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Abstract: In this paper, the Sun and its behavior are studied by means of complex networks. The
complex network was built using the Visibility Graph algorithm. This method maps time series into
graphs in which every element of the time series is considered as a node and a visibility criterion is
defined in order to connect them. Using this method, we construct complex networks for magnetic
field and sunspots time series encompassing four solar cycles, and various measures such as degree,
clustering coefficient, mean path length, betweenness centrality, eigenvector centrality and decay
exponents were calculated. In order to study the system in several time scales, we perform both a
global, where the network contains information on the four solar cycles, and a local analysis, involving
moving windows. Some metrics correlate with solar activity, while others do not. Interestingly, those
metric which seem to respond to varying levels of solar activity in the global analysis, also do in the
moving windows analysis. Our results suggest that complex networks can provide a useful way to
follow solar activity, and reveal new features on solar cycles.

Keywords: solar activity; magnetic field; sunspots; time series analysis; visibility graph; complex
networks; complexity; centrality; decay exponent

1. Introduction

Various measures of complexity can provide relevant ways to study the dynamics of
magnetized plasma and, in particular, complex networks have been largely used to study
a vast number of physical systems [1,2], as their graph representation has been found to
be helpful to characterize and model their phenomenology. Complementing these studies,
mathematical tools from statistical physics have also proven to be particularly suitable for
studying and understanding complex networks [3].

These works show that the subjacent phenomenology in various systems can be
inferred from its complex behavior, thus suggesting the great potential of complex networks
to tackle problems in a variety of fields, such as economy [4–8], biology [9,10], or in the
study of geophysical problems such as earthquakes, magnetic storms or atmospheric
flows [11–15], which prove the versatility of the method and its robustness.

The Sun is a particularly interesting system to study from the point of view of com-
plexity. The interaction of particles and magnetic fields in the Sun’s plasma, leads to a
nonlinear dynamics which, in turns, leads to varying levels of solar activity, as manifested
in the evolution of sunspots on the Sun’s photosphere, velocity and turbulence levels of
the solar wind, events such as solar flare or coronal mass ejections, etc. Since the Sun is
our closest star, it is essential to understand its behavior and the impact of solar activity
on our planet, especially the impact of its magnetic activity and its effects on the Earth
through the Earth’s magnetic field and solar wind coupling [16,17], which may lead to
intense geomagnetic storms that may affect human communications and spacecrafts in
periods of high solar activity [18].

Various complexity analyses have been carried out to study this rich behavior. For in-
stance, fractal and multifractal features have been identified in the Sun’s photosphere,
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which have been shown to correlate with the evolution of solar activity [19], and have been
proposed to be related to the emergence of solar flares [20–22].

Other works have focused on the chaotic and persistent features of the sunspots time
series [23,24]. Also, self-organized critical models have been proposed to represent the
Sun’s flare activity [25] and its power-law statistics [26].

In this work, we intend to follow a different approach, based on complex networks.
Various recent works have carried out complex networks analysis to study the Sun’s activity,
focusing on its major features: sunspots. For instance, in Ref. [27], the spatiotemporal
patterns of sunspots are mapped into a complex network, showing that some topological
measures of the network correlate with the solar cycle, while others anticorrelate, or remain
essentially invariant. This is consistent with the fact that different measures inform about
different features of the network topology, so that some measures vary in response to the
changes in sunspots number and location, whereas others point at complex properties
which remain invariant along the solar cycle.

The previous work, maps the spatiotemporal evolution of the sunspots distribution
into a complex network. Nodes represent their location, and links represent their time
sequence. However, various works have shown that valuable information about complex
systems can be extracted by focusing on the time domain, by mapping time series into
complex networks.

This was introduced by Lacasa et al. [28], and thanks to this and other works, it
has been established that the resulting complex network has topological properties that
reflect properties of the original time series [29,30]. Thus, the Visibility Graph method
(see details in Section 2.3.1) becomes an interesting tool, allowing, through the study
of complex networks, to infer properties of the underlying dynamics. In the context of
space physics, Suyal et al. [31] applied to analyze the solar wind, a turbulent plasma
whose origin is the upper atmosphere of the Sun and which leads to dynamic phenomena
throughout the heliosphere on various temporal and spatial scales. In the following
years, several authors have further explored the use of VG to various issues related to
space and astrophysical physics, such as the analysis of reversibility in the turbulent
states of solar wind simulations [32], the analysis of high-energy emission mechanisms of
blazars [33], characterization of sunspot time series [34], statistical studies of solar flares [35],
discrimination between types of variable pulsating stars [36], among others.

