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Abstract: Constitutive relations are fundamental and essential to characterize physical systems. By
utilizing the κ-deformed functions, some constitutive relations are generalized. We here show some
applications of the Kaniadakis distributions, based on the inverse hyperbolic sine function, to some
topics belonging to the realm of statistical physics and natural science.
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1. Introduction

The κ-exponential function [1–3] is defined by:

expκ(x) ∶= (κx +
√

1+ κ2x2)
1
κ = exp[1

κ
arsinh(κx)], (1)

for a real deformation parameter κ. The inverse function, i.e., the κ-deformed logarithmic
function, is defined by:

lnκ x ∶= xκ − x−κ

2κ
= 1

κ
sinh[κ ln x]. (2)

Both κ-deformed functions are important ingredients of the generalized statistical physics
based on κ-entropy [1–3]. This influences a wide range of scientific fields, and, based
on the κ-deformed functions (Appendix A), several basic fields developed over two
decades. Kaniadakis [4] provided the theoretical foundations and mathematical formal-
ism generated by the κ-deformed functions, and some references, including many fields
of applications. Recently, the usefulness of the κ-statistics was demonstrated for the
analysis [5] of epidemics and pandemics.

Constitutive relations are fundamental and essential to characterize physical systems.
They are combined with the other equations of the physical laws in order to solve physical
problems. There are well-known examples of linear constitutive relations, such as the
following: Hooke’s law F = ksx, for the tensile, or compressive, force F of a spring with a
spring constant ks against the change in its length x; Ohm’s law V = RI for the voltage V of
an electrical conductor with resistance R under an electric current I, and so on. However,
as a real spring deviates from Hooke’s law, we know that any linear constitutive relation
describes an idealized situation, and it is merely a linearized- and/or approximated-
relation to describe some real physical properties. Hence, in general, non-linearity plays a
crucial role to describe more realistic physical systems.
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The κ-exponential function (1) can be regarded as a useful tool (or device) to make
such non-linear constitutive relations for a better description of real physical systems. For
example, consider the following κ-deformation of Hooke’s law:

Fκ ∶= ks ln[expκ(x)] = ks

κ
ln(κx +

√
1+ κ2x2), (3)

which reduces to the original Hooke’s law F = ksx in the limit of κ → 0. For any linear
constitutive relation, we can apply this type of the κ-deformation. For example, Ohm’s law
can be cast into the following form: V = RI = R ln[exp(I)]. By changing the exponential
function with the κ-exponential function, we obtain the κ-deformed version of Ohm’s law:
Vκ = R ln[expκ(I)]. In this research, we focused on this type of the κ-deformation of a
physical quantity (say A), i.e.,

A ⇒ ln[expκ(A)] = 1
κ

arsinh(κA). (4)

Throughout this paper, we call this κ-deformation the arsinh-type deformation of a physical
quantity A.

Another type of the κ-deformation can be:

A ⇒ lnκ[exp(A)] = 1
κ

sinh(κA), (5)

which is called here the sinh-type deformation. In Reference [6], the thermodynamic stability
of the κ-generalization SB

κ of Boltzmann entropy SB was studied. The κ-generalization SB
κ

was rewritten in the form:

SB
κ ∶= kB lnκ W = kB lnκ[exp(ln W)] = kB lnκ[exp(SB)], (6)

which could be regarded as the sinh-type deformation of Boltzmann entropy SB. Recently,
in cosmology, Lymperis et al. [7] modified Bekenstein–Hawking entropy SBH as follows:

SBH
κ = 1

κ
sinh(κSBH), (7)

which was obviously the sinh-type deformation of SBH.
In this paper we considered the arsinh-type deformations against some constitutive

relations in the field of statistical physics and natural sciences. In our previous work [8] we
studied a thermal particle under a velocity-dependent potential which could be regarded
as a deformation of Rayleigh’s dissipation function [9] and showed that the probability
distribution function (pdf) for the stationary-state of this thermal particle was a κ-deformed
Gaussian pdf. It was considered the canonical pdf ρ(v), in the velocity space, of a thermal
particle with unit mass (m = 1) in the κ-deformed confining potential Uκβ(v):

Uκβ(v) ∶= 1
κβ

arsinh(κβ
v2

2
), (8)

where β ∶= 1/kBT is a coldness (or inverse temperature). This κ-deformed potential Uκβ(v)
was rewritten, in the momentum–space, as:

Uκβ(p) = 1
κβ

arsinh(κβ
p2

2
) = 1

β
ln[expκ(β

p2

2
)], (9)

which was the arsinh type deformation of the quantity βp2/2 (the ratio of the kinetic energy
to the mean thermal energy kBT = 1/β). In other words, we considered the following
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κ-deformation Qκ(U) of the Boltzmann factor exp(−βU) for an equilibrium state with the
energy U:

Qκ(U) ∶= expκ(−βU) = exp[1
κ

arsinh(−κβU)]. (10)

One may wonder why the inverse hyperbolic sine function (arsinh) plays a role. In many
different fields of sciences, there is no doubt that the exponential and logarithmic functions
are important and fundamental. Since the inverse hyperbolic sine function and logarithmic
function are mutually related as:

arsinh x = ln[x +
√

1+ x2], ln x = arsinh[1
2
(x − 1

x
)], (11)

for a positive real x, we think both functions are important. By using the second relation,
for any real parameter κ ≠ 0, we have:

ln x = 1
κ

ln xκ = 1
κ

arsinh[1
2
(xκ − x−κ)] = 1

κ
arsinh[κ lnκ x]. (12)

Note that this relation corresponds to the arsinh-type deformation of lnκ x and is equivalent
to definition (2) of the κ-deformed logarithmic function that can be regarded as the sinh-
type of κ-deformation of ln x. Kaniadakis already discussed this issue in section II of
Reference [2] from the viewpoint of deformed algebra.

On the other hand, Pistone [10] was the first one to study the κ-exponential model in the
field of information geometry [11], and later, through our research activities [8,12,13], we realized
that there exist some relations among statistical physics, thermodynamics, mathematical
biology, and information geometry. Harper [14,15] pointed out that the replicator equation
(RE) [16] in mathematical biology or in an evolutional game theory [17] is related with
information geometry and a general form of the Lotka–Volterra (gLV) equation as briefly
explained in Appendix B. The gLV equations [14,15,18,19]:

dyi

dt
= yi fi(y), (13)

are used to model the competition dynamics of the populations y1, y2, . . . , yn of n biological
species. The Gompertz function [20] is a type of mathematical model for time evolution.
Historically, he studied human mortality and proposed his law of human mortality in
which he assumed that a person’s resistance to death decreases as his or her years increase.
His law is now called Gompertz rule (or law) and we would like to point out the relation of
his function and his rule to some important quantities concerning statistical physics.

The rest of the paper is organized as follows. In Section 2, we briefly explain Gompertz
function, and the gLV equations, which are important in mathematical biology (or evolu-
tional game theory). Their relations to thermal physics are pointed out. Section 3 considers
the thermal density operator, which is characterized by the so-called Bloch equation [21,22]
for thermal states, and we show that the Bloch equation can be regarded as a Gompertz rule
after the parameter transformation β to t = − ln β. In Section 4, we discuss the arsinh-type
deformation from the viewpoint of the κ-addition. In Section 5, we study the numerical
simulations of the thermostat algorithm for the Hamiltonian with the κ-deformed kinetic
energy, which can be regarded as the arsinh type of the κ-deformation of the ratio βp2/2 as
shown in (10). The final section is devoted to our conclusions.

2. Gompertz Functions and Gompertz Rule

Here we would like to point out that there exist relations between evolutional game
dynamics and thermal physics. In evolutional game theory [17], evolutional game dynamics
is described by a RE. The gLV equations are related to REs, as shown in Appendix B. On the
other hand, Gompertz function is a mathematical model describing an evolutional curve.
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Gompertz function (or Gompertz curve) [20] is a type of mathematical model for a time
series. Gompertz function fG(t) is a sigmoid function and is given by:

fG(t) ∶= K exp [C exp(−t)], (14)

where C and K are positive constants. A distinctive feature of Gompertz function is its
double exponential t-dependency. His function is nowadays used in many different areas
to model time evolution of populations where growth is slowest at the start and end of
a period. For example, Reference [23] applied Gompertz model to describe the growth
dynamics of the COVID-19 pandemic. Gompertz [20] studied human mortality by working
out a series of mortality tables, and this suggested to him his law of human mortality, in
which he assumed that a person’s resistance to death decreases as age increases. The rule
of his model is called Gompertz rule which states that:

d
dt

fG(t) = − fG(t) ln
fG(t)

K
. (15)

The solution of the Gompertz rule is the Gompertz function (14), if we set K = limt→∞ fG(t)
and C = ln( fG(0)/K).

