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Abstract: We study the entropy production in a fractal system composed of two subsystems, each of
which is subjected to an external force. This is achieved by using the H-theorem on the nonlinear
Fokker–Planck equations (NFEs) characterizing the diffusing dynamics of each subsystem. In par-
ticular, we write a general NFE in terms of Hausdorff derivatives to take into account the metric of
each system. We have also investigated some solutions from the analytical and numerical point of
view. We demonstrate that each subsystem affects the total entropy and how the diffusive process is
anomalous when the fractal nature of the system is considered.

Keywords: nonlinear diffusion; generalized entropies; H-theorem; entropy production

1. Introduction

Perhaps one of the greatest achievements of modern physics is the statistical mechanics
formalism, first developed by Boltzmann [1] and later expanded by Gibbs [2], to describe
the dynamics of microscopic particles and their connection with observable thermody-
namics. Entropy is the crucial ingredient in this theory, which must verify the H-Theorem,
establishing that nonequilibrium systems will reach equilibrium after long-time evolution,
essentially posing a way of investigating the rule of additivity for systems with different en-
tropies [3–6]. From a microscopic perspective, the Langevin equation is typically employed
when studying brownian motion, which results in the time-dependent position of the
particle when friction and noise are considered. From the phenomenological point of view,
nonequilibrium statistical mechanics, including entropy calculation, is typically calculated
with the Fokker–Planck equation which, in its linear form, results in Gaussian distributions,
whereas the NFE is generally used to describe anomalous behavior often seen in long-range
interaction [7], memory effects [8], porous media [9,10], and many others (see, for example,
Refs. [11–13] and references therein), all of which display non-Gaussian distributions, typi-
cal of non-Markovian characteristics. A remarkable case in which non-Gaussian behavior
may be present is in the case of interacting particles/systems. For example, a set of particles
may react with another set, which may result in combination, or conversion of one chemical
species into another. In this case, as the process occurs, the interaction dynamically affects
the physical parameters of the system as a whole, including the entropy production and
the diffusion coefficient, which depend on temperature and how the particles interact with
each other [14]. Thus, such cases may be seen as a dynamically coupled system [14].

An anomalous process, such as anomalous diffusion, is a burgeoning field of research,
as it is often observed across several research fields, from separation to biological media

Entropy 2023, 25, 1578. https://doi.org/10.3390/e25121578 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25121578
https://doi.org/10.3390/e25121578
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4930-5262
https://orcid.org/0000-0003-3853-1790
https://orcid.org/0000-0002-6875-1965
https://orcid.org/0000-0002-0103-9017
https://doi.org/10.3390/e25121578
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25121578?type=check_update&version=1


Entropy 2023, 25, 1578 2 of 18

diffusion. From a theoretical point of view, fractional calculus is commonly used to describe
anomalous diffusion processes. However, fractional calculus is nonlocal, making it trou-
blesome in the numerical simulation of long-term and large-scale problems [15]. Also, the
Mittag–Leffler decay [16] and the Lévy stable statistics [17] resulting from fractional calcu-
lus do not describe well some stretched relaxation and stretched Gaussian statistics [15]. An
alternative approach, a local differential operator (conformable derivative [18]), is the Haus-
dorff derivative [19], which relates the fractal nature of space (or time) to the appearance of
anomalous behavior such as observed in anomalous diffusion [15]. Fractal derivatives have
been applied in several contexts, from anomalous diffusion to viscoelasticity and water
transport [15]. The use of Hausdorff derivatives in generalized Fokker–Planck equations
is also scarce. For example, recently [20], the solutions for the generalized Fokker–Planck
equation with conformable and integro-differential operators were analyzed, indicating
that the mean square displacement (MSD) for the studied case presented some difference
when compared to the Caputo derivative [21], but presents the same time dependence as
the scaled Brownian motion [20]. The Fokker–Planck equation of fractal curves was also
explored in reference [22], where anomalous diffusion is observed. Hausdorff derivatives
have also been used to describe anomalous transport in porous media by assuming a
non-Euclidian fractal metric, displaying better agreement with experimental data for the
heavy tail distribution [23].

This article studies the entropy production in a fractal system composed of two
subsystems. Hence, this article is devoted to study a system composed of two different
set of diffusing particles, each set a subsystem of the whole system. As each subsystem
relaxes, the change in one subsystem affects the other, since the time dependent diffusion
coefficient of one subsystem has to change as the distribution of the other subsystem evolve,
as previously discussed for interacting particles. In fact, it is well known that morphology
directly affects diffusion [24,25], so the change in concentration of interacting particles,
commonly reported as molecular crowding [26], may be viewed as a morphology change.
Aiming to make our model as general as possible, we use a set of NFEs to describe the
evolution of each subsystem and analyze different dependences of the time-dependent
diffusion coefficient of one subsystem on the distribution of the other. Also, we solve
our equations with the Hausdorff metric so each subsystem may be viewed as fractal
in nature. Furthermore, we use this system to calculate the entropy production, which
is also generalized by assuming different forms for the entropy of each subsystem. The
thermodynamic connection is achieved by using the H-Theorem on the NFE equations,
characterizing the diffusing dynamics of each subsystem, each subjected to an external
force. In this instance, the diffusion coefficient is temperature-dependent, and the entropy is
also temperature-dependent, so the behavior of one system affects the other. Consequently,
each subsystem serves as a thermal bath for the other, and the H-Theorem guarantees a
connection between the subsystems. This feature also helps us to analyze entropy and the
zero-law of the thermodynamics in terms of a relaxation process governed by nonlinear
Fokker–Planck equations or the mixing between different regimes of diffusion. In fact, the
nonlinear or mixing between different terms connected to the relaxation process directly
influences the functional entropy form and, consequently, on the properties such as the
additivity when different subsystems are added to compose the system. In this sense, the
approach considered here gives a suitable form for the entropy and nonlinear Fokker–
Planck equations in connection with these processes in a thermostatistic context for usual
or anomalous relaxation processes. In this manner, the results will show that the dynamic
of each one has a direct influence on the other as a thermal bath since the coupling appears
in the diffusive term, which is related to how the system will spread. We express a general
NFE regarding Hausdorff derivatives, considering each system’s fractal metric. We show
that the fractal order significantly affects entropy production and leads to an anomalous
diffusion behavior for each design.
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2. Nonlinear Fokker–Planck Equations and Hausdorff Derivative

We begin by setting up the NFEs that explain the behavior of each part of a composite
system:

∂

∂t
ρ1(x1, t) = − ∂

∂ξI ,1(x1)
J1(x1, t) (1)

