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Abstract: We discuss the generalized quantum Lyapunov exponents Lq, defined from the growth
rate of the powers of the square commutator. They may be related to an appropriately defined
thermodynamic limit of the spectrum of the commutator, which plays the role of a large deviation
function, obtained from the exponents Lq via a Legendre transform. We show that such exponents
obey a generalized bound to chaos due to the fluctuation–dissipation theorem, as already discussed
in the literature. The bounds for larger q are actually stronger, placing a limit on the large deviations
of chaotic properties. Our findings at infinite temperature are exemplified by a numerical study of
the kicked top, a paradigmatic model of quantum chaos.
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1. Introduction

Classical chaos is well understood from the sensitivity of the dynamics to respect
small changes in the initial conditions, the so-called butterfly effect. This is quantified by
the Lyapunov exponent, the rate at which nearby trajectories separate exponentially in
time. In the past few years, there has been a lot of attention given to quantum chaos and
in particular, on the quantum Lyapunov exponent λL, defined from the intermediate-time
exponential growth of the following square-commutator:

〈|[A(t), B]|2〉 ∼ ε2eλLt , (1)

where ε is a small parameter [1]. The interest in this object comes from the fact that λL
obeys a bound:

λL ≤
2π

βh̄
. (2)

This result, now known as the quantum bound to chaos, was proved within the high
energy community [2], driven to the topic because maximal chaos is attained by models
of black holes, including the Sachdev–Ye–Kitaev model (SYK) [3–5]. See also Refs. [6,7]
for alternative derivations. The interest in these issues has later spread over different
communities, from condensed matter to quantum information theory. Recently, the ex-
istence of the bound in Equation (2) was physically rationalized as a consequence of the
fluctuation–dissipation theorem (FDT) [8,9] since the out of time-order correlators (OTOC)
appearing in Equation (1) can be mapped into two-time correlation functions in a duplicated
Hilbert space.

Actually, both classically and quantum mechanically, the Lyapunov exponent is a
distributed quantity: different starting conditions—or different time intervals after the same
starting condition—yield different exponents, and they are peaked on a ‘typical’ value and
have large (and rare) deviations around, for example, when a classical trajectory grazes a
regular region. If the distribution is not a delta function, it is referred to as ‘multifractal’ [10].

A possibility to study the full distribution of Lyapunov exponents is to introduce the
generalized Lyapunov exponents (GLE) L2q, defined from the moments of the distribution
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(This may lead to confusion. The Lyapunov exponents are classified as first (maximal), second,
. . . according to whether they measure linear, area, and in general k-form expansions [11].
Each is also generalized according to the moment q considered. Here we are considering
expansions of linear lengths, and all moments q of the ‘first, maximum, Lyapunov exponent’,
thus L(k)

2q for all q and k = 1). It turns out that the quantum generalized exponents also
satisfy themselves a bound, stated in Ref. [8], that generalizes Equation (2). These bounds
are the subject of this paper. We have two motivations: Firstly, they put limitations on the
chaotic properties of rare protocols, favoring high and low chaoticity, and also allow us
to define a Lyapunov exponent for typical protocols, actually different from the usual one
considered in quantum mechanics. Secondly, a system that approaches the bounds for all
the L2q will turn out to be mono-fractal, i.e, the large deviation function becomes peaked on
a single value, a property we find intriguing.

The quantum generalized Lyapunov exponents are defined by considering the 2q-
th commutator between two operators at different times, and assuming that they scale
exponentially with time as

G2q(t) = 〈(i[A(t), B)])2q〉β ∼ ε2q eL(β)
2q t , (3)

where ε is a small parameter, two common examples are ε = h̄ (the semiclassical limit) or
ε = N−1 (as in the SYK model), the latter being more relevant here as we shall be interested
in thermodynamic models. The thermal average 〈•〉β at inverse temperature β may be
defined in various ways, as we shall see below.

The rate L(β)
2q now defines the quantum thermal generalized Lyapunov exponent of

order q. The usual (quenched) Lyapunov exponent thus is

λ
(β)
1 = lim

q→0

L(β)
2q

2q
(4)

On the other hand, the grow rate of the square commutator λL actually corresponds
to the GLE with q = 1: λL = L(β)

2 .
In the quantum realm, the exponential regime holds only at intermediate times, up

to the so-called Ehrenfest time tEhr ∼ ln ε−1. In actual fact, only when lim tEhr → ∞ is the
Lyapunov regime unambiguously defined.