If we choose fi(y(t)) = − ln yi(t) and assume limt→∞ yi(t) = 1, the gLV Equation (13)
becomes:

dyi(t)
dt

= −yi(t) ln yi(t), (16)

which can be regarded as the Gompertz rule (15) with K = 1 for each yi(t). Consequently,
its solution yi(t) is the Gompertz function:

yi(t) = exp [ ln yi(0) exp(−t)]. (17)

Now, by changing the parameter t to β = exp(−t), we have dβ = −βdt so that the limit t → 0
corresponds to β → 1, and each constant Ei is introduced as:

−Ei = lim
t→0

ln yi(t) = lim
β→1

ln yi(β), (18)

where yi(β) is the shorthand notation of yi(t(β)) with t(β) = − ln β. Then, the solution
yi(β) in (17) can be expressed as a quantity very familiar to statistical physics:

yi(β) = exp(−βEi), (19)

that is the Boltzmann factor. The corresponding Gompertz rule (15) for yi(β) is equivalent
to:

d
dβ

yi(β) = −Ei yi(β). (20)

Having described the relation between the Gompertz rule and the Boltzmann factor
exp(−βEi) in statistical physics, in the next section we discuss a κ-deformation of the Bloch
equation for thermal states.

3. Bloch Equation for Thermal States

For a given Hamiltonian Ĥ and the corresponding eigenvalues Ei and eigenstate ∣ψi⟩,
which are related in:

Ĥ∣ψi⟩ = Ei∣ψi⟩, (21)
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and assuming the completeness relation ∑i ∣ψi⟩⟨ψi∣ = 1̂, the density operator ρ̂(β) for a
canonical ensemble is constructed as:

ρ̂(β) ∶=∑
i

exp(−βEi)∣ψi⟩⟨ψi∣ = exp(−βĤ). (22)

In order to determine the canonical density matrix, we have to solve the eigenvalue
Equation (21) and to sum over all the states. This needs heavy calculations in general. Note
that ρ̂(β) is un-normalized and its trace is Tr ρ̂(β) = Z(β), which is the partition function.

The Bloch equation [21,22] for thermal states is known as:

− ∂

∂β
ρ̂(β) = Ĥ ρ̂(β), (23)

which can be regarded as the diffusion equation in imaginary time β, and it has a similar
form as Schrödinger equation and diffusion equation. Bloch Equation (23) offers an alterna-
tive route to determine the density operator ρ̂(β). The initial (β = 0) condition is provided
if we know the eigenstates in the high-temperature limit.

Now, by multiplying β to both sides of (23), we have:

−β
∂

∂β
ρ̂(β) = βĤ ρ̂(β) = − ln[ρ̂(β)] ρ̂(β). (24)

Changing the parameter β to t = − ln β, it follows:

d
dt

ρ̂(t) = −β
d

dβ
ρ̂(β) = − ln[ρ̂(t)] ρ̂(t). (25)

This is the same form of the Gompertz rule (15). In this way, the Bloch equation can be
considered as a sort of Gompertz rule.

Next, let us consider the κ-deformed density operator:

ρ̂κ(β) ∶=∑
i

expκ(−βEi)∣ψi⟩⟨ψi∣ = expκ(−βĤ). (26)

This leads to the following κ-deformation of the Bloch equation:

− ∂

∂β
ρ̂κ(β) =∑

i
Ei

expκ(−βEi)
uκ[(expκ(−βEi)]

∣ψi⟩⟨ψi∣ =
Ĥ

uκ[expκ(−βĤ)]
ρ̂κ(β). (27)

Again, by changing the parameter β to t = − ln β and using the relation (A3), we have:

d
dt

ρ̂κ(t) = −
lnκ[ρ̂κ(t)]
uκ[ρ̂κ(t)]

ρ̂κ(t), (28)

which can be regarded as a κ-deformation of the Gompertz rule.
Differentiating (27), again with respect to β, we obtain the following nonlinear differ-

ential equation:

(1+ κ2β2Ĥ2)
∂2ρ̂κ(β)

∂β2 + κ2βĤ2 ∂ρ̂κ(β)
∂β

− Ĥ2 ρ̂κ(β) = 0. (29)

This differential equation reminds us of the research work [24] on the quantum free particle
on the two-dimensional hyperbolic plane. The relevant two-dimensional Schrödinger
equation was separable in the κ-dependent coordinate system (zx, y) with zx ∶= x/

√
1+ κ2y2.
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The Schrödinger equation Ĥ1Ψ = e1Ψ for the first partial Hamiltonian Ĥ1 leads to the
following differential equation with the variable zx alone:

(1+ κ2z2
x)

d2Ψ(zx)
dz2

x
+ κ2zx

dΨ(zx)
dzx

+ µΨ(zx) = 0, µ ∶= 2m

h̄2 e1. (30)

In the limit of κ → 0, this differential equation reduces to the standard time-independent
Schrödinger equation: d2Ψ(x)/dx2 + µΨ(x) = 0. Cariñena et al. [24] obtained the solution
of the differential Equation (30) as the κ-deformed plane wave (in our notations):

Ψ(zx) = exp[±i
µ

κ
arsinh(κ zx)], (31)

which is regarded as an arsinh-type deformation.

4. The κ-Addition and the Law of Large Number

Next, we considered the κ-addition from the viewpoint of the law of large numbers
(LLN), which plays a central role in probability, statistics, and statistical physics [25]. The
κ-addition [4] is defined by:

x
κ
⊕ y ∶= x

√
1+ κ2y2 + y

√
1+ κ2x2. (32)

This deformation of the additive rule comes from the addition rule of the inverse hyperbolic
sine function as follows. For a, b ∈ R, the addition rule is written as:

arsinh(a)+ arsinh(b) = arsinh(a
√

1+ b2 + b
√

1+ a2). (33)

By setting a = κx and b = κy, we obtain:

arsinh(κx)+ arsinh(κy) = arsinh(κx
√

1+ κ2y2 + κy
√

1+ κ2x2)

= arsinh [κ(x
κ
⊕ y)]. (34)

This relation is equivalent to the definition (32). The additive relation (34) is readily
generalized to:

n
∑
i=1

arsinh(κxi) = arsinh [κ(x1
κ
⊕ x2

κ
⊕⋯

κ
⊕ xn)]. (35)

By applying this relation to the Boltzmann factor exp[−β∑n
i=1 Kκβ(pi)] with respect to the

κ-deformed kinetic energy [8] with m = 1:

n
∑
i=1

Kκβ(pi) ∶=
n
∑
i=1

1
κβ

arsinh(κβ
p2

i
2

), (36)

we have:
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exp[−β
n
∑
i=1

Kκβ(pi)] = exp[−1
κ

arsinh{κ(β
p2

1
2

κ
⊕ β

p2
2

2
κ
⊕ . . .

κ
⊕ β

p2
n

2
)}]

= expκ[(−β
p2

1
2

)
κ
⊕ (−β

p2
2

2
)

κ
⊕ . . .

κ
⊕ (−β

p2
n

2
)]

= expκ[−β
p2

1
2

] expκ[−β
p2

2
2

] . . . expκ[−β
p2

n
2

] =
n
∏
i=1

expκ[−β
p2

i
2

]. (37)

Note that the κ-exponential of the κ-summation of each term −β
p2

i
2 in the second line is

expressed as a factorized form in the last line.
It is well known that LLN plays a fundamental role in statistical physics [25].

Łapiński [26] showed that the standard LLN yielded the most probable state of the system,
which equaled the point of maximum of the entropy and this point could be either Maxwell–
Boltzmann statistics or Bose–Einstein statistics, or Zipf–Mandelbort law. McKeague [27]
studied the central limit theorems under the special theory of relativity based on the κ-
additivity. Scarfone [28] studied the κ-deformation of Fourier transform and discussed the
limiting distribution of the κ-sum of statistically independent variables. The κ-additivity
extension of the strong LLN was shown in [27] and it stated that if Xi were iid with finite
mean, then:

X1

n
κ
⊕ X2

n
κ
⊕ . . .