J1(x1, t) = −D ∂

∂ξI ,1(x1)
P1(ρ1, t) +

∂

∂ξI ,1(x1)

[
F1(x1)ρ1(x1, t)

]
(2)

which implies

∂

∂t
ρ1(x1, t) =

∂

∂ξI ,1(x1)

{
D ∂

∂ξI ,1(x1)
P1(ρ1, t)− ∂

∂ξI ,1(x1)

[
F1(x1)ρ1(x1, t)

]}
(3)

and

∂

∂t
ρ2(x2, t) = − ∂

∂ξI ,2(x2)
J2(x2, t) (4)

J2(x2, t) = −D ∂

∂ξI ,2(x2)
P2(ρ2, t) +

∂

∂ξI ,2(x2)

[
F2(x2)ρ2(x2, t)

]
(5)

which implies

∂

∂t
ρ2(x2, t) =

∂

∂ξI ,2(x2)

{
D ∂

∂ξI ,2(x2)
P2(ρ2, t)− ∂

∂ξI ,2(x2)

[
F2(x2)ρ2(x2, t)

]}
. (6)

In Equations (1)–(6), ρ1(2) is the particle distribution in system 1(2). An external force
Fi(xi) is applied to each subsystem, with i being 1 or 2. This force is connected to the poten-
tial energy φi as Fi = −∂ξI ,i(xi)

φi(xi), x1 and x2 are defined in the range (−∞, ∞) where the
diffusion proceeds, D is the diffusion coefficient, and the spatial operator is the Hausdorff
derivative [15,27], as shall be defined below. Furthermore, P1(2)(ρ1(2), t) is a functional
depending on the distribution of particles here used to generalize the problem. In fact,
this research will make use of P1(ρ1, t) and P2(ρ2, t) to illustrate a certain phenomenon, as
previously seen in porous media [28], anomalous diffusion [29], overdamped systems [30],
and the Boltzmann equation with a correlation term [31]. Equations (3) and (6) also extend
the equations used in Refs. [32–37] to analyze the H-theorem and the entropy production
enable us to consider different contexts. One of them is the relaxation to an equilibrium,
a system composed of subsystems that are governed by Equations (3) and (6), which
may be connected to the zero law of the thermodynamics in generalized thermostatis-
tics contexts [38–40]. The spatial differential operator in Equations (1)–(5), the Hausdorff
derivative [15,27], is defined as follows:

∂

∂ξI ,i(xi)
ρi(xi, t) = lim

x′i→xi

ρi(xi, t)− ρi(x′i , t)
ξI ,i(xi)− ξI ,i(x′i)

=
1

ξi(xi)

∂

∂xi
ρi(xi, t), (7)

where ξI ,i(xi) =
∫ xi dx̄ξi(x̄) which, as previously discussed, may be connected to the

fractal aspects of each system [19].

2.1. H-Theorem

We begin by applying the H-Theorem, taking into account P1(ρ1, t) formally equal
to P2(ρ2, t). We will then explore the consequences of making a different selection and
how it impacts the entropy of the combined system. Subsequently, we will calculate the
Helmholtz free energy and its rate of change, as outlined in Refs. [35,41,42]. The free energy
is expressed as F = U − TS, with the internal energy, U, given as:

U =
∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)Ξ(x1, x2)ρ1(x1, t)ρ2(x2, t), (8)
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with Ξ(x1, x2) = φ1(x1) + φ2(x2), and the entropy S calculated as:

S = k
∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)s(ρ1, ρ2) (9)

where s(ρ1, ρ2) represents a generalized entropy form. For example, if s(ρ1, ρ2) = ρ1lnρ1
+ ρ2lnρ2, we recover the classical Boltzmann entropy. The total free energy of the system
composed of two subsystems is expressed by Equations (8) and (9).

F =
∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)

[
Ξ(x1, x2)ρ1(x1, t)ρ2(x2, t)− kTs(ρ1, ρ2)

]
. (10)

Before examining the H-Theorem with Equation (10), we will assume that P1(ρ1, t)
and P2(ρ2, t) have the same structure and that the entropy is a function of the product
of the probability densities of each subsystem, i.e., s(ρ1, ρ2) = s(ρ1ρ2). This allows us to
demonstrate that

d
dt

F =
∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)

[
Ξ(x1, x2)− kT

∂

∂ρ12
s(ρ12)

]
∂

∂t
[ρ1(x1, t)ρ2(x2, t)], (11)

in which ρ12 = ρ1ρ2. By performing some calculations and using Equations (2) and (5), we
have that

d
dt

F =
∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)

{
Ξ(x1, x2)ρ2 − kTρ2

∂

∂ρ12
s(ρ12)

}
× ∂

∂ξI ,1(x1)

{
D ∂

∂ξI ,1(x1)
P1(ρ1, t)− ∂

∂ξI ,1(x1)

[
F1(x1)ρ1(x1, t)

]}
+

∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)

{
Ξ(x1, x2)ρ1 − kTρ1

∂

∂ρ12
s(ρ12)

}
× ∂

∂ξI ,2(x2)

{
D ∂

∂ξI ,2(x2)
P2(ρ2, t)− ∂

∂ξI ,2(x2)

[
F2(x2)ρ2(x2, t)

]}
. (12)

We now assume the following conditions: ρi(xi → ±∞, t) → 0 and ∂ξI ,i(xi)
ρi(xi →

±∞, t)→ 0. Thus, Equation (12) becomes, after integration by parts:

d
dt

F = −
∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)

{
∂φ1(x1)

∂ξI ,1(x1)
ρ2 − kTρ2

2
∂ρ1

∂ξI ,1(x1)

∂2

∂ρ2
12

s(ρ12)

}

×
{
D ∂

∂ξI ,1(x1)
P1(ρ1, t) +

∂φ1(x1)

∂ξI ,1(x1)
ρ1(x1, t)

}
−

∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)

{
∂φ2(x2)

∂ξI ,2(x2)
ρ1 − kTρ2

1
∂ρ2

∂ξI ,2(x2)

∂2

∂ρ2
12

s(ρ12)

}

×
{
D ∂

∂ξI ,2(x2)
P2(ρ2, t) +

∂φ2(x2)

∂ξI ,2(x2)
ρ2(x2, t)

}
(13)

(for more details, see the Appendix A). Equation (13) is a general result and can be connected
to different relaxation processes depending on the choice of P1(ρ1, t) and P2(ρ2, t) present
in Equations (3) and (6). It can also be used to evidence the interaction between the
subsystems in connection with the relaxation process each subsystem exhibits. This feature
will be evident below with the analysis of the condition required for the H-Theorem
and the previous assumption for the entropy, i.e., s(ρ1, ρ2) = s(ρ1ρ2). Also, this result
maintains the additivity in Penrose sense [43], i.e., S(ρ12) = S(ρ1ρ2) required for a system
composed of independent subsystems when the standard entropy is employed. Thus,
the conditions required by Equation (13) to verify the H-theorem will define a suitable
entropy for the relaxation process described in terms of Equations (3) and (6) for a choice of
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P1(ρ1, t) and P2(ρ2, t), and consequently, the properties of this entropy in connection with a
thermostatistical context.

