
Citation: Luo, J.; Shang, J. Reliable

Optimization of Arbitrary Functions

over Quantum Measurements.

Entropy 2023, 25, 358. https://

doi.org/10.3390/e25020358

Academic Editor: Jay Lawrence

Received: 25 January 2023

Revised: 9 February 2023

Accepted: 14 February 2023

Published: 15 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Reliable Optimization of Arbitrary Functions over
Quantum Measurements
Jing Luo and Jiangwei Shang *

Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement of Ministry of Education,
School of Physics, Beijing Institute of Technology, Beijing 100081, China
* Correspondence: jiangwei.shang@bit.edu.cn

Abstract: As the connection between classical and quantum worlds, quantum measurements play
a unique role in the era of quantum information processing. Given an arbitrary function of quan-
tum measurements, how to obtain its optimal value is often considered as a basic yet important
problem in various applications. Typical examples include but are not limited to optimizing the
likelihood functions in quantum measurement tomography, searching the Bell parameters in Bell-test
experiments, and calculating the capacities of quantum channels. In this work, we propose reliable
algorithms for optimizing arbitrary functions over the space of quantum measurements by com-
bining the so-called Gilbert’s algorithm for convex optimization with certain gradient algorithms.
With extensive applications, we demonstrate the efficacy of our algorithms with both convex and
nonconvex functions.
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1. Introduction

In quantum information science, numerous complex mathematical problems remain
to be solved. Since the set of quantum states as well as quantum measurements form
convex sets, various important tasks in this field, such as the calculation of ground state
energy, violation of the Bell inequality, and the detection and quantification of quantum
entanglement [1,2], conform to the framework of convex optimization theory. The primary
tool in convex optimization is semidefinite programming (SDP) [3,4], which can be used
to derive relaxed constraints and provide accurate solutions for a large number of com-
putationally challenging tasks. However, serious drawbacks also exist for SDP including
its slow computation speed and low accuracy. For instance, SDP can only compute up to
four qubits in quantum state tomography (QST), while improved superfast algorithms [5]
can quickly go up to eleven qubits with a higher precision. Consequently, developing more
efficient algorithms in convex optimization is becoming more and more crucial as quantum
technologies rapidly advance.

Recently, an efficient convex optimization algorithm [6] was proposed by Brierley
et al. based on the so-called Gilbert’s algorithm [7]. Concurrently, Ref. [8] used Gilbert’s
algorithm to investigate whether nonlocal relationships can be distinguished in polynomial
time. In Ref. [9], Gilbert’s algorithm was employed as a tool to satisfy certain constraints,
based on which two reliable convex optimization schemes over the quantum state space
were proposed. In addition, some nonconvex optimization algorithms were also brought
out for QST; for instance, the one in Ref. [10] is faster and more accurate as compared
to previous approaches. One notices that all these studies concern only the optimization
over quantum state space, with the consideration over quantum measurement space rarely
being mentioned.

In fact, various important and meaningful problems related to quantum measure-
ments exist in convex optimization, including, for example, searching the Bell parameters in
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Bell-test experiments [11], optimizing the correlation of quantum measurements under dif-
ferent measurement settings [12–15], and maximizing the likelihood functions in quantum
measurement tomography. Meanwhile, characterization of quantum measurements forms
the basis for quantum state tomography [16–18] and quantum process tomography [19–21].
Therefore, convex optimization over the quantum measurement space stands as an inde-
pendent yet important problem in quantum information theory. However, the space of
quantum measurements is much more complex as compared to the quantum state space
since it is possible to produce an infinite variety of different measurement outcomes as
long as the probabilities for these outcomes sum to one. Recently, Ref. [22] proposed a
method to optimize over the measurement space based on SDP, but it fails to solve complex
tasks due to the intrinsic problem with SDP. Worst of all, nonconvex functions [23] easily
appear in the space of quantum measurements. Unlike convex functions, local optima
might be found during the process of optimization. Hence, nonconvex optimization is
regarded as more difficult than convex optimization. In this work, we propose two reliable
algorithms for optimizing arbitrary functions over the space of quantum measurements
by combining the so-called Gilbert’s algorithm for convex optimization with the direct-
gradient (DG) algorithm as well as the accelerated projected gradient (APG) algorithm.
With extensive applications, we demonstrate the efficacy of our algorithms with both
convex and nonconvex functions.