In particular, the work of Zou et al. [34] is interesting, since the VG analysis provides
a complexity perspective to the analysis of the number of sunspots, which has been the
traditional indicator of solar activity for centuries. There, the authors perform a global
analysis, constructing the VG from the complete time series of the number of sunspots,
from the mid-nineteenth century to the first decade of the twentieth century.

Nonetheless, since the solar magnetic activity is not constant, which manifests itself,
e.g., in 11-year cycles [37], it is also relevant to study the complex properties of the
sunspot configuration as a function of time. For example, it has been shown how the
fractal dimension of the solar photosphere correlates with solar activity [19], and more
recently, it has been studied how complex networks constructed from the spatio-temporal
configuration of sunspots, also present various metrics that correlate or anti-correlate with
the solar cycle [27].

Considering these results, we propose to carry out a VG study of the sunspot time
series, using moving time windows to establish whether the complexity of this time series
and its evolution provide information about variations in solar activity, complementing
similar results based on fractal dimensions and complex networks [19,27].

We also notice that both works just mentioned are based on image analysis of solar
magnetograms. However, these images are actually a representation of the magnitude
of the solar magnetic field, so, as a first approach to consider the physical information
contained in the magnetic field itself, we will analyze, in this work, the time series of the
average solar magnetic field.
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Given a complex network, a large variety of measures could be calculated in order to
characterize its topological structure. In Ref. [34], the VG analysis is focused on the degree
distribution. However, other measures may provide additional insight, or may turn out to
be less useful, depending on the specific system studied. For instance, Muñoz et al. [27]
have shown that some metrics are correlated with solar activity (degree centrality), or anti-
correlated (eigenvector centrality), or remain constant throughout the variations in solar
activity (clustering coefficient). This is a clear example that the complex network contains
non-trivial information from a system, since metrics such as degree centrality are expected
to be sensitive to variations due to their explicit dependence on the number of connec-
tions, while others, more elaborate metrics such as clustering coefficient, that quantify the
grouping between neighbors, do not exhibit major variations throughout the cycle. All this
suggests that the topology of the complex network contains non-trivial information about
the physical state of the system, which is an important motivation for this work.

Thus, following Ref. [27], in this work, besides the degree distribution, we will focus on
the clustering coefficient and various centrality measures, in order to examine the complex
network from multiple perspectives. Furthermore, we will not only consider their average
values, but also their distributions, by means of their respective critical exponents and
Gini coefficients.

Thus, the interest of this project lies in characterizing nonlinear dynamical processes
(in this case, the evolution of solar activity) through the complexity parameters that the
system itself can provide, using a firmly tested statistical method. This paper is organized
as follows. In Section 2, the dataset and analysis methods used to study them are described.
Our results are provided in Section 3, and they are further summarized and discussed
in Section 4.

2. Methodology

To study solar activity, we use time series data of the number of sunspots observed on
the solar surface [38], and Sun’s global magnetic field [39]. Both series will be considered
between 1975 and 2015 with a one-day resolution, comprising Solar Cycles 21, 22, and 23,
and the beginning of Solar Cycle 24. Data are shown in Figure 1. Three solar cycles are
chosen, in order to have a relevant sample of solar activity in the last years. Since the WSO
project started collecting data in 1975, while the sunspot data date back to 1818, we chose
to collect the characteristic parameters of solar activity since 1975. We set as day zero the
measurements of 16 May 1975, ending in day 14,185, corresponding to 16 December 2015.

Using these data, the method consists of constructing complex networks from the
time series, using two variations of the visibility algorithms as connection criteria, aiming
to extract statistical properties of the system. Thus, for each time series, two complex
networks will be constructed, so that we will have a total of four networks.

2.1. Complex Networks

A complex network is a graph (set of nodes and their connections) with non-trivial
statistical and topological properties. By representing an abstraction of a physical system,
the definition of nodes and connections must consider both the properties of that system
and the type of study to be performed. Therefore, different complex networks can be
obtained from the same system, depending on the construction method.

