematically: it is possible to
have Aa+ and Ba′−

.

These four properties place contradictory demands on the design of tickets for a raffle
simulating these correlations. This is illustrated in Figure 10. Because of the conditionals in
1–3, a ticket with + for a, must have + for all four entries. However, property 4 requires
our raffle to contain at least some tickets with three +s (for a, b′ and b) and one − (for a′).

Figure 10. Conflicting demands on the design of a ticket for a raffle simulating the correlations found
in measurements on Hardy–Unruh states.

As Figure 10 illustrates, the conditionals expressing properties 1–3 can be combined
into the chain of conditionals

Aa+ → Bb′+
→ Ab+ → Ba′+

. (28)

Yet Aa+ 6→ Ba′+
: it is possible for the antecedent of this conditional to be true and the

consequent to be false (property 4). As with the broken arrow in the Hardy case (cf.
Equation (15)), quantum mechanics avoids the problem by not allowing truth values to be
assigned simultaneously to Aa+ and Ab+ or to Ba′+

and Bb′+
. The same banana cannot be

peeled and tasted twice.
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4.2. Constructing Hardy–Unruh States

Our construction of the family of Hardy–Unruh states follows the same pattern as
our construction of a branch of the family of Hardy states in Equations (16)–(20). We start
by making sure that the state has property 2, i.e., that it has no |−+〉 component in the
bb′-basis:

|ψHU(u, v, w)〉 = N
(

u |++〉bb′ − v |+−〉bb′ − w |−−〉bb′

)
, (29)

where u, v and w are arbitrary complex numbers and the normalization factor is given by:

N ≡ 1√
|u|2 + |v|2 + |w|2

. (30)

This shows how generic these Hardy–Unruh states are. We can construct them by
starting from a state orthogonal to any two-particle state that can be written in the form
|−+〉 in an orthonormal basis {|±〉b ⊗ |±〉b′} of eigenvectors for some pair of peelings b
and b′ for Alice and Bob. This is as true for Hardy states as for Hardy–Unruh states.

As we did in Equations (18) and (19), we can group the three terms on the right-hand
side of Equation (29) in two different ways:

|ψHU(u, v, w)〉 = N
(
|+〉b ⊗

{
u |+〉b′ − v |−〉b′

}
− w |−−〉bb′

)
(31)

= N
(

u |++〉bb′ −
{

v |+〉b + w |−〉b
}
⊗ |−〉b′

)
(32)

Now choose peeling a to go with peeling b such that the corresponding eigenvec-
tors are:

|−〉a =
1√

|v|2 + |w|2
(

v |+〉b + w |−〉b
)

|+〉a =
1√

|v|2 + |w|2
(

w |+〉b − v |−〉b
) (33)

(where bars denote complex conjugates); and choose peeling a′ to go with peeling b′ such
that the corresponding eigenvectors are:

|+〉a′ =
1√

|u|2 + |v|2
(

u |+〉b′ − v |−〉b′
)

|−〉a′ =
1√

|u|2 + |v|2
(

v |+〉b′ + u |−〉b′
)

.

(34)

If {|±〉b} and {|±〉b′} are orthonormal bases, then {|±〉a} and {|±〉a′} are too.
Using Equations (33) and (34), we can write Equations (31) and (32) as

|ψHU(u, v, w)〉 = N
(√
|u|2 + |v|2 |++〉ba′ − w |−−〉bb′

)
, (35)

= N
(

u |++〉bb′ −
√
|v|2 + |w|2 |−−〉ab′

)
. (36)

Equations (35) and (36) show that |ψHU(u, v, w)〉 has no |+−〉 component in either the
ba′- or the ab′-basis (properties 1 and 3). Finally, using Equations (33) and (34) to write
|ψHU(u, v, w)〉 in the aa′-basis, one can verify that |ψHU(u, v, w)〉 has both a |++〉 and a
|+−〉 component in the aa′-basis (property 4).

We only verify this last property for the branch of the family we are focusing on in the
rest of this paper. The chain in Equation (28) already leads to a broken arrow if Alice and
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Bob use the same peelings a and b. In that case, v = v and u = w in Equations (33) and (34).
We take u and w to be real as well and set:

u = w = cos α, v = sin α, (37)

where, as before, 0 < α < π/2 is half the angle ϕab between the peeling directions a and b.
With this choice for (u, v, w), Equation (29) becomes:

|ψHU(α)〉 = N(α)
(

cos α |++〉bb − sin α |+−〉bb − cos α |−−〉bb

)
, (38)

with the normalization factor (cf. Equation (30))

N(α) =
1√

1 + cos2α
. (39)

Note the similarity to the Hardy state in Equation (16). Like |ψHU(α)〉, |ψH(α)〉
corresponds to a more general state, |ψH(u, v, w)〉, of the same form as |ψHU(u, v, w)〉 in
Equation (29).