To proceed with our analysis, we consider that

Pi(ρi, t) =
∫ γ

0
dγ̄p(γ̄)Dj,γ(t)ρ

γ̄
i (xi, t), (14)

with j 6= i, p(γ̄) is a distribution, and Dj,γ̄(t) =
∫ ∞
−∞ dxjξ j(xj)ρ

γ̄
j (xj, t). Note that the

distribution p(γ̄) is connected with the nonlinear term present in Equations (3) and (6),
which leads us a diffusive term with different diffusion regimes. In connection with the
porous media equation and the Tsallis framework [11], γ̄ may be related to the nonlinearity
present in Equations (3) and (6) after substituting Equation (14) and also with the extension
of the entropy to accommodate a thermostatistic context. The range of γ is connected with
the choice performed for the distribution p(γ̄), which defines how will be the behavior
of the diffusive term. One possibility will be analyzed later by considering two different
regimes of diffusion, with p(γ̄) = δ(γ̄ − 1)/2 + δ(γ̄ − ν)/2, with max(1, ν) ≤ γ. The
choice performed for Dj,γ̄(t) also implies that each subsystem influences the other, i.e.,
Equations (2) and (5) are coupled by the diffusive term. Thus,Dj,γ̄(t) introduces interactions
between the subsystems during the thermalization process, where each subsystem works
as an additional thermal bath to the other. By substituting Equation (14) into Equation (13),
we have that

d
dt

F = −
∫ ∞

−∞
dx1ξ1(x1)

1
ρ1(x1)

×
{∫ ∞

−∞
dx2ξ2(x2)

[
∂φ1(x1)

∂ξI ,1(x1)
ρ2ρ1 − kTρ2

2ρ1
∂ρ1(x1)

∂ξI ,1(x1)

∂2

∂ρ2
12

s(ρ12)

]

×
∫ ∞

−∞
dx2ξ2(x2)

[
∂φ1(x1)

∂ξI ,1(x1)
ρ1ρ2 +D

∂ρ1(x1)

∂ξI ,1(x1)
ρ2

∂

∂ρ12

(∫ γ

0
dγ̄p(γ̄)ργ̄

2 ρ
γ̄
1

)]}
−
∫ ∞

−∞
dx2ξ2(x2)

1
ρ2(x2)

×
{∫ ∞

−∞
dx1ξ1(x1)

[
∂φ2(x2)

∂ξI ,2(x2)
ρ1ρ2 − kTρ2

1ρ2
∂ρ2(x2)

∂ξI ,2(x2)

∂2

∂ρ2
12

s(ρ12)

]

×
∫ ∞

−∞
dx1ξ1(x1)

[
∂φ2(x2)

∂ξI ,2(x2)
ρ1ρ2 +D

∂ρ2(x2)

∂ξI ,2(x2)
ρ1

∂

∂ρ12

(∫ γ

0
dγ̄p(γ̄)ργ̄

2 ρ
γ̄
1

)]}
. (15)

We verify that

d
dt

F ≤ 0 if − kTρ2
j ρi

∂2

∂ρ2
ij

s(ρij) = Dρj
∂

∂ρij

(∫ γ

0
dγ̄p(γ̄)ργ̄

i ρ
γ̄
j

)
, (16)

= Dρj
∂

∂ρij

(∫ γ

0
dγ̄p(γ̄)ργ̄

ij

)
, (17)

for i = 1, 2 and j = 1, 2 with i 6= j, D = kT, and ρij = ρiρj, which implies

d
dt

F = −
∫ ∞

−∞
dx1ξ1(x1)

1
ρ1(x1)

×
{∫ ∞

−∞
dx2ξ2(x2)

[
∂φ1(x1)

∂ξI ,1(x1)
ρ2ρ1 − kTρ2

2ρ1
∂ρ1

∂ξI ,1(x1)

∂2

∂ρ2
12

s(ρ12)

]}2

−
∫ ∞

−∞
dx2ξ2(x2)

1
ρ2(x2)

×
{∫ ∞

−∞
dx1ξ1(x1)

[
∂φ2(x2)

∂ξI ,2(x2)
ρ1ρ2 − kTρ2

1ρ2
∂ρ2

∂ξI ,2(x2)

∂2

∂ρ2
12

s(ρ12)

]}2

. (18)
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By solving Equation (16) under the conditions defined in Refs. [34,35,41,42], we obtain

s(ρ12) =
∫ γ

0
dγ̄p(γ̄)

1
γ̄− 1

(
ρ12 − ρ

γ̄
12

)
. (19)

The entropy for the composite system is given by

S = k
∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)

∫ γ

0
dγ̄p(γ̄)

1
γ̄− 1

(
ρ12 − ρ

γ̄
12

)
, (20)

which can also be rewritten as

S = k
∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)

∫ γ

0
dγ̄p(γ̄)

1
γ̄− 1

(
ρ1ρ2 − (ρ1ρ2)

γ̄
)

(21)

and, consequently, as

S = k
∫ γ

0
dγ̄p(γ̄)

1
γ̄− 1

(
1−

∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)[ρ1(x1)ρ2(x2)]

γ̄

)
. (22)

Equation (22) may have several particular cases, such as the Tsallis and Kaniadakis
entropies, depending on the choice of p(γ̄). It is also worth mentioning that the Boltzmann–
Gibbs entropy is recovered from Equation (22), which is connected with the linear Fokker–
Planck equation as discussed in Ref. [44]. In addition, different from the standard situation,
to satisfy the H-theorem and preserve the form s = s(ρ1ρ2), the nonlinear Fokker–Planck
equations imply that the systems interact with each other. Equation (22) can be connected
to the unusual additivity present in the Tsallis formalism as follows:

S =
∫ γ

0
dγ̄p(γ̄)

(
S1(γ̄) + S2(γ̄) + [(1− γ̄)/k]S1(γ̄)S2(γ̄)

)
, (23)

where

S1(2)(γ̄) =
k

γ̄− 1

(
1−

∫ ∞

−∞
dx1(2)ξ1(2)(x1(2))

[
ρ1(2)(x1(2))

]γ̄
)

. (24)

This result, connected to each system’s relaxation, shows how each part’s entropy is
added to compose the total entropy. Equation (23) has been applied in several situations
such as black hole [45], inanimated and living matter [46], and interacting particles [47].