After the networks are built, various measures must be calculated in order to study
their possible correlation with solar activity along the 3 solar cycles previously mentioned.
In particular, we considered node degree as a measure of connections, clustering coefficient,
mean path length between nodes, and two centrality measures, namely, betweenness and
eigenvector centrality.
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Figure 1. Time series used in this work. (Left) panel: mean magnetic field on the surface of the Sun.
(Right) panel: number of sunspots.

2.2. Metrics

As mentioned in Section 2.1, we calculate several metrics to characterize the networks.
Here we define the metrics that we will use in the rest of the paper, which are various way
to the connectivity within the network. The node degree is the number of connections that
a node has. We will use a normalized degree, to make it independent of the network size.
If ν is an arbitrary node, and it has nν connections then its normalized degree is

g(ν) =
nν

n
, (1)

where n is the total number of nodes in the network.
The clustering coefficient of a node ν is the fraction of possible triangles which contain

that node, and is defined as

c(ν) =
1
n

2T(ν)
g(ν)(g(ν)− 1)

, (2)

where T(ν) is the number of triangles containing node ν.
The mean path length corresponds to the average number of steps along the shortest

paths for all possible pairs of network nodes. It then may be considered as a measure of the
efficiency of information or mass transport on a network. It is defined as

l = ∑
s,t∈V

d(s, t)
n(n− 1)

, (3)

where V is the set of nodes and d(s, t) is the minimum distance from node s to node t.
The centrality metrics measure the relevance of a node within the network. Between-

ness centrality is the sum of the fraction of all-pairs shortest paths that pass through a
node ν,

b(ν) =
1
n ∑

s,t∈V

σ(s, t|ν)
σ(s, t)

, (4)

where V is the set of nodes, σ(s, t|ν) is the number of paths passing through some node ν
other than s, t and σ(s, t) is the number of shortest paths between s and t. When s = t, then
σ(s, t) = 1 and if ν = s or ν = t, then σ(s, t|ν) = 0 [40].

Eigenvector centrality computes the centrality for a node based on the centrality of
its neighbors. The intuition is that a node is important, if it is connected to important
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nodes. The eigenvector centrality for a node ν is the ν-th element of the normalized vector
x defined by

Ax = λx , (5)

where A is the adjacency matrix of the network with eigenvalue λ. The adjacency matrix is
a square matrix of size n, where the element Aij is 1 if there is a connection between vertex
i and j, and 0 if there is no connection.

2.3. Connection Criteria
2.3.1. Visibility Graph

We use the Visibility Graph (VG) algorithm, whose statistical properties have been
studied in several publications [41,42]. The definition of VG for time series comes from the
concept of visibility between nodes. Each element of the time series can be identified by a
time t and its respective associated value x(t), which represents some physical quantity.
Therefore, a node in the network is defined by the point (t, x(t)). Two nodes are connected
if they “see” each other, i.e. if there is a straight line connecting them without being
interrupted by other intermediate nodes. Formally, given a data series XN , two arbitrary
nodes xa and xb are connected if, for every node xc between them, then [42,43]

xc ≤ xb + (xa − xb)
tb − tc

tb − ta
. (6)

2.3.2. Horizontal Visibility Graph

A variant of VG known as Horizontal Visibility Graph (HVG) consists of restricting
the visibility between nodes to a horizontal line. If {Xi}{i=1,2,...,N} is a time series of size N,
two nodes i and j will be visible if for all nodes n such that i < n < j, then [41,44,45]

Xi , Xj > Xn . (7)

Therefore, horizontal visibility for two nodes occurs if there is no other node greater
in magnitude between them.

3. Results

Construction of the complex network from the time series involves not only the
decision on what will be regarded as a node, and what will be the criterion to connect
two nodes, but also the length of the time window within which data will be considered.
Figure 1 shows that solar activity has variations on various timescales. Thus, in order to
obtain a better perspective of the solar activity, we carry out two analyses: a global analysis,
considering the complete time series, and a local one, using time windows.

We first consider the global analysis. Figure 2 shows the resulting degree for each
node, normalized to the network size. Thus, the ordinate axis represents the fraction of
nodes that each node is connected to. Results are shown in Figure 2.