With the values for (u, v, w) in Equation (37), Equations (33) and (34) both reduce to
Equation (8) for the transformation from the b- to the a-basis. Using the inverse trans-
formation, Equation (9), and substituting the values of u, v and w in Equation (37) into
Equation (35), we find |ψHU(α)〉 in the ba-basis:

|ψHU(α)〉 = N(α)
(
|++〉ba − cos α |−〉b ⊗

(
− sin α |+〉a + cos α |−〉a

))
= N(α)

(
|++〉ba + cos α sin α |−+〉ba − cos2α |−−〉ba

)
. (40)

Equation (36) similarly allows us to find |ψHU(α)〉 in the ab-basis:

|ψHU(α)〉 = N(α)
(

cos α
(

cos α |+〉a + sin α |−〉a
)
⊗ |+〉b − |−−〉ab

)
= N(α)

(
cos2α |++〉ab + cos α sin α |−+〉ab − |−−〉ab

)
. (41)

Equations (40) and (41) confirm that |ψHU(α)〉 has no |+−〉 components in the ba-
and ab-basis.

Finally, starting from Equation (36)—but we could have started from Equation (35)
instead—we find |ψHU(α)〉 in the aa-basis:

|ψHU(α)〉 = N(α)
(

cos α |++〉bb − |−−〉ab

)
= N(α)

(
cos α

{
cos α |+〉a + sin α |−〉a

}
⊗
{

cos α |+〉a + sin α |−〉a
}

− |−〉a ⊗
{

cos α |−〉a − sin α |+〉a
})

(42)

= N(α)
(

cos3α |++〉aa + cos2α sin α |+−〉aa

+ sin α(1 + cos2α) |−+〉aa − cos3α |−−〉aa

)
.

So |ψHU(α)〉 has both |++〉 and |+−〉 components in the aa-basis (property 4).
We can use Equations (38)–(43) for |ψHU(α)〉 in the aa-, ab-, ba- and bb-bases to con-

struct the correlation array in Figure 11.
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Figure 11. Correlation array for the tastes ± 1
2 of pairs of bananas in the Hardy–Unruh state in

Equations (38)–(43), both peeled a or b by Alice and Bob.

As with the correlation array for the Hardy state |ψH(α)〉 in Figure 9, we can read
properties 1–4 listed in Section 4.1 (with a′ = a and b′ = b) of the Hardy–Unruh state
|ψHU(α)〉 directly off the correlation array in Figure 11. Pr(+−|ab) = Pr(−+ |bb) =
Pr(+− |ba) = 0 translates into the conditionals Aa+ → Bb+ , Bb+ → Ab+ and Ab+ → Ba+
(properties 1–3). Pr(+− |aa) 6= 0 results in the broken arrow: Aa+ 6→ Ba+ .

Relabeling peelings and tastes for Alice and Bob and replacing α by π
2 − α, we can turn

the correlation array in Figure 11 for the Hardy–Unruh state |ψHU(α)〉 into the correlation
array in Figure 9 for the Hardy state |ψH(

π
2 − α)〉. Specifically, we need to make four

changes in these correlation arrays to turn one into the other:

• Switch sin α and cos α.
• Change (a±, b±) to (b±, a∓) for Alice.
• Change (a±, b±) to (b∓, a±) for Bob.
• Switch rows and columns to get back to the standard format with labels in the order

(a+, a−, b+, b−) for both Alice and Bob.

As we have seen, the correlation arrays in Figures 9 and 11 capture the defining
properties of the Hardy and Hardy–Unruh states listed in Sections 3.1 and 4.1, respectively.
That one can be obtained from the other through the simple expedient of relabeling rows
and columns and switching sines and cosines shows that these states are all members of
one and the same family.

We cannot simulate the correlation array in Figure 11 with one of our raffles because
a raffle that gives the 0s in the ab, ba and bb cells will also give a 0 for the +− entry in
the aa cell (cf. the ticket in Figure 10). The +− entry in the aa cell of the correlation array
for this Hardy–Unruh state becomes the ++ entry in the bb cell of the correlation array
for the corresponding Hardy state. This is the entry that prevents us from simulating the
correlation array in Figure 9 for this Hardy state. Any raffle that gives the 0s in the aa, ab
and ba cells must give a 0 for the ++ entry in the bb cell (cf. the ticket in Figure 8).

4.3. Hardy–Unruh States between Maximally Entangled and Product States

From the correlation array in Figure 11 we can read off that

Pr(+−|aa)
Pr(++|aa)

= tan2α. (43)

As α approaches π/2, this ratio grows without bound and the apparent clash with basic
logic becomes particularly severe. The chain of conditionals Aa+ → Bb+ → Ab+ → Ba+
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suggests that if Alice and Bob both peel a and Alice finds +, Bob should find + as well. Yet,
for that peeling combination and for α close to π/2, Bob will almost always find − instead!