This work is organized as follows: In Section 2, we propose two reliable algorithms for
optimizing over quantum measurement space by combining Gilbert’s algorithm with the
DG and APG algorithms, respectively. The universality of our method is demonstrated by
several examples with both convex and nonconvex functions in Section 3. The last Section 4
provides the conclusions.

2. Function Optimization

In the quantum state space Q, an arbitrary state ρ should satisfy the conditions

ρ ≥ 0 , (1)

tr(ρ) = 1 . (2)

Given a smaller convex subset C ∈ Q, Gilbert’s algorithm can be used to approximately
find the closest state ρC ∈ C with respect to ρ [9]. In general, for an arbitrary matrix M in
the matrix spaceM, we employ Gilbert’s algorithm to search for the closest quantum state
ρQ ∈ Q with respect to M. Throughout this work, let us denote the operation by using
Gilbert’s algorithm as

ρQ ≡ S
(

M
)

. (3)

Given experimental data, it is critical to identify the measurement settings that are
most compatible with the data. Here, we consider the quantum measurement space Ω as
all the positive operator-valued measures (POVMs). A quantum measurement device is
characterized by a set of operators

{
Πl
}

, which have to satisfy two constraints

Πl ≥ 0 , (4)
L

∑
l=1

Πl = I , (5)

where L is the total number of operators in the set. Denote a function F
[{

Πl
}]

defined
over the quantum measurement space Ω. We assume that F

[{
Πl
}]

is differentiable with
the gradient ∇F

[{
Πl
}]
≡ G

[{
Πl
}]

. The objective is to optimize F
[{

Πl
}]

over the entire
quantum measurement space, and we have

optimize F
[{

Πl
}]

, (6a)

s.t.
{

Πl
}
∈ Ω . (6b)



Entropy 2023, 25, 358 3 of 11

A simple gradient method is very likely to take
{

Πl
}

outside of the quantum measurement
space; for this, we employ Gilbert’s algorithm to guarantee the condition in Equation (4).
In addition, we rewrite the POVM as

{
Πl
}
=
{

Π1, Π2, . . . , ΠL−1, I−∑L−1
l=1 Πl

}
to satisfy

the condition in Equation (5). Then, the structure of optimization proceeds as follows.
Taking the to-be-minimized objective function as an example, for the (k+ 1)th iteration,

first update the (L − 1) elements foremost of the measurement operators with the DG
scheme to obtain

Πl,k+1 = Πl,k − εG
(
Πl,k

)
≡ DG

[
Πl,k, G

(
Πl,k

)
, ε
]
.

(7)

Here, ε represents the step size of the update which can be any positive value, and k is
the number of iterations. Second, normalize the measurement operators Πl,k+1 as density
matrices ρl,k+1, such that

ρl,k+1 =
Πl,k+1

tr(Πl,k+1)
, (8)

which could be nonphysical. Third, use Gilbert’s algorithm to project ρl,k+1 back to the
quantum state space Q, i.e., ρl,k+1 → ρQl,k+1 = S(ρl,k+1). Finally, reconstruct the physical
measurement operators as {

ΠΩ
l,k+1 = ρQl,k+1tl,k+1

}L−1
l=1 , (9)

ΠΩ
L,k+1 = I−

L−1

∑
l=1

ΠΩ
l,k+1 , (10)

where the parameter tl is obtained by fixing the obtained ρQl,k+1 to obtain{
tl,k+1

}L−1
l=1 = argmin F

[{
tl,k+1

}L−1
l=1

]
. Here, to ensure that the first (L− 1) measurement

operators satisfy condition Equation (4), only tl,k+1 ≥ 0 is required since ρQl,k+1 ≥ 0 is guar-
anteed by using Gilbert’s algorithm. Meanwhile, in order to ensure that the last element of
the new POVM satisfies the condition in Equation (4), let

ΠΩ
L,k+1 = I−

L−1

∑
l=1

(
ρQl,k+1tl,k+1

)
≥ 0 . (11)

Hence, we obtain the new POVM
{

ΠΩ
k+1,l

}
that satisfies the condition in Equation (6b)

after each iteration. Whenever the difference between the values of the adjacent iterations
is less than a certain threshold, the iteration stops, and the optimal POVM is obtained.
Otherwise, continue with the iteration and the step size is controlled by a step factor β.
When Fk < Fk−1, the step size is appropriately selected. When Fk > Fk−1, it indicates that
the step size selection is too large, and the step factor β needs to be used to adjust the step
size. See the DG algorithm in Algorithm 1.