Different q-Lyapunovs are dominated by initial conditions having different expansion
rates, with larger rates dominating the averages corresponding to larger q. Hence, one
must allow for the dependence on the Ehrenfest time itself:

t(2q)
Ehr =

2q
L2q

ln ε−1 such that G2q(t) ∼ eL(β)
2q (t−t(2q)

Ehr ) . (5)

A crucial assumption we shall make here is that

t(2q)
Ehr ≤ t(2q′)

Ehr for q > q′ (6)

Under these assumptions, we show that the following holds:

L(β)
2q

2q
≤ π

βh̄
. (7)

This bound was already stated in Ref. [8], without the identification of the rate L(β)
2q as

a quantum GLE and the relation to large deviations. We will also clarify some assumptions
on which the derivation [8].
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Because we are assuming that
L(β)

2q
2q does not decrease, the bounds for larger q (but al-

ways of order one with respect to N) are more stringent. The meaning of this, as the classical
discussion below will make clear, is that even rarely expanding conditions are bounded.

2. Classical Generalized Lyapunov Exponents

Let us briefly review the classical case [11]. Consider the infinitesimal separation |∆(t)|
between two trajectories at time t, starting at a point x0 and x0 + ∆:

R(t) =
|∆(t)|
|∆(0)| ∼ eλ t . (8)

The rate λ is a function of the initial condition x0. This quantity grows in time according
to an asymptotic exponential law λt with (λ > 0) if the system is chaotic, where λ is a
function of time which reaches a finite limit at long times. A very long chaotic trajectory
will have explored most of the phase space, and the exponential expansion will be sampled
from all regions: the value λ then becomes essentially the same for all initial conditions.
This fact is encompassed in the Oseledec theorem [12].

The fact that ln R(t) is a cumulative process over stretches of time with uncorrelated
properties leads to the usual argument for the introduction of a large deviation principle,
in this case for the probability of a Lyapunov value given a random initial condition:

ln P(λ, t) ∼ −t S(λ) , (9)

where S is the large-deviation (Cramér) function. If the system is ergodic, the ensem-
ble of initial conditions may be substituted by the ensemble of initial times along the
same trajectory.

The typical Lyapunov exponent λ1 is given by

λ1 ≡ lim
t→∞

1
t
〈ln R(t)〉τ ≡ lim

t→∞

∫
dλ P(λ, t)λ (10)

(note that λ = λ(t)).
One can study the 2q-th moments which, for long enough times, shall grow exponentially as

R2q(t) = 〈R(t)2q〉 ∼ eL2qt, (11)

where
L2q = lim

t→∞

1
t

ln〈R(τ)2q〉 (12)

are called the generalized Lyapunov exponents (GLE) of order 2q, and characterize the fluc-
tuations of the dynamical system [10]; see also Ref. [13]. They are defined as
annealed averages:

L2q ≡
1
t

ln lim
t→∞

∫
dλ P(λ, t) e2qλt ∼ max

λ
{−S(λ) + 2qλ} , (13)

where we have evaluated the integral over large t using saddle point. The typical Lyapunov
exponent is retrieved as the limit

λ1 = lim
q→0

L2q

2q
=

1
2

dL2q

dq

∣∣∣
q=0

. (14)

The GLE L2q is the Legendre transform of S(λ), via Equation (13). As such, also L2q is
a convex function of 2q. As a consequence, one has that L2q obeys two important properties:
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1. L2q/2q are an increasing function of the order q:

d
dq

(
L2q

2q

)
≥ 0 ; (15)

2. The GLEs are always bounded by the linear behavior:

L2q ≥ 2qλ1 . (16)

These equations are obtained via the property of convex differentiable functions f (x):
f (x) ≥ f (y) + f ′(y)(x − y). For x = 2q and y = 0, this yields Equation (16), while for
x = 0 and y = 2q, one has Equation (15).