If α = π/2, Equations (38)–(43) for |ψHU(α)〉 reduce to:

|ψHU(
π
2 )〉 = − |+−〉bb = |++〉ba = − |−−〉ab = |−+〉aa , (44)

which is a product state. Thus, we have the paradoxical situation that the apparent clash
with ordinary logic gets worse as α approaches π/2 but disappears when α = π/2! As Unruh
([4], p. 4) observes: “the closer the state is to a product state, a completely un-entangled
state, the lower is the probability that if A then D” (where Unruh’s A and D are our Aa+
and Ba+ ).

On closer inspection, this discontinuity is only apparent. From the correlation array in
Figure 11 we read off that

Pr(+−|aa) =
cos4α sin2α

1 + cos2α
. (45)

This probability steadily decreases as α approaches π/2 and vanishes for α = π/2. In fact,
as both the correlation array in Figure 11 and Equation (44) show, if α approaches π/2 and
Alice and Bob both peel a, the outcome is almost certainly −+.

Inspection of Figure 4 tells us that, if α = π/2, |+〉b = |−〉a and |−〉b = −|+〉a (this
explains the minus signs in Equation (44)). In other words, the operators representing
‘taste when peeled a′ and ‘taste when peeled b′ have the same set of eigenvectors. These
operators thus commute, in which case the correlations found in measurements on this
state can easily be simulated classically (e.g., with one of our raffles). What this means
physically becomes clear if we substitute spin- 1

2 particles for our bananas for a moment. If
ϕab = 2α = π, the directions a and b are exactly opposite to one another. Spin up/down in
the a direction then becomes spin down/up in the b direction. The operators representing
those observables obviously commute. In fact, we move from one to the other simply by
relabeling eigenvectors and eigenvalues.

Since |ψHU(
π
2 )〉 = |−+〉aa = |−−〉ab (see Equation (44)), it is impossible for Alice to

peel a and find + if α = π/2. This can also be read off the correlation array in Figure 11:
all entries in the first row vanish for α = π/2, which means that Pr(Aa+) = 0. Hence, for
α = π/2, there is (1) no broken arrow and (2) no problem designing a raffle to simulate the
quantum correlations:

1. Since its antecedent is false, the conditional Aa+ → Ba+ is vacuously true and perfectly
compatible with the chain of conditionals Aa+ → Bb+ → Ab+ → Ba+ in Equation (28).

2. Our raffle will have no tickets with + for a on Alice’s side, so we avoid the problem
with the design of tickets brought out in Figure 8.

If α = 0, Equations (38) and (43) for the Hardy–Unruh state |ψHU(α)〉 reduce to

|ψHU(0)〉 =
1√
2

(
|+−〉bb − |−+〉bb

)
=

1√
2

(
|+−〉aa − |−+〉aa

)
, (46)

which is just the maximally entangled singlet state in Equation (7). Yet, there is not even
an apparent clash with basic logic and no problem simulating the experiment with one of
our raffles. As in the case of the Hardy state |ψH(α)〉, which becomes maximally entangled
if α = π/2 (see Equation (24)), this is because the peeling directions a and b coincide if
α = ϕab/2 = 0. The tastes of pairs of bananas in the singlet state only exhibit correlations
that we cannot simulate with any of our raffles if Alice and Bob get to choose between
different peeling directions.

5. Geometrical Representation of the Correlations Found with Hardy–Unruh States

What can we say about the local polytope L and the quantum convex set Q for the
Hardy–Unruh setup (cf. Figure 7)?
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To answer this question, we start by comparing the correlation array in Figure 11 for
the tastes of pairs of bananas, peeled a or b, in the state |ψHU(α)〉 in Equations (38)–(43)
(the Hardy–Unruh setup) to the correlation array in Figure 12 for the tastes of pairs of
bananas, one peeled a′ or b′, the other peeled c′ or d′, in the state |ψsinglet〉 in Equation (7)
(the CHSH setup).

Figure 12. Correlation array for the tastes± 1
2 of pairs of bananas in the singlet state (see Equation (7)),

one of them peeled a′ or b′ by Alice, the other peeled c′ and d′ by Bob.

The correlation array for the CHSH setup consists of four cells of the form shown in
Figure 5 and can be fully characterized by four correlation coefficients (see Equation (11)):

χa′c′ = − cos ϕa′c′ , χa′d′ = − cos ϕa′d′ ,

χb′c′ = − cos ϕb′c′ , χb′d′ = − cos ϕb′d′ .
(47)

The local polytope for this setup is given by the CHSH inequality and three similar
pairs of inequalities ([8], pp. 160–161, Equations (5.4)–(5.7)):

−2 ≤ χa′c′ + χa′d′ + χb′c′ − χb′d′ ≤ 2,

−2 ≤ −χa′c′ + χa′d′ − χb′c′ − χb′d′ ≤ 2,

−2 ≤ χa′c′ − χa′d′ − χb′c′ − χb′d′ ≤ 2,

−2 ≤ −χa′c′ − χa′d′ + χb′c′ − χb′d′ ≤ 2.