We first observe that the number of connections is larger for the networks built by the
VG method, which is expected, since the HVG method restricts visibility to a horizontal
line, and therefore, less connections can be established. We also notice that there is no
particular dependence of this metric with the solar cycles. There are some prominent values
for the VG graph (time t ∼ 5500), which match high values of the magnetic field (ascending
phase of Solar Cycle 22, Figure 1), but as a general rule, no correlation is observed. Given
the definition of the VG, one would expect that maxima in the time series would “see” more
data in the rest of the time series, as they would tend to be unobstructed by intermediate
points, thus leading to maximum degree. However, except for the very large maximum
noticed above, this does not hold in general, due to the rapid fluctuations. This result
suggests that the degree is too simple a metric to study these time series, thus justifying the
need for more elaborate metrics.
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Figure 2. Degree for every node in the network, normalized by the size of the network, for the
sunspots time series (green line) and the mean magnetic field time series (purple line). (Left) panel:
VG; (right) panel: HVG.

The clustering coefficient measures the connectivity between nodes connected to a
given node. It is related to the number of triangles formed by edges in the network, and thus
it quantifies the degree to which nodes in a graph tend to cluster together. For the global
network, one obtains average values equal to Css ≈ 0.721 and Cm f ≈ 0.739, for sunspots and
magnetic field networks, respectively. These results indicate the presence of well-defined
clusters within the time series, corresponding to solar cycles.

In the case of VG networks, the results obtained for both mean magnetic field and
sunspots mean paths are lm f ≈ 6.36 and lss ≈ 5.73, respectively. Both values are much
smaller than the network size (N = 14,185), indicating that, although the network is large,
nodes are close to one another on average, separated by at most 6 nodes.

Although these results are interesting, no particular dependence on the solar cycle is
observed for the clustering coefficient and the shortest path length per node, for this global
analysis, which is why we have not shown the corresponding plots.

The short distance between nodes notices above can be due, for instance, to a large
number of connections between nodes, or to the presence of some highly important nodes,
acting as bridges that connect different parts of the network. This can be quantified with
the concept of betweenness centrality (BC) which, as other centrality measures, provide a
way to assess the importance of nodes in the network. In this case, how important a node
is to establish connection between nodes (see Figure 3).

The results obtained for this metric can be seen in Figure 3. In the case of VG results,
we observe three zones where a few nodes have BC values much larger than other nodes in
the network. For the HVG case, these zones are more distinguishable, as more nodes have
large BC values. These results hold for both networks (sunspots and mean magnetic field).
The most interesting feature of these results is the clear match between BC and variations in
solar activity (Figure 1). As mentioned when Figure 2 was discussed, one would expect the
highest points in the time series to be very well connected, as they should be able to “see”
more nodes. However, this is not captured by the number of connections itself, as shown
in Figure 2. This is unlike BC, where Figure 3 shows higher values of sunspots and mean
magnetic field do not have, on average, more connections that the rest of the data, but they
do play an important role in connecting nodes. In this sense, it is also interesting to note
that the important nodes for the VG method are very few, where the nodes with large
values of the BC belong to a narrow zone around solar maxima; whereas for the HVG,
the BC has a wider distribution, following the sunspots and mean magnetic field time series
in a smoother way.
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Figure 3. Betweenness Centrality for every node in the network, normalized by the size of the
network. (Left) panel: VG method; (right) panel: HVG method.

We have computed a further centrality measure, namely the Eigenvector Centrality
(EC), based on the idea that a node is more important if it is connected to important nodes.
The results are shown in Figure 4. Several features are interesting to observe, which differ
from the previous plots. First, this metric clearly exhibits different results for each time
series, as maximum values for the sunspots time series do not occur for the same nodes
as for the magnetic field time series. This highlights the nontriviality and nonlinearity of
the metrics, and supports the fact that it is interesting to calculate several metrics for a
given network, as they may reveal different features. This is specially noticeable as both
time series in Figure 1 show a similar behavior: sequences of maxima and minima which
clearly mark all the solar cycles in the dataset, at essentially the same time. However, data
are not the same, and results are clearly split by the eigenvalue centrality, not the metrics
previously discussed.