However, the DG algorithm has some disadvantages, such as slow optimization speed
and low accuracy. For faster convergence, one can choose the APG algorithm [5,24]. The
APG algorithm adjusts the direction of the gradient at each step, which improves the
convergence speed of the algorithm. In simple terms, the APG algorithm has introduced a
companion operator El,k = Πl,k +

θk−1−1
θk

(
Πl,k −Πl,k−1

)
, which provides the momentum

of the previous step controlled by the parameter θ, in order to update the measurement
operators Πl,k = El,k−1 − ε G

(
El,k−1

)
. See the specific process shown in Algorithm 2.
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Algorithm 1: DG algorithm

Input: ε > 0, 0 < β < 1, choose any
{

Πl,0
}L−1

l=1 ∈ Ω, F0 = F
[{

Πl,0
}]

.
Output:

{
Πl
}

.
1 for k = 1, · · · , do
2 for l = 1, · · · , L− 1 do
3 Update Πl,k = DG

[
Πl,k−1, G

(
Πl,k−1

)
, ε
]
. Calculate ρl,k and ρQl,k = S

(
ρl,k
)
.

4 end

5 Gain
{

tl,k
}L−1

l=1 = argmin Fk
[{

tl,k
}L−1

l=1

]
. Calculate

{
ΠΩ

l,k
}

, Fk = F
[{

ΠΩ
l,k
}]

.
6 Termination criterion!
7 if Fk > Fk−1 then
8 Reset ε = βε, and

{
Πl,k

}
=
{

ΠΩ
l,k−1

}
.

9 end
10 end

Algorithm 2: APG algorithm

Input: ε > 0, 0 < β < 1, choose any
{

Πl,0
}L−1

l=1 ∈ Ω,
{

El,0
}
=
{

Πl,0
}

, θ0 = 1, and
F0 = F

[{
Πl,0

}]
.

1 . Output:
{

Πl
}

.
2 for k = 1, · · · , do
3 for l = 1, · · · , L− 1 do
4 Update Πl,k = El,k−1 − ε G

(
El,k−1

)
. Calculate ρl,k and ρQl,k = S

(
ρl,k
)
.

5 end

6 Gain
{

tl,k
}L−1

l=1 = argmin Fk
[{

tl,k
}L−1

l=1

]
. Calculate

{
ΠΩ

l,k
}

, Fk = F
[{

ΠΩ
l,k
}]

.
7 Termination criterion!
8 if Fk > Fk−1 then
9 Reset ε = βε, and

{
Πl,k

}
=
{

ΠΩ
l,k−1

}
.
{

El,k
}
=
{

Πl,k
}

, and θk = 1.
10 else

11 Set θk =
1
2

(
1 +

√
1 + 4θ2

k−1

)
;

12 Update
{

El,k
}
=
{

Πl,k +
θk−1−1

θk

(
Πl,k −Πl,k−1

)}
.

13 end
14 end

3. Applications

In this section, we demonstrate the efficacy of our algorithms by optimizing arbitrary
convex as well as nonconvex functions over the space of quantum measurements.