(48)

These inequalities can be found in the same way as the pair in Equation (12) for the Mermin
setup ([8], pp. 157–159: Figure 5.1 shows the raffle tickets for the CHSH setup, Table 5.1
lists the χ values for these tickets).

The quantum convex set for the CHSH setup is given by a non-linear inequality,
first obtained by Landau [18], that follows from the straightforward generalization of the
elliptope inequality in Equation (14) if Alice and Bob have four rather than three different
peelings to choose from (see [8], p. 166, Equation (5.30), with a, b, a′ and b′ relabeled a′, b′,
c′ and d′):

|χa′c′χb′c′ − χa′d′χb′d′ | ≤
√

1− χ2
a′c′

√
1− χ2

b′c′ +
√

1− χ2
a′d′

√
1− χ2

b′d′ . (49)

To use these inequalities for the Hardy–Unruh setup we need to modify the setup
somewhat. The problem is that Equations (48) and (49) are derived for balanced variables,
i.e., their two possible values are each other’s opposite and equiprobable (see Section 2).
This guarantees that their expectation values vanish, which greatly simplifies the expres-
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sions for standard deviations and correlation coefficients (see Equations (3) and (5)). While
the variables measured by Alice and Bob in the Hardy–Unruh setup have opposite values,
their expectation values do not vanish, as these two values are not equiprobable.

We therefore introduce new variables that are balanced but have the same covariances
as the original ones. The correlations between these new balanced variables for a modified
Hardy–Unruh setup can be simulated by a CHSH setup with appropriately chosen peeling
directions.9 Moreover, the modification preserves an important property of the correlation
array for the Hardy–Unruh setup in Figure 11: the ab and ba cells are identical. Hence, we
only need three χ parameters to characterize the correlation array for the CHSH setup with
which we can simulate the correlations found in the modified Hardy–Unruh setup. This
means that the local polytope and the quantum convex set for the modified Hardy–Unruh
setup—like those for the Mermin setup (see Figure 7)—can be pictured in three dimensions.

We introduce the new balanced variables for the modified Hardy–Unruh setup in two
steps. The three panels in Figure 13 illustrate the process for the ab cell. First, we imagine
that Alice and Bob, still choosing between peelings a and b, record the opposite of the taste
of their bananas. The correlation array for this experiment is obtained by switching the
two entries on the diagonal and the two entries on the skew diagonal in each cell of the
correlation array in Figure 11 (see panel (ii) in Figure 13 for the ab cell). This obviously
flips the signs of the expectation values but does not affect the covariances. As we saw in
Equation (4), in each cell, the covariance is equal to 1

4 times the sum of the two entries on
the diagonal minus 1

4 times the sum of the two entries on the skew diagonal. As these sums
stay the same, so do the covariances.

Figure 13. Constructing balanced variables for the Hardy–Unruh setup. The figure shows a cell in
the correlation array for Alice and Bob—peeling a and b, respectively—recording (i) the tastes of their
bananas, (ii) minus those tastes and (iii) the tastes in even and minus the tastes in odd runs. The
functions f (α), g(α), h(α), k(α) can be read off the correlation array in Figure 11.

Next, we imagine that Alice and Bob, still choosing between peelings a and b, record
the taste of their bananas in even runs and the opposite of the taste in odd runs. We obtain
the correlation array for this experiment by taking, for all 16 entries, the straight average
of the entries in the correlation arrays for the even and the odd runs (see panel (iii) in
Figure 13 for the ab cell). The four covariances are the same in all runs so the covariances
for this combined correlation array will still be the same as for the original correlation array
in Figure 11. However, by having Alice and Bob alternate between recording the taste
and recording minus the taste of their bananas, we ensure that the variables they measure
are balanced.

Panel (iii) in Figure 13 shows this for the ab cell, but it is true for all four cells of the
combined correlation array. Both entries on the diagonal are the average of the two entries
on the diagonal in the original correlation array, and both entries on the skew diagonal are
the average of the two entries on the skew diagonal in the original correlation array. Hence,
in each cell, the sum of the two entries in each row and in each column gives 1

2 times the
sum of all four probabilities in that cell. The entries in each row and in each column of
each cell therefore sum to 1

2 , which means that the variables measured by Alice and Bob
when they alternate between recording the taste and minus the taste of their bananas are
indeed balanced.
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In each cell of the correlation array for the balanced Hardy–Unruh setup, as we call it,
the two entries on the diagonal and the two entries on the skew diagonal can be set equal
to 1

2 times the square of, respectively, the sine and the cosine of some angle. Since two of
its four cells are identical, the correlation array for the balanced Hardy–Unruh setup can
thus be fully characterized by three angles. Identifying these angles with half the angles
ϕa′c′ , ϕa′d′ = ϕb′c′ and ϕb′d′ between the peeling directions a′, b′, c′ and d′, we can cast this
correlation array in the form of the correlation array for the CHSH setup in Figure 12.