κ
⊕ Xn

n
→ 1

κ
arsinh[κ⟨X⟩]a.s., (38)

where a.s. stands for almost surely, i.e., the above sequence of the random variables Xi
converges almost surely, and ⟨X⟩ is the standard average of the random variable X. Of
course, in the limit of κ → 0, the relation (38) reduced to the standard strong LLN. Note that
the converged value in (38) was the arsinh-type deformation of the average ⟨X⟩. In this
way, the κ-additivity extension of the strong LLN supports the arsinh-type deformation of
the average of a stochastic variable X.

5. Contact Density Dynamics

Nosé-Hoover (NH) thermostat [29,30] is a famous deterministic algorithm for constant-
temperature molecular dynamics simulations. Based on the idea of NH thermostat, several
improved versions were proposed. Among them, contact density dynamics (CDD) [31] is
an algorithm based on contact Hamiltonian systems and generates any prescribed target
distribution in physical phase space. The dynamical equations of CDD are the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dqi

dt
=

∂h(q, p, S)
∂pi

,

dpi

dt
= −

∂h(q, p, S)
∂qi +

∂h(p, q, S)
∂S

pi,

dS
dt

= −pi
∂h(q, p, S)

∂pi
+ h(q, p, S),

(39a)

(39b)

(39c)

where S is the thermostatting variable, qi and pi are the i-th component (i = 1, 2,⋯, n) of
n-dimensional vectors, respectively. Here h(q, p, S) denotes the contact Hamiltonian which
is formed as:

h(q, p, S) = (ρt(q, p) f (S))−
1

n+1 , (40)

with a target distribution ρt(q, p) on 2n-dimensional Γ-space and a normalized distribution
f (S) for the thermostatting variable S. As in the case of Reference [29,30], we also chose
f (S) as the logistic distribution with scale 1 and mean c = 0.0:
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f (S) =
exp(S − c)

(1+ exp(S − c))2 . (41)

Utilizing this CDD algorithm, the κ-deformed exponential distributions were simu-
lated. The target distribution ρt(q, p) was the one-dimensional (n = 1) κ-deformed Gaussian
function:

ρt(q, p) = 1
Zκ(β)

exp[−βHκ(q, p)] = 1
Zκ(β)

exp[−1
κ

arsinh(κβ
p2

2
)] exp[−β

q2

2
], (42)

where the associated Hamiltonian was:

Hκ(q, p) = 1
κβ

arsinh(κβ
p2

2
)+

q2

2
, (43)

and the normalization factor Zκ(β) [4] was:

Zκ(β) = π

β

√
2
κ Γ( 1

2κ −
1
4)

( κ
2 + 1)Γ( 1

4 +
1

2κ )
. (44)

In general, the kinetic energy can be defined by:

K(p) ∶= ∫
p

0
v(p)dp, (45)

where v(p) denotes the constitutive relation between the velocity v and the canonical
momentum p. In the standard case of v(p) = p/m with m = 1, we have K(p) = p2/2. In the
case of the Hamiltonian (43), from (39a) we have:

vκ(p) ∶=
dq
dt

=
∂Hκ(q, p)

∂p
=

p

uκ[expκ(−β
p2

2 )]
=

p
√

1+ κ2(β
p2

2 )
2

. (46)

It is worthwhile to note that the vκ(p) had a β (or temperature) dependency when κ ≠ 0.

Then the corresponding kinetic energy Kκ(p) was the first term 1
κβ arsinh(κβ

p2

2 ) in (43),

which could be regarded as a κ-deformation of the standard kinetic energy p2/2.
We performed a number of CDD simulations for the target state (42) with different

parameters and initial conditions. As an example, Figure 1 shows the phase space orbit
and the histogram of the frequencies of the momentum p for a typical result of the CDD
simulation of the target state (42) with β = 0.2, κ = 0.4. The initial conditions used are also
denoted in the figure captions.

The CDD simulated result obeys ergodicity, as can be seen from the well distributed
points in the phase space in Figure 1a. Note that the momentum distribution in the
histogram of Figure 1b was well fitted with the κ–Gaussian distribution, which was cased
by the arsinh-type deformation of the kinetic energy p2/2.

Note also that for the κ-deformed Hamiltonian (42), we have [8]:

⟨p
∂

∂p
Hκ(q, p)⟩ = 1

β
(47)
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which reminds us of a generalization of equipartition theorem [32]: ⟨p ∂
∂pH⟩ = kBT , whereH is

the Hamiltonian of a system in thermal equilibrium with the temperature T.