The NFE that emerges from the previous analysis, i.e., from Equation (14), which is
related to the nonlinear term and verifies the H-theorem, for each subsystem can be written
as follows:

∂

∂t
ρ1(x1, t) =

∂

∂ξI ,1(x1)

{∫ γ

0
dγ̄p(γ̄)D1,γ̄(t)

∂

∂ξI ,1(x1)
ρ

γ̄
1 (x1, t)− F1(x1)ρ1(x1, t)

}
(25)

and

∂

∂t
ρ2(x2, t) =

∂

∂ξI ,2(x2)

{∫ γ

0
dγ̄p(γ̄)D2,γ̄(t)

∂

∂ξI ,2(x2)
ρ

γ̄
2 (x2, t)− F2(x2)ρ2(x2, t)

}
, (26)

with Di,γ̄(t) = Di,γ(t)D, which demonstrates the influence of one of the subsystems on
the other. In addition, the components that constitute the diffusive element can also be
associated with anomalous diffusion processes with distinct diffusion regimes. This feature
was investigated, for example, in Ref. [48] by considering the Fokker–Planck equation
with a different form for the diffusive term or Langevin equations with additive noises in
Ref. [49]. It is also worth mentioning that the H-theorem shows us a suitable way for the
dynamic processes in connection with the system’s entropy.
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We will now contemplate a general situation in which the diffusion terms have a
distinct nonlinear relationship with the distributions. This implies that the systems have
distinct dynamic characteristics regulated by the nonlinear connection with the distri-
bution found in the diffusive term. Using the preceding equations and having in mind
Equation (10), we may write

d
dt

F =
∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)

{
Ξ(x1, x2)

∂

∂t
[ρ1(x1, t)ρ2(x2, t)] (27)

− kT
[

∂

∂ρ1
s(ρ1, ρ2)

∂

∂t
ρ1(x1, t) +

∂

∂ρ2
s(ρ1, ρ2)

∂

∂t
ρ2(x2, t)

]}
,

which implies

d
dt

F =
∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)

{
Ξ(x1, x2)ρ2 − kT

∂

∂ρ1
s(ρ1, ρ2)

}
× ∂

∂ξI ,1(x1)

{
D ∂

∂ξI ,1(x1)
P1(ρ1, t) +

∂φ1(x1)

∂ξI ,1(x1)
ρ1(x1, t)

}
+

∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)

{
Ξ(x1, x2)ρ1 − kT

∂

∂ρ2
s(ρ1, ρ2)

}
× ∂

∂ξI ,2(x2)

{
D ∂

∂ξI ,2(x2)
P2(ρ2, t) +

∂φ2(x2)

∂ξI ,2(x2)
ρ2(x2, t)

}
. (28)

After some calculations, it is possible to show that

d
dt

F = −
∫ ∞

−∞
dx1ξ1(x1)

1
ρ1(x1)

∫ ∞

−∞
dx2ξ2(x2)

×
{

∂φ(x1)

∂ξI ,1(x1)
ρ2(x2)ρ1(x1)− kT

[
ρ1

∂2

∂ρ2
1

s(ρ1, ρ2)

]
∂ρ1

∂ξI ,1(x1)

}

×
{[
D ∂

∂ρ1
P1(ρ1, t)

]
∂ρ1

∂ξI ,1(x1)
+

∂φ1(x1)

∂ξI ,1(x1)
ρ1(x1, t)

}
−

∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)

× 1
ρ2(x2)

{
∂φ(x2)

∂ξI ,2(x2)
ρ1(x1)ρ2(x2)− kT

[
ρ2

∂2

∂ρ2
2

s(ρ1, ρ2)

]
∂ρ2

∂ξI ,2(x2)

}

× ∂

∂ξI ,2(x2)

{[
D ∂

∂ρ2
P2(ρ2, t)

]
∂ρ2

∂ξI ,2(x2)
+

∂φ2(x2)

∂ξI ,2(x2)
ρ2(x2, t)

}
. (29)

Now, we assume, for example, the case

P1(ρ1, t) =
∫ γ

0
dγ̄p(γ̄)D2,ν(t)ρ

γ̄
1 (x1, t) (30)

and

P2(ρ2, t) =
∫ ν

0
dν̄p(ν̄)D1,γ̄(t)ρν̄

2(x2, t), (31)

with

D2,ν(t) =
∫ ν

0
dν̄p(ν̄)

1
ν̄− 1

∫ ∞

−∞
dx2ξ2(x2)ρ

ν̄
2(x2, t) (32)

and

D1,γ(t) =
∫ γ

0
dγ̄p(γ̄)

1
γ̄− 1

∫ ∞

−∞
dx1ξ1(x1)ρ

γ̄
1 (x1, t). (33)
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This implies that Equations (2) and (5) have different forms, and thus, the two sub-
systems have distinct relaxation processes. In Ref. [14], a particular case was studied by
looking at the interaction between the two subsystems. Each choice has its implications for
the total entropy of the composite system. By examining Equations (32) and (33), we can
see that the entropy must satisfy the following equations:

−ρ1
∂2

∂ρ2
1

s(ρ1, ρ2) =
∫ γ

0
dγ̄p(γ̄)

∫ ν

0
dν̄p(ν̄)

γ̄

ν̄− 1
ρν̄

2ρ
γ̄−1
1 (34)

and

−ρ2
∂2

∂ρ2
2

s(ρ1, ρ2) =
∫ γ

0
dγ̄p(γ̄)

∫ ν

0
dν̄p(ν̄)

ν̄

γ̄− 1
ρν̄−1

2 ρ
γ̄
1 (35)

to verify

d
dt

F ≤ 0, (36)

and, consequently, to satisfy the H-Theorem. A solution for the previous system of equa-
tions is

s(ρ1, ρ2) =
∫ γ

0
dγ̄

p(γ̄)
γ̄− 1

∫ ν

0
dν̄

p(ν̄)
γ̄− 1

(
ρ1ρ2 − ρν̄

2ρ
γ̄
1

)
. (37)

This result allows us to write the total entropy of this system as follows:

S = k
∫ γ

0
dγ̄

p(γ̄)
γ̄− 1

∫ ν

0
dν̄

p(ν̄)
ν̄− 1

[
1−

∫ ∞

−∞
dx2ξ2(x2)ρ

ν̄
2(x2, t)

∫ ∞

−∞
dx1ξ1(x1)ρ

γ̄
1 (x1, t)

]
. (38)

This result for the entropy is distinct from the one given by Equation (22), which was
derived from a different selection of NFEs. It is the consequence of combining subsystems
with distinct relaxation processes, each of which has its entropy. Additionally, Equation (38)
is linked to the combination of Tsallis entropies with different q−indices [50–52]. The
solution can be obtained in this context by using q−exponential functions.