The standard deviations for the variables in this correlation array are all 1
4 , so the three

correlation coefficients characterizing it are given by

χa′c′(α) = 4 〈Aa′Bc′〉 = 4 〈AaBa〉,

χa′d′(α) = χb′c′(α) = 4 〈Aa′Bd′〉 = 4 〈Ab′Bc′〉 = 4 〈AaBb〉 = 4 〈AbBa〉,

χb′d′(α) = 4 〈Ab′Bd′〉 = 4 〈AbBb〉.

(50)

where we used that the covariances for this CHSH setup are the same as those for the
original Hardy–Unruh setup.

Figures 14 and 15 show the local polytope L and the quantum convex set Q for the
subclass of correlations found in the CHSH setup if two of its four correlation coefficients are
identical.10 We obtain the inequalities definingL andQ in this case by setting χa′d′ = χb′c′ in
Equations (48) and (49). We created Figures 14 and 15 by feeding the resulting inequalities
into Mathematica. Note the similarity of these figures to Figure 7 for the Mermin setup.
In both cases, Q is an inflated version of L. This ‘inflation’ corresponds to the pushout
operation in Le et al. ([13], pp. 10–11) and was first found by Masanes [21].

Figure 14. Local polytope L for the CHSH setup with two identical correlation coefficients. The red
curve between two of the vertices of L represents the correlations found in the balanced Hardy–Unruh
setup for states |ψHU(α)〉 with 0 ≤ α ≤ π

2 . The figure also shows the projection of this curve onto a
facet of L and the point where the distance between the curve and the facet is maximal.
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Figure 15. Quantum convex set Q for the CHSH setup with two identical correlation coefficients.

The values of the correlation coefficients in Equation (50) parameterize the curve
shown in Figures 14 and 16 representing the correlations found between the values of
the balanced variables measured on the state |ψHU(α)〉 for 0 ≤ α ≤ π

2 in our balanced
Hardy–Unruh setup.

Figure 16. Projections of the local polytope L (the dark blue parallelograms) and the quantum
convex set Q (L plus the light blue extensions) for the CHSH setup with two identical correlation
coefficients. The red curve represents the projection onto the same plane of the curve representing the
correlations found in the balanced Hardy–Unruh setup for the states |ψHU(α)〉 in Equations (38)–(43)
with 0 ≤ α ≤ π

2 .

We can compute the covariances on the right-hand side of Equation (50) for these
correlation coefficients with the help of the correlation array in Figure 11 (cf. Equation (4)):

〈AaBa〉 =
1
4
· 2 cos6α− sin2α (1 + cos2α)2 − cos4α sin2α

1 + cos2α
,

〈AaBb〉 = 〈AbBa〉 =
1
4
· cos4α + 1− cos2α sin2α

1 + cos2α
,

〈AbBb〉 =
1
4
· 2 cos2α− sin2α

1 + cos2α
.

(51)
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Multiplying these expressions by 4 and feeding them into Mathematica, we found the
curve in Figures 14 and 16.11 These figures clearly show that the correlations found
with the state |ψHU(α)〉 are outside the local polytope. As one readily verifies, using
Equations (50) and (51), they violate the third pair of CHSH-type inequalities in Equa-
tion (48):

χa′c′ − χa′d′ − χb′c′ − χb′d′ = − 2− 4 cos4α sin2α

1 + cos2α
. (52)

The second term on the right-hand side makes the left-hand side smaller than −2. Compar-
ison with Equation (45) shows that this term is equal to 4 times the probability Pr(+−|aa)
of the outcome responsible for the broken arrow found with the state |ψHU(α)〉. As the
following argument will show, this is no coincidence.

Let A and B represent the tastes found by Alice and Bob for some combination of
peelings. Let Pr(±±) represent the probabilities of the four possible combinations of tastes.
Solving four linear equations for these four probabilities, we can express them in terms of
the expectation values and the covariance of A and B.12 Normalization gives us the first of
these four equations:

Pr(++) + Pr(+−) + Pr(−+) + Pr(−−) = 1; (53)

the expectation values of A and B give us two more:

〈A〉 = 1
2
(

Pr(++) + Pr(+−)− Pr(−+)− Pr(−−)
)
, (54)

〈B〉 = 1
2
(

Pr(++)− Pr(+−) + Pr(−+)− Pr(−−)
)
; (55)

and the covariance of A and B gives us the last one:

〈AB〉 = 1
4
(

Pr(++)− Pr(+−)− Pr(−+) + Pr(−−)
)
. (56)

Multiplying Equations (54) and (55) by 2 and Equation (56) by 4 and solving the
resulting equations for the four probabilities, we find:

Pr(++) = 1
4 + 1

2 〈A〉+
1
2 〈B〉+ 〈AB〉 ,

Pr(+−) = 1
4 + 1

2 〈A〉 −
1
2 〈B〉 − 〈AB〉 ,

Pr(−+) = 1
4 −

1
2 〈A〉+

1
2 〈B〉 − 〈AB〉 ,

Pr(−−) = 1
4 −

1
2 〈A〉 −

1
2 〈B〉+ 〈AB〉 .