Another interesting fact is that, in the VG case, maximum values of the eigenvector
centrality tend to occur in between solar maxima, suggesting an anticorrelation with
the solar cycle. Notice, for instance, the EC maxima for the magnetic field time series,
between the 21st and 22nd solar cycle, and the maxima for the sunspots time series,
between the 22nd and 23rd solar cycle. However, there are three intercycle time windows
in the data set, but only two noticeable maxima of the EC for both the magnetic field
and the sunspots time series. Since the EC is related to the importance of neighboring
nodes, it is possible that the analysis is affected by boundary effects, as no data exist before
and after the selected time window. However, it is worth noticing that several papers
have been devoted to the prediction of features of the next solar cycle [46–48], such as its
intensity. Since the EC for the VG seems to be most sensitive during the intercycle period,
with different behaviors for each time series (e.g., the existence of maxima for the magnetic
field series at day ∼13,000, while no important maxima occur for the sunspots series) it
would be interesting to explore to what extent the EC could provide useful information on
the next solar maximum before it is actually reached.

As for the HVG method, Figure 4 also shows that EC maxima do not occur simul-
taneously with sunspots maxima. Rather, they seem to cluster during the ascending or
descending phase of cycles.

The analysis so far has focused on the value of network measures per node. However,
the distribution of values may also have information, as it can provide insight about
the physical processes underlying the network formation [49,50]. For instance, the HVG
method typically leads to exponential degree distributions, P(k) ∼ exp(−γk), and it
has been suggested that its decay exponent γ is related to the type of randomness [51].
Specifically, it has been suggested that a threshold value γun = ln(3/2) ≈ 0.405 exists, such
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that γ < γun corresponds to a chaotic process, whereas γ > γun corresponds to a correlated
stochastic process.
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Figure 4. Eigenvector Centrality for every node in the network, normalized by the size of the network.
(Left) panel: VG method; (right) panel: HVG method.

Thus, we calculate the probability distribution of a node having degree k, P(k), which
corresponds to the fraction of nodes with k connections over the total amount of nodes. We
can observe in Figure 5 that, indeed, networks for both time series follow an exponential
distribution P(k). The value of γ is given by the slope of the linear fit of the semi-log distri-
bution, and is computed considering the tail of the distribution [52], where a linear relation
for ln P(k) and k holds. The estimated values of γ are 0.51 and 0.82 for the magnetic field
and sunspots networks, respectively, which suggests an underlying correlated stochastic
process [51].

Figure 5. Semi-log plot of the degree distributions. (Left) panel: magnetic field time series;
(right) panel: sunspots time series.

Now, we employ moving time windows to follow the evolution of the network
measures along the solar cycle. Two window sizes were chosen: 1-year windows, with a
1-month overlap; and 11-years windows, with a 1-year overlap. This leads to 493 windows
of 1-year width, and 30 windows of 11-years width. We then plot results by associating,
to each window, the time corresponding to its center.
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The same metrics as in the global analysis were calculated. Results for the degree
are shown in Figures 6 and 7. As expected, the VG method leads to larger number of
connections than the HVG.
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Figure 6. Degree for 1-year windows. (Left) panel: magnetic field networks; (right) panel: sunspots
networks. Line color indicates the type of graph: VG (black line) and HVG (magenta line).
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Figure 7. Degree for 11-year windows. (Left) panel: magnetic field networks; (right) panel: sunspots
networks. Line color indicates the type of graph: VG (black line) and HVG (magenta line).

In general, results are consistent with the global results in Figure 2: the degree does not
correlate with the solar cycle, regardless of the timescale of observation. The only exception
is the HVG analysis for the sunspots time series, with 1-year windows (Figure 6), where
clear minima close to solar minima can be found.

Figures 8 and 9 show the corresponding results for the clustering coefficient. Larger
values are obtained for the VG method, for both window types. Furthermore, results do
not show clear correlations with solar activity, but notably, the HVG method has the same
kind of oscillating behavior as for the degree (Figure 6), but more pronounced (notice that
both measures are normalized, so that their maximum possible value is 1). Interpretations
of this behavior will be discussed later, in Section 4.
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Figure 8. Clustering coefficient for 1-year windows. (Left) panel: magnetic field networks;
(right) panel: sunspots networks. Line color indicates the type of graph: VG (black line) and
HVG (magenta line).
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Figure 9. Clustering coefficient for 11-year windows. (Left) panel: magnetic field networks;
(right) panel: sunspots networks. Line color indicates the type of graph: VG (black line) and
HVG (magenta line).