The equality L2q = 2qλ1 in Equation (16) holds only if P(λ) = δ(λ − λ1), namely
if the Lyapunov exponent is the same and does not fluctuate, we have mono-fractality.
Interestingly, this characterizes also random matrices of dimension D without any structure
and with high connectivity, which satisfy L2q = 2qλ1 +O(1/D) [10]. Otherwise, the system
is characterized by multifractal behavior. The higher the moments, the more important the
contributions coming from the tales of the distribution. In particular, in the case of a
distribution P(λ) with a finite support, the limits

λmax/min = lim
q→±∞

L2q

2q
(17)

select the maximal and minimal expanding rates.

3. Quantum Generalized Lyapunov Exponents at Infinite Temperature

Our goal is to extend the definition of generalized Lyapunov exponents to the quantum
domain to discuss the bound in Equation (7). Systems with a few degrees of freedom do
not lend themselves to the implementation of bounds that depend on temperature, as the
canonical ensemble is not particularly useful for them. However, we may understand
some other features that are also valid in thermodynamic systems by studying infinite-
temperature systems of this kind. In this section, we define the quantum generalized
Lyapunov exponents at infinite temperature and discuss their “convexity” properties. We
will see that it is straightforward to interpret the quantum GLE as a probe of the spectral
properties of the square-commutator operator.

3.1. Properties of the Infinite Temperature Quantum GLE

Let us first analyze the infinite temperature 2q-th commutator Equation (3) at infinite
temperature:

G(0)
2q (t) =

(−1)q

Z
Tr
(
[A(t), B]2q

)
, (18)

where Z = Tr(I) = dimH is given by the Hilbert space dimension. This object generalizes
the infinite temperature square-commutator in Equation (1), which has been discussed in a
variety of models, and it is particularly relevant for dynamical protocols where energy is
not conserved (such as with periodic driving or in the open system’s scenario).

The infinite temperature quantum GLEs are then defined by the exponential growth
at intermediate times:

G(0)
2q (t) ∼ ε2qeL(0)

2q t . (19)

We now show that L(0)
2q obey the same properties as the classical ones (e.g.,

Equation (15)). Let us re-write Equation (18) as

G(0)
2q (t) =

1
Z ∑

i
(gi(t))2q , (20)
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where we defined gi(t) the eigenvalues of the square-commutator operator, i.e.,

− [A(t), B]2 = ∑
it

(gi(t))2|it〉〈it| . (21)

and we have made explicit a factor t so that λt may have a finite limit. Some properties of
this operator have been studied on specific models, see, for example, Refs. [14,15]. If the
expectation value of the square commutator grows exponentially (we consider only times
before tEhr), then it is convenient to write each eigenvalue as

gi(t) = eλi
tt . (22)

By using 1 =
∫

dλδ(λ− λi
t), we can re-write Equation (18) as

G(0)
2q (t) =

∫
dλ P(λ)e2qλt (23)

where we have defined the distribution of the quantum local Lyapunov exponents

P(λ) = ∑
i

δ(λit − λ) . (24)

Equations (23) and (24) shows that the G(0)
2q (t) are moments since they can be written

as an integral of times the powers of a function times a positive function P(λ). We can
associate to the latter a convex Cramér function tS(λ) ∼ ln P(λ) as in Equation (9), which
gives the Legendre transform of L(0)

2q . These relations imply the convexity of the quantum
GLE at an infinite temperature, which results in the following:

1. L(0)
2q /2q is an increasing function of q;

2. The following inequality holds:

L(0)
2q ≥ 2qλ

(0)
1 , (25)

where λ
(0)
1 = limq→0

L(0)
2q
2q .

The equality holds in the absence of fluctuations in the spectrum of the square-
commutator operator. Such mono-fractal behavior means that—for the appropriate time’s
range—the square-commutator operator is close to a constant times the identity matrix.

3.2. A Semi-Classical Example: The Quantum Kicked Top

As an illustrative example, we study a driven model: the quantum kicked top. Since
the energy is not conserved, this model is equivalent to a system at infinite temperature.
We thus show that L(0)

2q satisfies the properties of convexity and of large deviation theory.

(In this section, we denote L(0)
2q = L2q, for the sake of clarity.)