(57)

If the expectation values vanish, the probabilities are equal to 1
4 plus or minus the covariance.

Setting the covariance equal to 4χab, we recover the entries in the correlation array in
Figure 2. At this point, however, we are interested in the case that the expectation values
do not vanish.

Consider the probabilities that are 0 in the ab, ba and bb cells of the correlation array in
Figure 11 and the non-vanishing probability in the aa cell that is responsible for the broken
arrow in the Hardy–Unruh chain. This gives us the following four equations:

Pr(+−|aa) = 1
4 + 1

2 〈Aa〉 − 1
2 〈Ba〉 − 〈AaBa〉 ,

0 = Pr(+−|ab) = 1
4 + 1

2 〈Aa〉 − 1
2 〈Bb〉 − 〈AaBb〉 ,

0 = Pr(+−|ba) = 1
4 + 1

2 〈Ab〉 − 1
2 〈Ba〉 − 〈AbBa〉 ,

0 = Pr(−+|bb) = 1
4 −

1
2 〈Ab〉+ 1

2 〈Bb〉 − 〈AbBb〉 .

(58)

If the last three are subtracted from the first, the expectation values all cancel and we are
left with:

Pr(+−|aa) = − 1
2 − 〈AaBa〉+ 〈AaBb〉+ 〈AbBa〉+ 〈AaBb〉 . (59)
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Multiplying both sides by 4 and regrouping terms, we can rewrite this as:

4 〈AaBa〉 − 4 〈AaBb〉 − 4 〈AbBa〉 − 4 〈AaBb〉 = −2− 4 Pr(+−|aa). (60)

Using Equation (50) to replace 4 times the covariances by the corresponding correlation
coefficients and using Equation (45) for Pr(+−|aa), we recover Equation (52). This shows,
to reiterate, that the violation of the corresponding CHSH-type inequality is given by
the probability of the outcome responsible for the broken arrow in the Hardy–Unruh
chain. The maximum value of this probability is the same as the maximum value of the
probability Pr(++|bb) of the outcome responsible for the broken arrow in the Hardy chain
(see Equation (27)).

6. Conclusions

Our examination of Hardy–Unruh chains has left us with a trifecta of deflating insights.
The third is that we cannot claim great originality for the first two. Yet even those for whom
they are hardly new will agree, we hope, that our use of the framework of Understanding
Quantum Raffles [8] helped put these insights in sharper relief. In this short concluding
section, we summarize how our analysis in terms of raffle tickets, correlation arrays and
their geometrical representation led us to these insights. Our treatment of Hardy–Unruh
chains also connects the literature on Hardy’s paradox with the (much more extensive)
literature on correlation polytopes (see note 14) and will hopefully contribute to making
the latter more widely accessible.

The first insight is that the states giving rise to the broken arrow in Hardy’s chain
of conditionals in Equations (1) and (15) are no different from those giving rise to the
broken arrow in Unruh’s chain of conditionals in Equations (2) and (28). All these states
are part of one large family of non-maximally entangled states (how large can be gleaned
from our construction of a generic member in Equations (29)–(36), which simplifies the
constructions given by Hardy [2] and Unruh [4]). We exhibited these family ties by con-
structing correlation arrays for correlations leading to both kinds of broken arrows, the
one in Figure 9 for the Hardy states |ψH(α)〉 in Equations (16) and (20)–(22), and the one in
Figure 11 for the Hardy–Unruh states |ψHU(α)〉 in Equations (38)–(43). We showed how the
defining properties of Hardy and Hardy–Unruh chains of conditionals can be read off these
correlation arrays. We then showed that these two correlation arrays differ only in how
they are labeled (the peelings a and b, the tastes + and−, and the angle α parametrizing the
states). Although we only did this for members of a specific branch of the Hardy–Unruh
family, the same could be done for any family member.

The second insight is that a broken arrow in a Hardy–Unruh chain is equivalent to
the violation of some Bell inequality. We showed this (again: for a special branch of the
Hardy–Unruh family) by constructing a geometrical representation of the correlation array
for the Hardy–Unruh setup (see Figures 14–16). What complicated this task is that the two
possible values of the variables measured in the Hardy–Unruh setup are not equiprobable.
We took care of this problem by slightly modifying the Hardy–Unruh setup. We could
then use a special case of the CHSH inequality (and similar inequalities associated with
other facets of the local polytope) to characterize the class of correlations in this modified
Hardy–Unruh setup allowed by a local hidden-variable theory (i.e., the class of correlations
in this setup that can be simulated with one of our raffles). We showed (see Equation (60))
that the term that expresses the violation of one of these CHSH-type inequalities is exactly
the same as the expression for the probability of the very outcome that is responsible for
the broken arrow in the corresponding Hardy–Unruh chain. This result may not come as a
surprise to many readers, but it was still worth proving.