3.1. Convex Functions

In quantum measurement tomography [25–27], a set of known probe states ρm is
measured to provide the information needed to reconstruct an unknown POVM

{
Πl
}

.
The probability that the device would respond to the quantum state ρm by producing the
outcome Πl is given by

plm = tr
(
ρmΠl

)
. (12)

Typically, the linear inversion method [28] can be used to obtain the ideal POVM, but
nonphysical results are likely to be obtained. Then, the maximum likelihood estimation
(MLE) [29] is proposed to reconstruct the POVM that satisfies all the conditions. However,
MLE fails to return any meaningful results when the target POVM is of low rank, which is
quite typical, especially in higher-dimensional spaces. These problems can be avoided by
using our algorithms.
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To estimate the operators
{

Πl
}

, we maximize the likelihood function

L
[{

Πl
}]

=
L

∏
l=1

M

∏
m=1

[
tr
(
ρmΠl

)] flm
, (13)

where M is the number of different input states ρm, and

flm =
nlm
n

, (14)

with nlm denoting the number of lth outcome when measuring the mth state ρm, and n
representing the total number of measured input states. One can see that L

[{
Πl
}]

is not
strictly concave, while the log-likelihood lnL

[{
Πl
}]

is. Here, we minimize the negative
log-likelihood function F

[{
Πl
}]

= − lnL
[{

Πl
}]

with

lnL
[{

Πl
}]

=
L

∑
l=1

M

∑
m=1

flm ln plm . (15)

To satisfy the condition in Equation (5), rewrite the objective function as

lnL
[{

Πl
}]

=
L−1

∑
l=1

M

∑
m=1

flm ln
[
tr
(
ρmΠl

)]
+

M

∑
m=1

fLm ln
{

tr
[

ρm

(
I−

L−1

∑
l=1

Πl

)]}
. (16)

The gradient of lnL
[{

Πl
}]

with respect to Πl is

∇ lnL
(
Πl
)
=

M

∑
m=1

[(
flm
plm
− flm

1−∑L−1
l=1 plm

)
ρm

]
. (17)

For numerical simulations, we mainly consider Pauli measurements which are the
most commonly-used measurements in quantum information processing. Then, the cases
of one qubit, one qutrit, two qubits, and two qutrits are used for the experimental setup,
respectively. Specifically, the setups of these four scenarios are described below.

3.1.1. One Qubit

For one qubit, we take the eigenstates of σz and the superposition states− 1√
2

(
|0z〉 ± |1z〉

)
and 1√

2

(
|0z〉 ± i|1z〉

)
as the input states. In the measurement setup, we select the projection

of the spin along the x-axis, i.e.,

Π1 = |0x〉〈0x| ; Π2 = |1x〉〈1x| . (18)

3.1.2. One Qutrit

For one qutrit, we use 12 different input states: three eigenstates of σz, | − 1z〉, |0z〉
and |1z〉, and nine superposition states 1√

2

(
| − 1z〉 + eiψj |0z〉

)
, 1√

2

(
|0z〉 + eiψj |1z〉

)
and

1√
2

(
| − 1z〉+ eiΨj |1z〉

)
, where j = 1, 2, 3; and ψ1 = 0, ψ2 = π

2 , and ψ3 = π. The device
measures the projection of the spin along the x-axis, and the POVM are projectors

Π1 = | − 1x〉〈−1x| ; Π2 = |0x〉〈0x| ; Π3 = |1x〉〈1x| . (19)
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3.1.3. Two Qubits

In the case of two qubits, we take the tensor products of the four eigenstates of two Pauli-

Z operators |0z0z〉, |1z1z〉, |0z1z〉, |1z0z〉 and the superposition states 1√
2

(
|0z0z〉+ eiψj |0z1z〉

)
,

1√
2

(
|0z0z〉 + eiψj |1z0z〉

)
, 1√

2

(
|0z0z〉 + eiψj |1z1z〉

)
, 1√

2

(
|0z1z〉 + eiψj |1z0z〉

)
,

1√
2

(
|0z1z〉 + eiψj |1z1z〉

)
, 1√

2

(
|1z0z〉 + eiψj |1z1z〉

)
as the probe states, where j = 1, 2, 3;

ψ1 = 0, ψ2 = π
2 , and ψ3 = π. Then, we choose the following POVM for the experi-

mental simulation:

Π1 = |0x0x〉〈0x0x| ; Π2 = |0x1x〉〈0x1x| ;
Π3 = |1x0x〉〈1x0x| ; Π4 = |0x0x〉〈0x0x| .