Let us now consider a particular example of the results mentioned above when
different behaviors for P1(ρ1, t) and P2(ρ2, t) are chosen. We consider the case obtained
from Equations (30) and (31) for p(γ̄) = δ(γ̄ − γ) and p(ν̄) = δ(ν̄ − ν) in absence of
external force, yielding

∂

∂t
ρ1 =

∂

∂ξI ,1(x1)

[
D2,ν(t)

∂

∂ξI ,1(x1)
ρ

γ
1 (x1, t)

]
(39)

and

∂

∂t
ρ2 =

∂

∂ξI ,2(x2)

[
D1,γ(t)

∂

∂ξI ,2(x2)
ρν

2(x2, t)
]

. (40)

Hence, it is simple to verify that

ρ1(x1, t) = expγ

[
−β1(t)ξ2

I ,1(x1)
]
/Z1(t) (41)

and

ρ2(x1, t) = expν

[
−β2(t)ξ2

I ,2(x2)
]
/Z2(t), (42)

are solutions for Equations (39) and (40). The previous solutions for the NFEs can be also
obtained from the maximum principle of entropy when the entropy

S1(2) =
k

γ(ν)− 1

(
1−

∫
dx1(2)ξ1(2)(x1(2))

[
ρ1(2)(x1(2), t)

]γ(ν)
)

(43)
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with the constraints∫ ∞

−∞
dx1(2)ξ1(2)(x1(2))ρ

γ(ν)
1(2) (x1(2), t)

[
ξI ,1(2)(x1(2))

]2
= σ2

ξI (x),1(2)(t) (44)

and ∫ ∞

−∞
dx1(2)ξ1(2)(x1(2))ρ1(2)(x1(2), t) = 1 . (45)

A particular situation was worked out in Ref. [11] for the porous media equation. From
Equations (41) and (42), we can verify how the distribution is affected by the space metric
and the parameter γ(ν). Figure 1 shows ρ1(2)Z1(2) vs. β1(2)x for ξI ,1(2)(x1(2)) = |x1(2)|

α1(2) .
If α1(2) = γ(ν) = 1, as expected, we recover the usual behavior given by a Gaussian
distribution. On the other hand, one can clearly see from figure Figure 1 that if the parameter
coming from the Hausdorff derivative (α1(2)) or the parameter γ (which describes how
the distribution of one kind of particle affects the time-dependent diffusion coefficient of
the other, or, in different words, how molecular crowding affects diffusion) the behavior
becomes non-Gaussian. Thus, depending on the choice of parameters ν, γ, and α1(2), the
distribution may present different behaviors that are asymptotically characterized by short-
or long-tailed distributions. In the latter case, it is possible to connect the results with the
Lévy distributions. In addition, a particular scenario of Equations (39) and (40) has been
worked out in Ref. [53] in connection with the fractal dimensions. Similar situations are
found in the context of the Tsallis statistics, which are described by power-law distributions.
However, small changes in the parametersα1(2) and γ(ν) strongly affect the distribution
of particles.

-2 0 2
0.0

0.3

0.6

0.9


1(2)

 = 1.5 , () = 0.95  

 
1(2)

 = 0.5 , () = 0.95

  
1(2)

 = 0.75, () = 1.2

 
1(2)

 = 1.0 , () = 1.0

Z
1
(
2
)
(t
)



(x
,t)

1/(1(2))
1(2) (t)x

Figure 1. Figure 1 shows the behavior of particle distribution obtained from Z1(2)(t)ρ1(2)(x, t) versus

β
1/α1(2)

1(2) (t)x obtained from Equations (41) and (42) for different values of α1(2), ν, and γ. The solid
black line corresponds to the standard diffusion, and the other lines correspond to the generalized
cases. To make things simpler, we assume ρ1(2)(x1(2), 0) = δ(x1(2)), ξI ,1(2)(x1(2)) = |x1(2)|α1(2) , and
D = 1.

With β1(t), β2(t), Z1(t), and Z2(t) obtained from the following set of equations:

1
2β1

d
dt

β1 = − 2γ

ν− 1
Iν

N ν
νN

γ−1
γ

β
(ν−1)/2
2 β

(γ+1)/2
1 (46)

and
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1
2β2

d
dt

β2 = − 2ν

γ− 1
Iγ

N γ
γN ν−1

ν

β
(ν+1)/2
2 β

(γ−1)/2
1 (47)

with

Iκ =


Γ( 1

2 )Γ(1+ κ
κ−1 )√

κ−1Γ( 3
2+

κ
κ−1 )

1 ≤ κ < 2

Γ( 1
2 )Γ( κ

1−κ−
1
2 )√

1−κΓ( κ
1−κ )

0 ≤ κ ≤ 1
, Nκ =


Γ( 1

2 )Γ(1+ 1
κ−1 )√

κ−1Γ( 3
2+

1
κ−1 )

1 ≤ κ < 2

Γ( 1
2 )Γ( 1

1−κ−
1
2 )√

1−κΓ( 1
1−κ )

0 ≤ κ ≤ 1
(48)

where κ = γ or ν and Z1(2)(t)
√

β1(2)(t) = Z1(2)(0)
√

β1(2)(0) = constant. Note that de-
pending on the choice of the parameters γ and ν, Equations (41) and (42) may present a com-
pact or a long-tailed behavior. In the last case, it is possible to connect the solutions with the
Lévy distributions as performed in Refs. [54,55]. The solutions for Equations (46) and (47)
can be found, and they are given by

β1(t) =

[
ν + γ

ν− 1
γIν

NνN γ−1
γ

C
ν−1

2 t

]− 2
ν+γ

(49)

and β2(t) = Cβ1(t) with

C = γ(γ− 1)
ν(ν− 1)

(IνNγ

IγNν

)
. (50)

By using the previous equations, it is possible to obtain the mean square displacement.
Let us now consider the case of ξ1(2)(x) = |x|α1(2) , which represents a fractal metric as
proposed by Chen [19], and the definition that follows:

σ2
x,1(2)(t) =

〈(
x1(2) − 〈x1(2)〉1(2)

)2
〉

. (51)

After performing some calculations, it is possible to show that

σ2
x,1(2)(t) =

ζγ(ν)

Nγ(ν)

1[
β1(2)(t)

] 1
α1(2)

, (52)

where ζκ =
∫ ∞

0 duu1/α1(2)−1/2 expκ [−u], which implies in σ2
x,1(2)(t) ∝ t2/[α1(2)(γ+ν)]. Figure 2

illustrates the behavior of the mean square displacement, where the regions for the sub- and
superdiffusion are shown. The black line corresponds to the usual diffusion. The choice
of α1 and α2 connected to the fractal derivative directly influences the diffusion process.
Another point concerning the behavior showed in Figure 2 is the influence of the dynamic
of each system on the other since the results for the mean square displacement depend on
the parameters γ and ν connected to the nonlinearity present in the diffusive term. These
feature connected to Figure 2 shows that the anomalous behavior is directly connected with
the fractal metric of space [19] and has also been worked out in Refs. [56–59] by considering
diffusion on fractal objects.