The model is described by the time-dependent Hamiltonian:

H = αSx +
J
N

S2
z

∞

∑
n=−∞

δ(t− nτ) , (26)

where Sx,y,z = 1
2 ∑N

i=1 σi
x,y,z are collective spin operators. Due to the collective nature of

the interactions, for large N, the classical limit is approached. One can define an effective
Planck constant:

h̄ =
1
S
=

2
N

(27)
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that vanishes in the thermodynamic limit. The stroboscopic time-evolution operator
(namely, the time-evolution operator over one period) reads as

Û = ÛJÛα with Uα = e−iαSx , ÛJ = e−i J
N S2

z . (28)

We fix τ = 1 and α = π/2. Changing the value of the kicking strength J, this model
undergoes a transition between a regular regime and a chaotic one [16,17]. The dynamics
of the square commutator (1) have been extensively explored [18–22].

We consider the strongly chaotic limit by choosing J = 3.5, and we look at the infinite
temperature state with ρ = I/ dim H, with dim H = N + 1. We study the dynamics of the
G2q(t) via exact numerical calculations, specifically via exact diagonalization. We compute
the stroboscopic time-evolution of the 2q-th commutator (3) using Â = B̂ = Ŝz at times
t = nτ = 0, 1, 2, . . . .

In Figure 1, we show the dynamics of G2q(t) for different values of q = 1÷ 19. The
correlators are rescaled by h̄2q [with h̄ = 2/N] to emphasize the scaling of Equation (3).
Each commutator grows exponentially before the Ehrenfest times with a different rate
that corresponds to the quantum GLE L2q. The value of L2q is then fitted and plotted in
Figure 2a, where we display its behavior as a function of q. It is a convex function of
q that satisfies L2q > 2qλ1 [cf. Equation (25)], being therefore multifractal. The typical
Lyapunov exponent λ1 is computed as in Figure 2b, where L2q/2q is plotted as a function
of q. The extrapolation to q → 0 yields λ1 = 1.1(1), which corresponds to the maximum
Lyapunov exponent of the classical model in the chaotic phase λclass = 1.12, as computed
via the Benettin et al. algorithm [23,24]; see, for example, the appendix of Ref. [22]. We also
extract the maximal expanding rate λmax = 2.4(1) [cf. Equation (17)] from the limit q→ ∞,
signaling that the distribution of Lyapunov has finite support.

0.0 2.5 5.0 7.5 10.0 12.5
t

108

1026

1044

1062

1080

1098

q = 1

q = 19

G2q(t)h̄
−2q from infinite temperature state N = 1600

Figure 1. Dynamics of G2q(t) in Equation (3) for different values of q = 1÷ 19 as a function of time
for N = 1600.

Figure 3 (shaded lines) shows the spectrum of the square commutator in Equation (21).
Most of the eigenvalues grow exponentially in time before saturation and thus define
some local Lyapunov exponents. We compare this behavior with the standard square-
commutator expectation G2(t) [cf. Equation (1)] (blue dots), which grows exponentially at
a rate L2 larger than the maximum Lyapunov λ1. The figure also shows that λmax as fitted
and extracted in Figure 2 (the dashed black line) corresponds to the maximal expanding
rate of the local Lyapunov exponents.
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0 10
q

0

10

20

30

40
fitted L2q

2∏1q

2∏maxq

0 10
q

0.0

0.5

1.0

1.5

2.0

∏1 = 1.09

∏max = 2.38

fitted L2q/2q

Generalized L2q for N=1600

.1(1)

.4(1).4(1)

Figure 2. Generalized Lyapunov exponents fitted from Figure 1. (Left) L2q as a function of q,
contrasted with the actual Lyapunov exponent λ1 and the maximal expanding rate λmax, obtained by
a fit of these data at large q. (Right) L2q/2q as a function of the moment q, from which we extract the
maximal Lyapunov exponent λ1.

2.5 5.0 7.5 10.0 12.5
t

10−2

100

102

104

106

Spectrum of −[A(t), B]2

G2(t)

eL2t

e2λmaxt

e2λ1t

Figure 3. Spectrum of the square commutator g2
i (t), compared with G2(t) and the exponential growth

with L2, with the maximal expansion rate λmax and with λ1 for N = 1600.

In Figure 4, we show that the local Lyapunov exponents are a large deviation. We
consider the coefficients λi

t = ln(gi)/2t from Figure 3 (we divide everything by a constant
factor). On the left, we plot their numerical distribution at different times t = 3, 4, 5, which
shows that it converges to a distribution at large t. On the right, we plot − ln P(λ)/t, which
shall correspond to the smooth convex “Cramer” function at large times; see Equation (9).