(20)

3.1.4. Two Qutrits

Finally, for the case of two qutrits, we perform a numerical simulation of the Stern–
Gerlach apparatus measuring two particles with spin-1. We assume 45 different input
states: |1z − 1z〉, | − 1z0z〉, | − 1z1z〉, |0z − 1z〉, |0z0z〉, |0z1z〉, |1z0z〉, |1z1z〉, | − 1z − 1z〉 and
36 superposition states. In the simulation, the device measures the projection of the spin
along the x -axis, and the POVM are projectors

Π1 = |0x1x〉〈0x1x| ; Π2 = |0x − 1x〉〈0x − 1x| ;
Π3 = |1x0x〉〈1x0x| ; Π4 = |1x − 1x〉〈1x − 1x| ;
Π5 = |0x0x〉〈0x0x| ; Π6 = | − 1x0x〉〈−1x0x| ;
Π7 = |1x1x〉〈1x1x| ; Π8 = | − 1x1x〉〈−1x1x| ;
Π9 = | − 1x − 1x〉〈−1x − 1x| .

(21)

For each case of simulation, the number of measurements for each probe state is
300, 105, 105, and 5 × 105, respectively. Then, according to the frequency obtained by
the simulated data, we use our algorithm to reconstruct the POVM. The fidelity between
different POVM elements is defined as the fidelity between the two states σ and ρ, i.e.,

F(σ, ρ) :=
(

tr
√√

σρ
√

σ

)2

= F
(

Πl
tr(Πl)

,
Πj

tr(Πj)

)
. (22)

In addition, the overall fidelity between two POVMs
{

Πl
}L

l=1 and
{

Πj
}L

j=1 on a d-dimensional
Hilbert space is defined by

F(Πl , Πj) :=

[
L

∑
l=1

wl

√
F
( Πl

tr(Πl)
,

Πj

tr(Πj)

)]2

, (23)

with wl =

√
tr(Πl)tr(Πj)

d [30]. The overall fidelities of the reconstructed POVMs are shown
in Figure 1. Figures 2 and 3 present the variations of fidelity of the POVM elements
reconstructed using the DG algorithm and APG algorithm with respect to the number of
iteration steps in different cases. We can see that these two algorithms are almost identical in
accuracy, and the fidelities of the measurement operators are close to 1. Generally speaking,
the APG algorithm converges faster than the DG algorithm. In addition, one notices that
the fidelity of the last element in some of the simulations is not always increasing, which is
a result of the constraint that we set in Equation (11).
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(a) one qubit
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APG

(b) one qutrit
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(c) two qubits
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0.7
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0.9

1

DG
APG

(d) two qutrits

Figure 1. For different cases, the two algorithms are compared to reconstruct the overall fidelity of
the measurements. The number of measurements used in each simulation for each probe state is
300, 105, 105, and 5× 105, respectively. For most cases, the APG algorithm converges faster than the
DG algorithm.
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0.95
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1
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(a) one qubit

0 5 10 15 20
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0.85

0.9
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(b) one qutrit
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Steps
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0.8
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1
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(c) two qubits

0 10 20 30 40 50
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0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3

4 5 6

7 8 9

(d) two qutrits

Figure 2. For different cases of the quantum measurement tomography, fidelities of the measurements
obtained by the DG algorithm vary with the number of iteration steps. In general, the fidelity of each
POVM element saturates to the maximum very quickly.
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(a) one qubit

0 5 10 15 20
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(b) one qutrit
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0.9

1

1 2 3

4 5 6

7 8 9

(d) two qutrits

Figure 3. For different cases of the quantum measurement tomography, fidelities of the measurements
obtained by the APG algorithm vary with the number of iteration steps. In general, the fidelity of
each POVM element saturates to the maximum very quickly.