It is possible to demonstrate other scenarios by performing numerical computations,
that is, by numerically solving Equations (2) and (5). Figures 3 and 4 illustrate the case
for which P1(2)(ρ1(2), t) is given by Equation (14) with p(γ̄) = δ(γ̄− 1)/2 + δ(ν− γ̄)/2,
F1(x1, t) = −k1(θ(x1)− θ(−x1))|x1|α1 (θ(x) is the Heaviside function), and F2(x1, t) = 0.
Notice that the initial moments, with centered distributions, represent t = 10−3, while the
more spread distributions represent t = 1. Remarkably, a simple change in the fractal value
α1(2) results in a large change in the observed diffusion regime of the particles. Numerical
computations were performed for values ν greater than and less than one. The system
was set in the range of −5000 to 5000, with a step size of dx = 0.02 and a time step of
dt = 0.000001 to generate the results shown in the figures. The choices of dx and dt meet the
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requirement of Ddt/
(
dx2) < 1/2 for the stability of the solutions when the initial condition

evolves in time to meet the boundary conditions [60,61]. Figure 3 show the dynamical
behavior of the distributions ρ1(2)(x, t) for ν = 1.2, and two values of the fractal exponent
α1(2), which produce a non-Gaussian result. Note that the behavior presented in Figure 3
results from combining two different diffusive terms, one linear and the other nonlinear,
besides the unusual metric for the space. Figure 4 demonstrates the anomalous nature
of diffusive behavior when the fractal exponent changes from 0.9 to 1.2 for ν = 0.95 and
ν = 1.2. It is also interesting to mention that the results presented in this figure show
that the system under the influence of the external force has a different behavior for the
mean square displacement, that is, the influence of the external force limits diffusion. On
the other hand, the system without external force can spread freely. The influence is also
present on the time dependence of the diffusion coefficient, which depends on the integral
of the distribution in a nonlinear power law of the other distribution.

0 3 6 9
0

3

6

9

   α1(2)(ν+γ) > 2

    Subdiffusion

   α1(2)(ν+γ) < 2

  Superdiffusion

σ2 x
,1

(2
)(

t)

t

   α1(2)(ν+γ) = 2

 Usual Diffusion

Figure 2. Figure 2 shows the behavior of the mean square displacement obtained for ρ1(x1, t) and
ρ2(x2, t) from Equations (3) and (26). The solid black line corresponds to the standard diffusion. The
green dashed line corresponds to the superdiffusion. The red dashed-dotted line is associated with
subdiffusion. To make things simpler, we assume ρ1(2)(x1(2), 0) = δ(x1(2)), ξI ,1(2)(x1(2)) = |x1(2)|α1(2) ,
and D = 1.
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     ρ1(x,t)
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= 0.9
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)
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t = 1

(a)
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ρ(
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-2 0 2

0
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t = 10
-3

     ρ1(x,t)

     ρ2(x,t)

 ν = 1.2, α
1(2)

= 1.2

ρ(
x
,t

)

x

t = 1
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3

6

ρ(
x
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)

x

Figure 3. Behavior obtained for ρ1(x1, t) and ρ2(x2, t) from Equations (3) and (6) in Figures 3a and 3b,
where P1(2)(ρ1(2), t) is given by Equation (14) with p(γ̄) = δ(γ̄ − 1)/2 + δ(ν − γ̄)/2, F1(x1, t) =

−k1(θ(x1) − θ(−x1))|x1|α1 (θ(x) is the Heviside function), and F2(x2, t) = 0. The black dashed
lines correspond to ρ1(x1, t) for different values of t. The red dashed-dotted lines correspond to
ρ2(x2, t) for different values of t. We consider, for simplicity, ρ1(2)(x1(2), 0) = δ(x1(2)), k1 = 1,
ξI ,1(2)(x1(2)) = |x1(2)|α1(2) , and D = 1.
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(t

)

t

(b)

Figure 4. Figures 4a and 4b show the behavior of the mean square displacement obtained with
the distributions ρ1(x1, t) and ρ2(x2, t) from Equations (3) and (6), where P1(2)(ρ1(2), t) is given by
Equation (14) with p(γ̄) = δ(γ̄− 1)/2 + δ(ν− γ̄)/2, F1(x1, t) = −k1(θ(x1)− θ(−x1))|x1|α1 (θ(x) is
the Heaviside function) and F2(x2, t) = 0. The dashed-dotted lines correspond to the mean square
displacement obtained from ρ1(x1, t) for different values of ν. dashed lines correspond to the mean
square displacement obtained from ρ2(x2, t) for different values of ν. We consider, for simplicity,
ρ1(2)(x1(2), 0) = δ(x1(2)), k1 = 1, ξI ,1(2)(x1(2)) = |x1(2)|α1(2) , and D = 1.

2.2. Entropy Production

We can examine the entropy production associated with Equation (21) by looking at
the dynamics of ρ1(x1, t) and ρ2(x2, t) given by Equations (25) and (26). Differentiating
Equation (21) with respect to time gives us the result:

d
dt
S(t) = k

∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)

[
∂

∂ρ12
s(ρ12)

]
∂

∂t
[
ρ1(x1, t)ρ2(x2, t)

]
= −k

∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)ρ2

∂

∂ρ12
s(ρ12)

∂

∂ξI ,1(x1)
J1(x1, t)

− k
∫ ∞

−∞
dx1ξ1(x1)ρ1

∫ ∞

−∞
dx2ξ2(x2)

∂

∂ρ12
s(ρ12)

∂

∂ξI ,2(x2)
J2(x2, t) (53)

Consequently, integration by parts is performed with the conditions that J1(x1 →
±∞, t) and J2(x2 → ±∞, t) both approaching zero:

d
dt
S(t) = k

∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)

[
ρ2

2
∂2

∂ρ2
12

s(ρ12)
∂

∂ξI ,1(x1)
ρ1

]
J1(x1, t)