0.0 2.5
λt

0.0

0.2

0.4

0.6

P
(λ

t)

t = 4

0.0 2.5
λt

t = 5

0.0 2.5
λt

t = 6

−1 0 1 2
λ

0.2

0.4

0.6

0.8

−
lo

g
P

(λ
)/
t

t = 4

t = 5

t = 6

Figure 4. Large deviation properties of the spectrum of the square-commutator for N = 1600. (Left)
Numerical distributions of λi

t = ln(gi(t))/2t with g2
i (t) the eigenvalues of Equation (20) at different

times t = 3, 4, 5. (Right) − ln P(λ)/t with P(λ) the empirical distribution.
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4. Thermal Quantum Generalized Exponents

It is useful to consider the different regularizations of the 2q-th commutator as

G(β)
2q (t) = Tr

((
ρ

1
4q i[A(t), B]ρ

1
4q

)2q
)

, (29)

G(β)
2q (t) = Tr

((
i[ρ

1
8q A(t)ρ

1
8q , ρ

1
8q Bρ

1
8q ]

)2q
)

. (30)

with
ρ = e−βH/Zβ and Zβ = Tre−βH (31)

Considering q = 1 in Equations (29) and (30), we retrieve the standard regularized
square commutators for which the bounds have been proved in Ref. [9]. In Section 4.2
below, we show that the multi-time correlation functions appearing in Equations (29) and
(30) can be mapped as two-times functions in a replicated Hilbert space of 2q copies. This
allows one to rationalize the use of such regularizations—that might seem an artificial
construction—as fixing the temperature of the different replicas to be the same.

These regularizations define the thermal average introduced in Equation (3), which
defines thermal GLE L(2q)

β . We consider the situation in which both of the q-th commutators
grow exponentially in time as

G(β)
2q (t) ∝ ε2qeL(β)

2q t , (32)

Ḡ(β)
2q (t) ∝ ε2qeL(β)

2q t , (33)

which is valid only for an intermediate time regime

td � t ≤ t(2q)
Ehr ≡

L(β)
2q

2q
ln ε−1 . (34)

4.1. From Commutators to OTOCS

Consider the quantities of Equations (29) and (30). Expanding the commutators, we
get a series of OTOC terms containing exactly k times:

G(β)
2q (t) =

2q

∑
k=1

dk [OTOC]k (35)

of the form
[OTOC]k = 〈A1(t)B1(0) . . . Ak(t)Bk(0)〉β + h.c. , (36)

where A1, B1, . . . are powers of A and B respectively and dk some coefficients. With these
notations, [OTOC]1 = 〈Aq(t)Bq(0)〉β + h.c. is a function of two times. Out-of-time-order
correlators between k operators are sometimes referred to as k-OTOC; see Refs. [25–28].
We are here interested in understanding their structure in time for exponential growth.
Following [2], we assume that there exists some dissipation time td, after which two-point
functions factorize as [OTOC]1 ∼ Cq.

Each [OTOC]2k may grow at most as fast as the corresponding Lyapunov behavior,
during the corresponding Ehrenfest time:

Ck − [OTOC]2k ∝ ε2keL2kt = eL2k(t−t(2k)
Ehr ) . (37)

If we evaluate this term at times corresponding to a finite but small fraction of the
corresponding Ehrenfest time t(2q)

Ehr , we conclude that all the terms with k < q are of lower
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or equal order, because of the ordering of Ehrenfest times [cf. Equation (6)]. We thus
conclude that

G(β)
2q (t) ∼ Cq − Re Tr

(
ρ

1
2q A(t)B ρ

1
2q A(t)B . . . ρ

1
2q A(t)B

)
, (38)

G(β)
2q (t) ∼ Cq − Tr

(
ρ

1
4q A(t)ρ

1
4q B ρ

1
4q A(t)ρ

1
4q B . . . ρ

1
4q A(t)ρ

1
4q B

)
, (39)

where the constants Cq, C̄q are different given the different regularizations.