Betweenness centrality results are shown in Figures 10 and 11. We already noticed,
in the global analysis, that BC was an interesting metric, due to its apparent sensitivity
to the solar cycle (Figure 3). This is found here for the wider windows as well, Figure 11,
showing peaks associated to maxima in solar activity (Figure 1). Thus, BC correlates well
with solar activity, but if large timescales are studied (full time series in Figure 3, 11 years
in Figure 11), and if the HVG is used. If shorter, 1-year windows are taken, or if the VG
method is used, then the BC does not convey information on solar activity.



Entropy 2023, 25, 342 11 of 17

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0  2000  4000  6000  8000  10,000  12,000  14,000

B
e
tw

e
e
n
n
e
s
s
 C

e
n

tr
a
li
ty

Time [days]

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0  2000  4000  6000  8000  10,000  12,000  14,000

B
e
tw

e
e
n
n
e
s
s
 C

e
n

tr
a
li
ty

Time [days]

Figure 10. Betweenness centrality for 1-year windows. (Left) panel: magnetic field networks;
(right) panel: sunspots networks. Line color indicates the type of graph: VG (black line) and HVG
(magenta line).
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Figure 11. Betweenness centrality for 11-year windows. (Left) panel: magnetic field networks;
(right) panel: sunspots networks. Line color indicates the type of graph: VG (black line) and HVG
(magenta line).

Finally, we compute the eigenvector centrality, shown in Figures 12 and 13. Unlike
Figure 4, this measure does not show interesting results for the local analysis, regardless of
the moving window width, thus highlighting again the nontriviality of the results, as the
usefulness of the network approach to follow solar activity depends both on the metric and
the timescale observed.

Regarding the degree distribution for the HVG method, all networks, for all time
windows, exhibit an exponential topology, as in the case of the global networks, consistent
with previous results for the HVG [51]. The degree distributions P(k) of every window are
shown in Figures 14 and 15, for 1-year and 11-year windows, respectively.
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Figure 12. Eigenvector centrality for 1-year windows. (Left) panel: magnetic field networks; (right)
panel: sunspots networks. Line color indicates the type of graph: VG (black line) and HVG (ma-
genta line).
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Figure 13. Eigenvector centrality for 11-year windows. (Left) panel: magnetic field networks;
(right) panel: sunspots networks. Line color indicates the type of graph: VG (black line) and HVG
(magenta line).

The decay exponent γ for each window is shown in Figure 16. For both window
types, 1-year and 11-year windows, similar values γ ∼ 0.6 are found along the solar
cycle. As mentioned before, this suggests correlated stochastic processes for every window,
regardless of its length [51].
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4. Discussion

In this work, we have studied and characterized solar activity using a complex network
approach. By means of the visibility algorithms mentioned in Section 2, time series, and thus
the Sun’s dynamics, are mapped into a complex network.

Various network metrics are calculated, which are related to node connectivity, edges
density, distance between nodes and node relative importance. In general, larger values of
the degree are found for the VG as compared with the HVG (Figure 2). This is a expected
result since the HVG has a limited visibility, restricted to horizontal lines, and therefore less
connections can be established.

For the global analysis, using the full time series, the most interesting metrics were
the centrality measures. From Figure 3, we can observe sensitivity of the betweenness
centrality to the solar cycle both for VG and HVG. This is a nontrivial result, because larger
values of the time series would be expected to have more connections, because they should
be more “visible” to other nodes. However, the degree itself does not capture variations
in solar activity, whereas the betweenness centrality, which is a more elaborate measure,
clearly does.

The eigenvector centrality also shows a dependence on the solar activity, but of a
different kind. First, behavior is different for both time series (magnetic field and sunspots),
thus this is the only metric, among those studied here, that distinguishes the physical
quantity being observed. Besides, for the VG, maxima tend to lie close to solar minima,
whereas for the HVG they tend to lie in the ascending or descending phases of the cycle.
It is also interesting to observe the small values obtained for SC24, with the VG method,
representing almost non-influence in the network, consistent with the substantially lower
activity of this cycle with respect to other recent solar cycles. The HVG, on the other hand,
yields different results to the VG ones. Considering that EC tends to show maxima outside
solar maxima, and that it distinguishes between sunspots and magnetic field times series,
it should be interesting to study to what extent this measure is able to provide information
on the next solar maximum, before it is actually reached. We plan to examine this in more
detail in the future.