We agree with Mermin ([17], pp. 883–884) that one should not exaggerate the difference
between using one single outcome or the statistics of many outcomes as evidence that a
correlation is not to be had in a local hidden-variable theory. If, for instance, we want to
simulate the correlation array for a Hardy–Unruh setup in Figure 9 or Figure 11 with one of
our raffles, the problem is not to obtain a non-zero probability for one particular outcome,
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but to obtain it while at the same time obtaining zero probabilities for several other outcomes.13 In
other words, rather than focusing on individual entries, we need to consider a correlation
array as a whole.14

Despite being taken down a notch, Hardy–Unruh chains remain valuable. Whereas we
usually consider violations of Bell inequalities by correlations found in measurements on
maximally entangled states, Hardy–Unruh chains forcefully demonstrate that the slightest
amount of entanglement already makes it impossible to simultaneously assign definite
values to variables represented by non-commuting operators.
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Notes
1 See Liang, Spekkens and Wiseman [9] for an earlier analysis of the violation of the transitivity of material implication in quantum

mechanics noted by Hardy [2]. We are grateful to Yeong-Cherng Liang for drawing our attention to this article.
2 The figures in this section are all based on figures in our book [8]. As in the book (see p. xvii), the two of us focus on

pedagogy (Janssen) and polytopes (Janas) and leave the philosophy to our Canadian co-author (see Cuffaro’s paper in this
issue: “The Measurement Problem Is a Feature, Not a Bug—Schematising the Observer and the Concept of an Open System
on an Informational, or (Neo-)Bohrian, Approach”). Fittingly, the title of our paper comes from a Neil Young song on Buffalo
Springfield’s sophomore album. A song with the same title appears on the first solo album of another Canadian artist, Robbie
Robertson (1943–2023).

3 As Popescu wrote in his foreword to Bananaworld: “The more I think of the bananas, the more I like their use: The two peeling
actions [Bub only allowed two diffferent peelings, from the top and from the stem] are complementary and cannot both be
implemented on the same banana—once it’s peeled it’s peeled, exactly like two measurements that cannot be simultaneously
performed on microscopic particles. And there is only one answer—once it’s eaten it’s eaten. Again, exactly like in quantum
mechanics. The magic bananas are a perfect model for what is going on. So much better than the abstract models the physicists
use” ([6], p. vi).

4 In our book ([8], pp. 72–73), χab is defined as an anti-correlation coefficient. The extra minus sign affects Table 1, Figure 7 and
Equations (13) and (14) below.

5 See Goh et al. [11], Chen et al. [12] and Le et al. [13] for interesting recent work in this tradition, to which Tsirelson made important
early contributions (see, for instance, [14], p. 3, Figure 2). In a paper from 1987 [15], Tsirelson already noted: “As one can easily
see, the set Cor(m, n) of all quantum realized m×n correlation matrices . . . is a closed, bounded, centrally symmetric, convex
body in the space of m×n matrices” (p. 562).

6 This is true for any compound system with a Hilbert space that is the tensor product of the Hilbert spaces of its components. We
sketch a simple proof of this property for the situation at hand, which can readily be adapted to the general case. The probability
that Alice finds + when she peels a and Bob peels b can be written as

Pr
(

A+
∣∣Aa, Bb, ρ̂

)
= Pr

(
A+& B+

∣∣Aa, Bb, ρ̂
)
+ Pr

(
A+& B−

∣∣Aa, Bb, ρ̂
)

,

where ρ̂ is the density operator characterizing the quantum statistical ensemble under consideration. We are considering
an ensemble (or quantum raffle in our terminology [8]) of pairs of quantum bananas all in the state |ψHU(α)〉, in which case
ρ̂ = |ψHU(α)〉 〈ψHU(α)|, the projection operator onto that state, but the same argument works for any ensemble of pairs of
quantum bananas in any state. Using the trace formula for the Born rule for both terms, we can write the right-hand side as

Tr
(

ρ̂
(

P̂1a+
⊗ P̂2b+

))
+ Tr

(
ρ̂
(

P̂1a+
⊗ P̂2b−

))
.
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where P̂1a±
and P̂2b±

are the projection operators in the Hilbert spaces of the bananas of Alice (subscript 1) and Bob (subscript 2)
onto the eigenvectors in the a- and b-bases. Using basic properties of the trace operation and the tensor product, we can rewrite
this expression as

Tr
(

ρ̂
(

P̂1a+
⊗
[
P̂2b+

+ P̂2b−

]))
.