4.2. Product Space, Fluctuation-Dissipation Theorem and Bound

In this section, we will show how the multi-time OTOC appearing in the generalized
2q-th commutators has a simple interpretation as two-time correlation functions in a 2q-
replicated space, see [25]. Focusing on q = 1, in Ref. [9] we have stressed that bringing an
OTOC into this representation for finite β allows one to write the corresponding fluctuation-
dissipation (FDT) relations as a usual KMS one. Here, we will demonstrate it for generic q.

Let us consider the following 4q point out of time order correlator:

S2q(t) =
1
Z β

Tr
(
(ρ

1
2q A(t)B )2q

)
= Tr

(
ρ

1
2q A(t)B ρ

1
2q A(t)B . . . ρ

1
2q A(t)B

)
. (40)

Now, we re-write it in terms of the spectral representation of the Hamiltonian H|n〉 =
En|n〉 as

S2q(t) =
1
Z β

∑
n1n2 ...n2q

e−
β
2q (En1+En2+...En2q ) × 〈n1|A(t)B|n2〉〈n2|A(t)B|n3〉 . . . 〈n2q|A(t)B|n1〉

=
1
Z β

∑
n1n2 ...n2q

e−
β
2q (En1+En2+...En2q ) × 〈n1n2 . . . n2q−1n2q|A(t)B|n2n3 . . . n2qn1〉 ,

where we introduced the operators that act in the 2q-th replicated Hilbert space:

A(t) = A(t)⊗ A(t) · · · ⊗ A(t) , B = B⊗ B · · · ⊗ B , (41)

and the replicated Hamiltonian

H = H ⊗ 1 · · · ⊗ 1 + 1⊗ H · · · ⊗ 1 + · · ·+ 1⊗ 1 · · · ⊗ H. (42)

We also define the cyclic shift operator P that permutes cyclically states between the
Hilbert spaces as

P|n1n2 . . . n2q−1n2q〉 = |n2n3 . . . nqn1〉 with P2q = 1 , (43)

P†|n1n2 . . . n2q−1n2q〉 = |n2qn1n2 . . . n2q−1〉 . (44)

Notice that the operator P is non-Hermitian, but we can define P̃ = P+P†

2 that is. P̃
also commutes with A(t), B and H so that P̃B is Hermitian.

Let us re-write Equation (41) as

S2q(t) =
1
Z β

∑
n1n2 ...n2q

e−
β
2q (En1+En2+...En2q ) × 1

2

(
〈n1n2 . . . n2q−1n2q|A(t)B|n2n3 . . . nqn1〉

+ 〈n1n2 . . . n2q−1n2q|A(t)B|n2qn1 . . . nq−2n2q−1〉
)

,
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where in the second line, we simply used a different resolution of the identity and a
reshuffling of the matrix elements (We use

〈n1|A(t)B|n2q〉〈n2q|A(t)B|n2q−1〉 . . . 〈n3|A(t)B|n2〉〈n2|A(t)B|n1〉 =
〈n1|A(t)B|n2q〉〈n2|A(t)B|n1〉〈n3|A(t)B|n2〉 . . . 〈n2q|A(t)B|n2q−1〉 .

).
Therefore, we can re-write Equation (40) as

S2q(t) =
1
Z β

Tr
(

e−β2qHA(t)B P̃
)

(45)

which, besides a normalization, is a standard equilibrium expectation value of a two-time
function at inverse temperature β2q = β/2q. This result naturally generalizes the one for
four times OTOC, for which P = P† = P̃, as derived in Ref. [9].

4.2.1. Fluctuation–Dissipation in the Replicated Space

We may now write the extended KMS relations. We consider

C2q(t) =
1
2

1
Z

Tr
[
e−β2qH {A(t), B P̃}

]
, (46)

R2q(t) =
i
h̄

θ(t)
1
Z

Tr
[
e−β2qH [A(t), B P̃]

]
(47)

F2q(t) =
1
Z

Tr
[

e−
β2q

2 HA(t)e−
β2q

2 H B P̃
]

(48)

where C2q and R2q are defined as usual from real and imaginary parts of S2q(t) = C2q(t) +
h̄(R2q)

′′(t) and correspond to fluctuations and response functions, respectively. Instead,
the (Whiteman) correlation function F2q in the original space is

F2q(t) = Tr
(
(ρ1/4q A(t)ρ1/4qB)2q

)
. (49)

We remark that the Fourier transforms of the connected parts of F2q, known as free
cumulants, directly encode the energy shell correlations appearing in the eigenstate ther-
malization hypothesis [29,30].