3.2. Nonconvex Functions

Quantum detector self-characterization (QDSC) tomography is another method for
characterizing quantum measurements. Unlike quantum measurement tomography, this
method does not require knowing the specific form of the input probe states, but directly
optimizes the cost function based on the measurement statistic fm to reconstruct the mea-
surements. For POVM with L outcomes detected by m states, a data set of the measurement
statistic flm is obtained. We write the distribution of the data for each state as a vector

fm =


f1m
f2m
...

fLm

 . (24)

For the one qubit case, define Ni,l = bT
i bl and write the POVM as

Πl = al I + bl · σ (25)

under the Bloch representation, where i and l represent the number of rows i and columns
l of the matrix N, a = (a1 · · · aL)

T , bl = (bl,x, bl,y, bl,z), σ = (σx, σy, σz), 1 ≤ i, l ≤ L. The
matrix N and vector a can be represented as

Ni,l = bT
i bl =

1
2

tr(ΠiΠl)−
1
4

tr(Πi)tr(Πl) , (26)

al =
1
2

tr(Πl) . (27)
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Then, optimization of the cost function F
(

N+, a
)

is given by [23]

min ∑
m

[
1−

(
fm − a

)T N+
(

fm − a
)]2

, (28a)

s.t. a2
l − Nl,l >= 0 , (28b)

where N+ stands for the Moore–Penrose pseudoinverse of N. One notices that the objective
function is nonconvex. Optimization of nonconvex functions is difficult as local minima
might be found. Interestingly, we find that our algorithm can also be used to optimize
nonconvex functions. Since our algorithm guarantees the conditions for quantum measure-
ments, one only needs to optimize the objective function regardless of the constraint in
Equation (28b).

For numerical simulations, we choose 50 probe states:

1
2
(
I+ σz

)
,

1
2
(
I− σz

)
,

1
2

(
I+ sin

iπ
4

cos
nπ

8
σx + sin

iπ
4

sin
nπ

8
σy + cos

iπ
4

σz

)
, (29)

where i = 1, 2, · · · , 6; n = 1, 2, · · · , 8. In addition, we use the two-dimensional SIC POVM
as the measurement device, and each state is measured 200 times. The APG algorithm
is used to optimize the objective function. First, select any set of POVM operators in the
measurement space, and use Equations (26) and (27) to obtain the initial values N+

k and ak,
respectively. Similarly, we calculate the gradient of the objective function in Equation (28a).
The gradient of the objective function is given by

δF
(
a
)
= ∑

m
2
(
1− fm − a

)T N+
(

fm − a
){(

N+
)T fm + N+ fm −

[
N+ +

(
N+
)T]a} , (30)

δF
(

N+
)
= ∑

m
−2
(
1− fm − a

)T N+
(

fm − a
)2( fm − a

)T . (31)

The values of Nk+1 and ak+1 are obtained by iterating over Nk and ak using gradient
descent; then, bl,k+1 is obtained by decomposing Nk+1. In the experiment, we specify that
the reference frame, i.e., the vector b1 is parallel to the z-direction of the Bloch sphere,
and set the xz plane of the Bloch sphere as the plane determined by the vectors b1 and b2.
This is equivalent to b1,x = b1,y = b2,y = 0. Then,

{
Πl,k+1

}L−1
l=1 can be obtained by using

Equation (25), which is the update for
{

Πl,k
}L−1

l=1 .
The fidelity of each POVM element can approach 1 in a very small number of iteration

steps; see Figure 4. Then, the fidelities of the measurements are compared with the ones
reported in [23], demonstrating that the performance of our algorithm is slightly better; see
Figure 5.

0 1 2 3 4 5
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1
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Figure 4. In the case of QDSC, the fidelity of each element of the two-dimensional SIC POVM
saturates to the maximum by using only two steps.
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Figure 5. Comparison of the fidelities of the reconstructed quantum measurements between the APG
algorithm (blue) and the method in [23] (green).

4. Conclusions

We have proposed two reliable algorithms for optimizing arbitrary functions over
the quantum measurement space. For a demonstration, we have shown several examples
on the convex function of quantum measurement tomography with different dimensions
as well as a nonconvex function of one qubit in quantum detector self-characterization
tomography. Surprisingly, our method does not encounter the problem of rank deficiency.
Compared with SDP, our method can be easily applied to higher-dimensional cases as
well as to optimize nonconvex functions. Moreover, our method reports better results as
compared to previous approaches. For future work, we will consider the optimization over
the joint space of quantum states and quantum measurements, for tasks such as calculating
the capacity of quantum channels.
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