+ k
∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)

[
ρ2

1
∂2

∂ρ2
12

s(ρ12)
∂

∂ξI ,2(x2)
ρ2

]
J2(x2, t). (54)

It is feasible to make Equation (53) simpler by utilizing the equations from the H-
Theorem:

−kTρ1ρ2
2

∂ρ1

∂ξI ,1(x1)

∂2

∂ρ2
12

s(ρ12) = D
∂

∂ξI ,1(x1)
P1(ρ1, t) (55)

and

−kTρ2ρ2
1

∂ρ2

∂ξI ,2(x2)

∂2

∂ρ2
12

s(ρ12) = D
∂

∂ξI ,2(x2)
P2(ρ2, t), (56)

to obtain

d
dt
S(t) = − 1

T

∫ ∞

−∞
dx1ξ1(x1)F1(x1)J1(x1, t)− 1

T

∫ ∞

−∞
dx2ξ2(x2)F2(x2)J2(x1, t)

+
1
T

∫ ∞

−∞
dx1ξ1(x1)

J 2
1 (x1, t)

ρ1(x1, t)
+

1
T

∫ ∞

−∞
dx2ξ2(x2)

J 2
2 (x2, t)

ρ2(x2, t)
, (57)
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where J1(x1, t) and J2(x2, t) are defined by Equations (1) and (5), with P1(ρ1, t) and
P2(ρ2, t) given by Equations (30) and (31). Equation (53) can also be written as follows:

d
dt
S = Π−Φ. (58)

The entropy that is exchanged between the two subsystems ρ1 and ρ2 and their
environment is called the flux of entropy. This can be expressed as follows:

Φ =
1
T

∫ ∞

−∞
dx1ξ1(x1)F1(x1)J1(x1, t) +

1
T

∫ ∞

−∞
dx2ξ2(x1)F2(x2)J2(x1, t), (59)

and the entropy-production term:

Π =
1
T

∫ ∞

−∞
dx1ξ1(x1)

J 2
1 (x1, t)

ρ1(x1, t)
+

1
T

∫ ∞

−∞
dx2ξ2(x2)

J 2
2 (x2, t)

ρ2(x2, t)
. (60)

Since T and ρi(xi, t) are both positive, the desired result is obtained: Π ≥ 0. This result
for the entropy production, given by Equation (57) and, thus, Equation (58) can also be
confirmed for any entropy condition.

It is also important to mention that the entropy production in this framework for the ex-
ternal force considered here has the same behavior for the different choices of ξI ,1(2)(x1(2)).
This feature is directly connected with the definition of the integral used to obtain the
entropy. Figures 5 and 6 illustrate the behavior of entropy (S) and entropy production (Ṡ).
Figure 5 presents (S) and (Ṡ) for different values of ν. Figure 6 illustrates the behavior (S)
and (Ṡ) for the values α1(2) = 1.2 and ν = 1.2 taking into account different external forces.
Note that in each case, we consider a diffusion process with two different diffusive terms,
one linear and the other nonlinear. Thus, the entropy evaluated for these cases results
from the combination of different diffusive regimes. For ν < 1, the system is essentially
governed by long-tailed distributions, and for ν > 1, short-tailed distributions govern
the system. These features have a direct influence on entropy and entropy production,
as shown in these figures. The entropy of the system is a growing function of time that
eventually reaches a plateau for a long time, as expected. Interestingly, the external force, as
shown in Figure 6, modifies the system’s entropy. In fact, entropy and entropy production
depend on the external force acting on the systems, that is, how it can confine the system or
not, during the particle spreading process.
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Figure 5. Figure 5 shows the behavior obtained for Equation (22) with ρ1(x1, t) and ρ2(x2, t) from
Equations (3) and (6), where P1(2)(ρ1(2), t) is given by Equation (14) with p(γ̄) = δ(γ̄− 1)/2 + δ(ν−
γ̄)/2, F1(x1, t) = −k1(θ(x1)− θ(−x1))|x1|α1 (θ(x) is the Heviside function), and F2(x2, t) = 0. The
red dashed-dotted line corresponds to the case ν = 0.9. The green dashed line corresponds to the case
ν = 1.2. The inset corresponds to the behavior of Equation (57) for these values of ν. We consider, for
simplicity, ρ1(2)(x1(2), 0) = δ(x1(2)), k1 = 1, ξI ,1(2)(x1(2)) = |x1(2)|α1(2) , and D = 1.
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Figure 6. Figure 6 shows the behavior obtained for Equation (22) with ρ1(x1, t) and ρ2(x2, t) from
Equations (3) and (6), where P1(2)(ρ1(2), t) is given by Equation (14) with p(γ̄) = δ(γ̄ − 1)/2 +

δ(ν− γ̄)/2. The black dashed-dotted line corresponds to the case F1(x1, t) = 0 and F2(x2, t) = 0.
The green dashed line corresponds to the case F1(x1, t) = −k1(θ(x1)− θ(−x1))|x1|α1 (θ(x) is the
Heviside function), and F2(x2, t) = 0. The blue dashed-dotted-dotted line corresponds to the case
F1(x1, t) = −k1(θ(x1)− θ(−x1))|x1|α1 /

(
1 + |x1|2α1

)
, and F2(x2, t) = 0. For simplicity, we consider

ρ1(2)(x1(2), 0) = δ(x1(2)), k1 = 1, ξI ,1(2)(x1(2)) = |x1(2)|α1(2) , and D = 1.

3. Conclusions

We have investigated entropy production in a fractal system composed of two sub-
systems, each subject to an external force. This is achieved by using the H-theorem on the
nonlinear Fokker–Planck equations (NFEs), characterizing the diffusing dynamics of each
subsystem. To consider the metric of space in which the systems are embedded and, hence,
the fractal nature that leads to anomalous diffusion, we expressed the general NFE in terms
of Hausdorff derivatives. We investigated some solutions from an analytical and numerical
point of view. From our results, it is clear that the diffusive regime is directly related to
the system metric, meaning that the distributions characterize anomalous diffusion, which
may represent usual, sub-, or super-diffusive processes. It is also interesting to note that
each system has an influence on the spread of the other through the diffusive term and
the external forces applied to the systems. In this manner, the results have shown that
the dynamic of each one has a direct influence on the other as a thermal bath, since the
coupling appears in the diffusive term, which is related to how the system will spread. Our
results, as they have been obtained, represent a very general approach to describe particle
dynamics and thermodynamic connection in systems composed of interacting particles,
such as diffusion in crowded biological media [26] and many others. In particular, our
results help to demonstrate how entropy production occurs in such systems which, in turn,
may be fundamental to understanding several aspects of interacting particle systems and
their connection with measurable quantities. Furthermore, the generalization proposed
in this work allows one or both subsystems to be fractal in nature, that is, the space mor-
phology is also present within the model. On the other hand, our results indicate that the
space metric does not affect the entropy production of the system. Instead, it is directly
affected by other aspects of the subsystems related to the intrinsic nature of diffusion. We
anticipate that our findings will contribute to a better understanding of the connection
between complex systems, nonlinear sciences, and the metric of space in which the process
takes place.
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Appendix A