Using the completeness of the b-basis to set P̂2b+
+ P̂2b−

= 1̂2, we arrive at

Pr
(

A+
∣∣Aa, Bb, ρ̂

)
= Tr

(
ρ̂
(

P̂1a+
⊗ 1̂2

))
.

Had Bob chosen a, we would have arrived at the exact same result, using the completeness of the a-basis. This shows that
this marginal probability is indeed independent of the peeling Bob chooses.

7 The correlation array in Figure 9—such as the one in Figure 11 below—belongs to ‘Class 3a: Three blocks [cells in our terminology]
having one zero each’ in the helpful classification of 2×2 correlation arrays by Chen et al. [12].

8 Kwiat and Hardy present their example in terms of quantum cakes rather than quantum bananas. Our conditions 1–4 are their
conditions 2, 2′, 3 and 1, respectively ([16], p. 34). Instead of ‘taste when peeled a′ and ‘taste when peeled b′ (with values + for
yummy and − for nasty), they introduce the variables ‘taste’ (with values G and B for ‘good’ and ‘bad’) and ‘rising of batter’
(with values for R and N for ‘risen’ and ‘not risen’). The corresponding orthonormal bases, {|G〉, |B〉} and {|R〉, |N〉}, are related
via (cf. Equation (8) for α ≈ 51o):

|G〉 =
√

2
5 |R〉 −

√
3
5 |N〉, |B〉 =

√
3
5 |R〉+

√
2
5 |N〉.

Using the {|G〉, |B〉} basis for the Hilbert space of both quantum cakes, they write the state in Equation (26) as (with L and
R for ‘left’ or ‘Lucien’ and ‘right’ or ‘Ricardo’ instead of our 1 or 2):

|ψ〉 = 1
2 |BL〉|BR〉 −

√
3
8

[
|BL〉|GR〉+ |GL〉|BR〉

]
(see [16], p. 35, Appendix).

9 Given a correlation array for measurements on any two-particle state, we can find a correlation array with the same covariances
(though not the same expectation values) for measurements on the singlet state. This is a direct consequence of theorem 1 in
Tsirelson’s 1980 paper ([19], pp. 93–94; for the proof see his 1987 paper [15]). Our introduction of balanced variables for the
Hardy–Unruh setup was inspired by the proof of part of this theorem by Avis et al. ([20], p. 7).

10 The depiction of the convex sets in Figures 14 and 15 was also found by Le et al. ([13], p. 9, Figure 2), who moreover extensively
review the larger convex sets in the absence of the χa′d′ = χb′c′ constraint.

11 Both projection plots in Figure 16 are in the spirit of Goh et al. [11]. The convex sets depicted are equivalent (up to a minor change
in variables) to those in Figure 5 on p. 8 of their paper. This is not entirely trivial: their Figure 5 depicts the χa′d′ = χb′c′ = χb′d′

section of the relevant convex sets, whereas, for instance, our first plot amounts to a projection onto this same hyperplane.
However, the non-trivial symmetries for these sets (see Le et al. [13]), in conjunction with their convexity, ensure that Goh et al.’s
section and our projection are identical.

12 These probabilities can also be expressed directly as expectation values of the corresponding operators in the quantum state
under consideration. Take, for instance, the operators Âa and B̂b representing the variables Aa, the taste of Alice’s banana when
peeled a, and Bb, the taste of Bob’s banana when peeled b. We can write the projection operators onto the eigenvectors |±〉a and
|±〉b of these operators as:

P̂a± =
1̂± 2Âa

2
, P̂b± =

1̂± 2B̂b
2

.

For any ensemble of pairs of bananas (characterized by some density operator ρ̂), the probability Pr(+−|ab) is given by the
expectation value of the tensor product of these projection operators:

Pr(+−|ab) = 〈P̂1a+
⊗ P̂2b−

〉 = 1
4 〈(1̂1 + 2Âa)⊗ (1̂2 − 2B̂b)〉 = 1

4 + 1
2 〈Âa〉 − 1

2 〈B̂b〉 − 〈Âa B̂b〉 ,

which corresponds to the second line in Equation (57).
13 Mermin [17] further considers whether this problem may be circumvented by supposing these other probabilities are sufficiently

small, rather than strictly zero. Relaxing this assumption in Equation (58), the passage to Equation (60) no longer finds that the
violation of the CHSH inequality is controlled by Pr(+−|aa) alone. Instead, the relevant quantity is

Pr(+−|aa)− Pr(+−|ab)− Pr(−+|ba)− Pr(−−|bb).
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But this quantity is no longer manifestly nonnegative, and so cannot yield an inequality stronger than the CHSH inequality itself
(Braun and Choi [22], p. 6). (As stressed by Mermin as well as Braun and Choi, the statement that this quantity is nevertheless
nonnegative is the Clauser-Horne inequality [23].)

14 For another (admittedly more convoluted) example involving measurements in the Mermin setup on a pair of spin-1 particles in
the singlet state, see Understanding Quantum Raffles ([8], pp. 136–137).
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