The results for the local analysis are, in general, consistent with the global analysis.
Figures 6 and 7 show the expected result that the VG yields larger values for the degree
than the HVG. It is also interesting to notice that the HVG degree shows a slight trend
to decrease during its evolution, for the 1-year windows. However, one should take into
account that values are normalized to the interval [0, 1], and that the obtained values are
very small ∼10−2, thus the degree could be regarded as essentially constant, regardless
of the size of the time windows. However, a similar and clearer trend is observed for the
HVG, if other metrics are considered.

Figure 8 shows that, whereas the degree is different for VG and HVG, the clustering
coefficient for the magnetic field and sunspots time series has about the same value, ∼0.75,
for the VG method. On the other hand, the HVG method is able to pick variations associated
to the solar cycle in the sunspots network. This sensitivity, though, is not present for the
larger timescales, when the 11-year windows are used.

We have also observed interesting variations in the BC, for both the VG and HVG
methods, with the larger scale time windows (11 years), as seen in Figure 11. This is
consistent with the behavior found for the BC for the global analysis. One should consider,
anyway, that calculated values are normalized to 1, and thus the variations shown in those
figures are very small, of the order of 10−2. In this sense, the behavior of the BC for the
global analysis is much stronger, but the subtle variations in the local analysis may also be
interesting, specially because they are consistent with the local analysis for the degree and
the clustering coefficients, which did not exhibit any special dependence on solar activity
in the global analysis.

In general, most curves shown in Figures 6–13 are featureless, with a few of them,
as discussed above, showing noticeable variations which are consistent with the solar
cycles. This is worth pointing out, because, although the sunspots and magnetic field time
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series clearly show variations in solar activity along solar cycles, and despite the interesting
capabilities of the VG approach to identify statistical features in time series, it is interesting
to point out when the VG can be most useful to study solar activity, and when it does not
provide useful information.

The degree distributions are found to show an exponential behavior at the tail, as seen
in Figure 5. The fast decay shows that on average, most nodes are connected to only
a few nodes (degree probability is different from zero for k < 6). However, the mean
path length is very small compared with the size of the network, suggesting a small-
world behavior. Basically, the information within magnetic field and sunspots networks is
efficiently transferred toward the entirety of the system, locally and globally [53]. These
results are preserved when the analysis is carried out in moving windows, as shown in
Figures 14 and 15. For this latter analysis, we also observe an essentially constant value of
the decay exponent despite variations in solar activity, as shown in Figure 16.

Despite simple metrics like the degree may not exhibit strong dependence with solar
activity, more elaborate ones like the clustering coefficient and centrality measures may
show clear variations with the solar cycle. The centrality measures are particularly inter-
esting, due to the strong dependence of the BC for the global analysis, and the distinction
between the magnetic field and sunspots time series that the EC displays. Further analysis
should be carried out to determine to what extent these findings may contribute to char-
acterize future solar cycles in advance, but our findings highlight the nontriviality of the
information extracted by each metric, as results depend on the algorithm used, and the
time scale examined, complementing other, recent works, on complex network analyses
for solar activity [54–56]. In particular, we have previously observed that observing with
different network metrics the same time series (sunspots number), various results can be
found, with some metrics correlated, others anti-correlated, and other being essentially
constant along the solar cycle [27]. The present work also complements these results. Our
findings also show that different time series, although they may be related to the same
underlying physics (solar dynamics), are not equivalent for the VG algorithm, which is
consistent with the fact that one cannot expect a single technique to provide all the possible
information on a given phenomenon. Besides, the correlation of certain metrics, for some
timescales, with solar activity, opens the question of to what extent this correlation may
be used to either characterize solar cycles, or inform us about the dynamo process driving
sunspots emergence and magnetic field variability along the solar cycle. We are currently
working in some aspects of these questions, including the analysis of additional solar cycles,
to understand in detail why some metrics perform better, and thus their connection to
physical features, beyond the results presented here.
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