-10 -5 5 10
q

-10

-5

5

10

p

-10 -5 0 5 10
0.00

0.05

0.10

0.15

p

(a) (b)

Figure 1. The simulated results of the CDD simulations of the target distribution (42) with κ = 0.4 and
β = 0.2. (a) the phase (q-p) space orbit of the κ-deformed distribution. The 1.5× 104 points of a simulated
orbit with the initial condition (q0 = 0.1, p0 = 0.1, and S0 = 0.9 are shown. (b) the histogram of the
frequencies for p and the corresponding momentum κ-distribution (blue solid curve).

6. Conclusions

We considered the κ-deformations of some quantities concerning statistical physics and
pointed out some unexpected relations among different fields, such as statistical mechanics,
mathematical biology and evolutional game theory. We especially focused on the arsinh-type
deformation of the ratio βp2/2 of kinetic energy to the average thermal energy kBT = 1/β. With
the help of the thermostat (CDD) algorithm we performed the relevant numerical simulations
for the Hamiltonian with the arsinh-type deformation of kinetic energy term and showed the
resultant momentum distribution was the κ–Gaussian distribution.

Finally, we would like to point out a relation which might be suggested for future
research. Let us consider the κ-deformed energy density of state Ωκ(U):

Ωκ(U) ∶= expκ(
U

kBTc
) = exp[1

κ
arsinh(κ

U
kBTc

)], (48)

which is the κ-deformation of the energy density of state exp(U/kBTc) for the thermal
reservoir with a constant-temperature Tc (Boltzmann reservoir [33]). In other words,
ln Ωκ(U) is regarded as the arsinh-type deformation of the ratio U/(kBTc). The Boltzmann
temperature T(U) for this κ-deformed thermal reservoir is given by:

1
kBT(U)

∶= d ln Ω(U)
dU

=
1

kBTc√
1+ κ2( U

kBTc
)

2
. (49)

Rearranging this relation leads to:

kBT(U) =
√

(κU)2 + (kBTc)2, (50)

which reminds us of the relativistic energy–momentum relation: E(p) =
√

(cp)2 + (mc2)2.
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Appendix A. Basics of the κ-Deformed Functions

Here we briefly review some κ-deformed functions and the associated useful
relations [2,3]. Because all κ-deformed functions are symmetric under the sign change of
the deformation parameter κ, i.e., changing κ to −κ, throughout this paper we assume κ > 0.
In the κ → 0 limit, the κ-exponential function (1) and the κ-logarithmic function (2) reduce
to the standard exponential function exp(x) and logarithmic function ln(x), respectively

lim
κ→0

expκ(x) = exp(x), lim
κ→0

lnκ x = ln x. (A1)

We next introduce another κ-deformed function:

uκ(x) ≡ xκ + x−κ

2
= cosh [κ ln(x)], (A2)

which is the conjugate (or co-function) of lnκ x, as similar as that cos(x) is the co-function
of sin(x). In the κ → 0 limit, this κ-deformed function reduces to the unit constant function
u0(x) = 1. By using uκ(x), the derivative of the κ-exponential is expressed as

d
dx

expκ(x) =
expκ(x)

uκ[expκ(x)]
=

expκ(x)
√

1+ κ2x2
, (A3)

and the derivative of κ-logarithm is expressed as

d
dx

lnκ(x) = uκ(x)
x

, (A4)

respectively.
When κ ≠ 0, the inverse function of uκ(x) exists, and given by

u−1
κ (x) = exp[1

κ
arcosh(x)], (A5)

which is the co-function of expκ(x).
The κ-entropy Sκ [2,3] is a κ-generalization of the Gibbs-Shannon entropy

SGS = −kB∑i pi ln pi by replacing the standard logarithm with the κ-logarithm, i.e.,

Sκ = −kB∑
i

pi lnκ pi. (A6)

Appendix B. Replicator Equations and the General Form of Lotka-Volterra Equations