Let us consider in detail the calculations of some equations. We start with the results
obtained for Equation (13). For this, we consider the following Equation (A1),

d
dt

F =
∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)

[
Ξ(x1, x2)− kT

∂

∂ρ12
s(ρ12)

]
∂

∂t
[ρ1(x1, t)ρ2(x2, t)], (A1)

in which ρ12 = ρ1ρ2, as defined before. After performing the time derivative, Equation (A1)
can be written as follows

d
dt

F =
∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)

[
Ξ(x1, x2)− kT

∂

∂ρ12
s(ρ12)

]
×

[
ρ2(x2, t)

∂

∂t
ρ1(x1, t) + ρ1(x1, t)

∂

∂t
ρ2(x2, t)

]
. (A2)

Now, we need to consider the nonlinear Fokker–Planck equations, i.e., Equations (3)
and (6), to simplify the differential operators in time. By substituting Equations (3) and (6)
in Equation (A2), we have that

d
dt

F =
∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)

{
Ξ(x1, x2)ρ2 − kTρ2

∂

∂ρ12
s(ρ12)

}
× ∂

∂ξI ,1(x1)

{
D ∂

∂ξI ,1(x1)
P1(ρ1, t)− ∂

∂ξI ,1(x1)

[
F1(x1)ρ1(x1, t)

]}
+

∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)

{
Ξ(x1, x2)ρ1 − kTρ1

∂

∂ρ12
s(ρ12)

}
× ∂

∂ξI ,2(x2)

{
D ∂

∂ξI ,2(x2)
P2(ρ2, t)− ∂

∂ξI ,2(x2)

[
F2(x2)ρ2(x2, t)

]}
. (A3)

Before performing integration by parts, we can use the properties of the fractal deriva-
tive and write the previous equation as follows:

d
dt

F =
∫ ∞

−∞
dx2ξ2(x2)

∫ ∞

−∞
dx1

{
Ξ(x1, x2)ρ2 − kTρ2

∂

∂ρ12
s(ρ12)

}
× ∂

∂x1

{
D ∂

∂ξI ,1(x1)
P1(ρ1, t)− ∂

∂ξI ,1(x1)

[
F1(x1)ρ1(x1, t)

]}
+

∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2

{
Ξ(x1, x2)ρ1 − kTρ1

∂

∂ρ12
s(ρ12)

}
× ∂

∂x2

{
D ∂

∂ξI ,2(x2)
P2(ρ2, t)− ∂

∂ξI ,2(x2)

[
F2(x2)ρ2(x2, t)

]}
. (A4)
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We perform some integration by parts and assume the following conditions: ρi(x →
±∞, t)→ 0 and ∂ξI ,i(xi)

ρi(xi, t)|xi→±∞ → 0. Thus, Equation (A4) yields:

d
dt

F = −
∫ ∞

−∞
dx2ξ2(x2)

∫ ∞

−∞
dx1

∂

∂x1

{
Ξ(x1, x2)ρ2 − kTρ2

∂

∂ρ12
s(ρ12)

}
×

{
D ∂

∂ξI ,1(x1)
P1(ρ1, t)− ∂

∂ξI ,1(x1)

[
F1(x1)ρ1(x1, t)

]}
−

∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2

∂

∂x2

{
Ξ(x1, x2)ρ1 − kTρ1

∂

∂ρ12
s(ρ12)

}
×

{
D ∂

∂ξI ,2(x2)
P2(ρ2, t)− ∂

∂ξI ,2(x2)

[
F2(x2)ρ2(x2, t)

]}
. (A5)

and, consequently,

d
dt

F = −
∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)

{
∂φ1(x1)

∂ξI ,1(x1)
ρ2 − kTρ2

2
∂ρ1

∂ξI ,1(x1)

∂2

∂ρ2
12

s(ρ12)

}

×
{
D ∂

∂ξI ,1(x1)
P1(ρ1, t) +

∂φ1(x1)

∂ξI ,1(x1)
ρ1(x1, t)

}
−

∫ ∞

−∞
dx1ξ1(x1)

∫ ∞

−∞
dx2ξ2(x2)

{
∂φ2(x2)

∂ξI ,2(x2)
ρ1 − kTρ2

1
∂ρ2

∂ξI ,2(x2)

∂2

∂ρ2
12

s(ρ12)

}

×
{
D ∂

∂ξI ,2(x2)
P2(ρ2, t) +

∂φ2(x2)

∂ξI ,2(x2)
ρ2(x2, t)

}
. (A6)

Note that to obtain Equation (A7), i.e.,

d
dt

F = −
∫ ∞

−∞
dx1ξ1(x1)

1
ρ1

×
{∫ ∞

−∞
dx2ξ2(x2)

[
∂φ1(x1)

∂ξI ,1(x1)
ρ2ρ1 − kTρ2

2ρ1
∂ρ1

∂ξI ,1(x1)

∂2

∂ρ2
12

s(ρ12)

]}2

−
∫ ∞

−∞
dx2ξ2(x2)

1
ρ2

×
{∫ ∞

−∞
dx1ξ1(x1)

[
∂φ2(x2)

∂ξI ,2(x2)
ρ1ρ2 − kTρ2

1ρ2
∂ρ2

∂ξI ,2(x2)

∂2

∂ρ2
12

s(ρ12)

]}2

. (A7)

by taking Equations (30) and (31) into account, we have to consider

−kTρ2
j ρi

∂2

∂ρ2
ij

s(ρij) = Dρj
∂

∂ρij

(∫ γ

0
dγ̄p(γ̄)ργ̄

i ρ
γ̄
j

)
, (A8)

= Dρj
∂

∂ρij

(∫ γ

0
dγ̄p(γ̄)ργ̄

ij

)
, (A9)

where i = 1, 2 and j = 1, 2 with i 6= j, D = kT, ρij = ρiρj, and
∫ ∞
−∞ dxiξi(xi)ρi(xi, t) = 1,

which implies

d
dt

F ≤ 0 . (A10)

Similar calculations were performed to obtain Equations (29)–(38).
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