The correlation functions defined in Equations (46)–(48) obey the FDT at a modified
temperature β2q [31]. In the frequency domain, the FDT reads

C2q(ω) = cosh(β2q h̄ω/2)F2q(ω) , (50)

h̄(R2q)
′′(ω) = sinh(β2q h̄ω/2)F2q(ω) , (51)

equivalent to the standard formulation h̄(R2q)
′′(ω) = tanh(β2q h̄ω/2)C2q(ω). We are inter-

ested in correlations in the time domain; hence, at the fluctuation–dissipation theorem for-
mulated in the time domain, the t-FDT [9]. In particular, we will use the following relations:

C2q(t) = cos
(

β2q h̄
2

d
dt

)
F2q(t) , (52)

h̄(R2q)
′′(t) = sin

(
β2q h̄

2
d
dt

)
F2q(t) . (53)
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4.2.2. The Bound

At times small but comparable with t(2q)
Ehr , the previous arguments showed that the

2q-OTOC are dominated by the regularized commutators [cf. Equations (38) and (39)]

Cq −C2q(t) ∼ G(β)
2q (t) , C̄q − F2q(t) ∼ Ḡ(β)

2q (t)

when the behavior is exponential as∼ exp[L(β)
2q (t− t(2q)

Ehr )]. The t-FDT in Equation (52) implies

Cq −C2q(t)
C̄q − F2q(t)

= cos

 β2q h̄L(β)
2q

2

 (54)

The positivity of these coefficients—that follows from the fact that the 2q-th commuta-

tors are positive definite—requires that the GLE must be such that cos
(

β2q h̄
2 L(β)

2q

)
≥ 0. We

thus conclude
L(β)

2q

2q
≤ π

βh̄
. (55)

In the models where the Lyapunov depends on temperature [32–34], the cosine above
in Equation (54) starts from zero at large temperature and is always in the first quadrant.

The bound on the 2q-th OTOC rate was previously derived by Tsuji et al. in Ref. [8], by
taking Equations (38) and (39) as a working assumption. In Section 4.1 above, we justified
it using the ordering of the Ehrenfest times t(2q)

Ehr .

4.3. Distribution Functions

The generalized Lyapunov exponents are the moments of a Lyapunov distribution
function, as we have seen in the classical case and for the quantum GLE at an infinite
temperature. In the case of finite β, the structure is more complex. This is due to the
presence of q−dependent thermal matrices ρ in the definition of the regularized powers of
commutators in Equations (29) and (30).

Nevertheless, one may define the Legendre transform of the thermal GLE as

S(λ, β) = max
q

(2λq− L(β)
2q ) . (56)

In analogy with the previous cases, we may interpret it as the Cramèr function of an
associated large deviation function P(λ, β) ∼ exp(S(λ, β)t). As such, it shall obey similar
properties as discussed above. In particular, the convexity of S(λ, β) and L(β)

2q corresponds
with the ordering of the Ehrenfest times in Equation (6) assumed at the beginning. The
latter is equivalent to the conditions that

L(β)
2q

2q
increasing function of q. (57)

It is thus clear that the quantum bound (55) constrains the larger q that are related
with the rare large deviations.

5. Discussion and Conclusions

In this work, we studied the quantum generalized Lyapunov exponents that quantify
the large deviations of the spectrum of an appropriate operator. First, we discussed their
convexity properties at infinite temperatures, which we exemplified on the kicked top. At
finite temperatures, the quantum fluctuation–dissipation theorem (KMS) imposes a bound
on their value, thus generalizing the celebrated bound to chaos to multipoint correlations.
These bounds set a limit on the large deviations of chaotic properties.
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A fascinating point is the interpretation of saturating the bound (7) at every q, which
implies a form of mono-fractality:

L(β)
2q =

πh̄
β

2q . (58)

Classical examples of mono-fractal behavior, i.e., models for which every trajectory has the
same Lyapunov exponent, are the backer map [35] and the free dynamics on the pseudosphere
(the surface with constant negative curvature) [36]. What can we learn about the models
that saturate the quantum bound (58)? A natural expectation is that the SYK model would
lie in this class. In this case, it would be interesting to explore the meaning of such quantum
mono-fractality in connection to the distinct properties of the model.
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