We here summarize some known important facts in mathematical biology and evolu-
tional game theory according to Ref. [14,15,19]. Consider a discrete probability distribution
described by a set of n positive variables x = (x1, x2, . . . , xn) with the normalization∑n

i xi = 1,
where each xi denotes the proportion of the i-th type in the total population. The RE for
this distribution is given by

d
dt

xi = xi( fi(x)− f̄ (x)), (A7)
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where f (x) = ( f1(x), . . . , fn(x)) is a fitness landscape and f̄ (x) = ∑n
i=1 xi fi(x) is the mean

fitness. Replicator dynamics can be described as a time evolutional curve on the simplex
∆n ∶= {x ∈ Rn

+
∣ xi ≥ 0,∑i xi = 1} with the matrix component gij(x) of Shahshahani metric [16]

g as

gij(x) =
δij

xi
, (A8)

The inverse matrix is gij(x) = xiδij. Note that the n-simplex ∆n is (n − 1)-dimensional and
the Shahshahani metric diverges on the boundary of the simplex. So this metric is valid
only on the interior Sn of ∆n.

There is a natural mapping: (p1, p2, . . . , pn)→ (x1, x2, . . . , xn). Fisher metric is induced
by the Shahshahani metric under this mapping.

(gF)ij(x) = E[∂ ln x
∂xi

∂ ln x
∂xj

] =
n
∑
k=1

xk
δik
xi

δik
xi

=
δij

xi
. (A9)

It is known that the Shahshahani manifolds yields an interpretation of the RE. Theorem 1
in [14]: if the differential equation dxi/dt = fi(x) is a Euclidean gradient with fi = ∂V/∂xi,
the RE (A7) is a gradient with respect to Shahshahani metric. A brief explanation is as
follows. The gradient with respect to Shahshahani metric is

(∇gV)i =∑
j

gij
∂V
∂xj

=∑
j

xiδij f j = xi fi, (A10)

which is the first term in the left hand side of the RE (A7). The variable xi in the RE has
to satisfy the normalization constraint (∑i xi = 1), i.e., the dynamics of each xi is restricted
on the simplex ∆n. Recall that Shahshahani metric is valid only on the interior Sn of ∆n.
Indeed, the normalization constraint is satisfied during an time evolution as follows

d
dt
∑

i
xi =∑

i

dxi

dt
=∑

i
xi( fi − f̄ ) =∑

i
xi fi − f̄ = 0. (A11)

The state x̂ is said to be evolutionarily stable state if for all x ≠ x̂ in some neighborhood
of x̂,

x ⋅ f(x) < x̂ ⋅ f (x). (A12)

Let the potential V(x) = D(x̂∥x) = ∑i x̂i ln x̂i −∑i x̂i ln xi, then we have

d
dt

V(x) = −∑
i

x̂i
1
xi

dxi

dt
= −∑

i
x̂i( fi − f̄ ) = −∑

i
x̂i fi + f̄ = −(x̂ ⋅ f −x ⋅ f) < 0. (A13)

Hence the Kullback-Leibler divergence D(x̂∥x) is a local Lyapunov function for the RE.
Next, if xi = exp(vi(x)−ψ) with dvi(x)/dt = fi(x) and ψ(x) a normalization constant.

From the normalization ∑i xi = 1, we have

0 =∑
i

d
dt

xi =∑
i
( d

dt
vi(x)− d

dt
ψ(x))xi =∑

i
xi fi(x)− d

dt
ψ(x) = f̄ (x)− d

dt
ψ(x). (A14)

As a result we see that dψ(x)/dt = f̄ (x), and xi satisfies

d
dt

xi = xi(
d
dt

vi(x)− d
dt

ψ(x)) = xi( fi(x)− f̄ (x)). (A15)

Consequently, the exponential families xi = exp(vi(x)−ψ) are solutions of the RE.
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If there is no constraint the corresponding dynamics is described by the gLV Equation (13).
The gLV equations and REs are related as follows. Let each yi satisfies the gLV Equation (13).
Changing the variable yi to xi as

xi =
yi

∑n
j=1 yj

, (A16)

which lead to the new normalized variables {xi}, i.e., ∑j xj = 1. Then, we see that

dxi

dt
=

dyi
dt

∑j yj
− yi

∑k
dyk
dt

(∑j yj)
2 =

yi fi

∑j yj
−

yi

(∑j yj)
∑k yk fk

(∑j yj)
= xi( fi − f̄ ). (A17)

Thus, the transformed variable xi in (A16) satisfies the RE.
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