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Abstract: Monocular depth estimation techniques are used to recover the distance from the target to
the camera plane in an image scene. However, there are still several problems, such as insufficient
estimation accuracy, the inaccurate localization of details, and depth discontinuity in planes parallel
to the camera plane. To solve these problems, we propose the Global Feature Interaction Network
(GFI-Net), which aims to utilize geometric features, such as object locations and vanishing points,
on a global scale. In order to capture the interactive information of the width, height, and channel
of the feature graph and expand the global information in the network, we designed a global
interactive attention mechanism. The global interactive attention mechanism reduces the loss of
pixel information and improves the performance of depth estimation. Furthermore, the encoder uses
the Transformer to reduce coding losses and improve the accuracy of depth estimation. Finally, a
local–global feature fusion module is designed to improve the depth map’s representation of detailed
areas. The experimental results on the NYU-Depth-v2 dataset and the KITTI dataset showed that our
model achieved state-of-the-art performance with full detail recovery and depth continuation on the
same plane.

Keywords: monocular depth estimation; global attention mechanism; Transformer block; multi-scale
feature extraction

1. Introduction

Monocular depth estimation techniques are inspired by the fact that the human eye
can easily deduce the approximate size of objects, their relative position, and even the
relative distance from the eye to the target. Monocular depth estimation based on deep
learning is computationally simple with a low hardware cost, unlimited scenarios, and
no need for stereo matching. It can be widely used in areas such as intelligent driving,
heritage reconstruction, and intelligent unmanned combat. However, there are still several
problems, such as insufficient estimation accuracy, inaccurate localization of details, and
depth discontinuity in planes parallel to the camera plane. For example, the depth of the
wall parallel to the camera plane in the depth map is discontinuous, and the edges of the
target are blurred. To solve these problems, we propose the Global Feature Interaction
Network (GFI-Net), which aims to utilize geometric features, such as object locations and
vanishing points, on a global scale.

In monocular depth estimation networks, the full use of global and local information
allows for the accurate recovery of detailed areas of the depth map, improved accuracy
of the depth map, and accurate recovery of the same depth plane [1–3]. Many geometric
features in the scene, such as the location of targets and vanishing points, are necessary for
the network’s global understanding of the scene [3]. Therefore, the global information of the
image needs to be preserved in the monocular depth estimation network to obtain a highly
accurate depth map. However, previous approaches neglected the use of the interaction
information of the three dimensions of the feature map height, width, and channel to
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improve the global information of the depth estimation network [3–5]. Therefore, we
developed a new Global Interaction Attention Mechanism (GIAM) module to boost the
performance of deep estimation networks by mitigating information loss during encoding
and amplifying global interactions.

The main architecture of a monocular depth estimation network based on deep learn-
ing is an encoder–decoder network. The encoder usually migrates the backbone network
for image classification, and the decoder aggregates the features extracted by the encoder
to recover a high-precision depth map. The convolution-based backbone network contin-
uously down-samples the input scene image to extract features at different scales of the
image. Continuous down-sampling reduces the computational effort of the network and
increases the perceptual field of the network. However, this operation greatly compresses
the resolution of the image, causing the encoder to inaccurately locate the target edges
when recovering the depth map. The Transformer block is used as the basis for the encoder
in order to avoid compressing the image resolution and reducing computational losses
while preserving the network perception field. The experimental results showed that the
use of Transformer blocks instead of traditional convolution as encoders is competent for
dense prediction tasks. Finally, the paper used a highly utilized decoder to reduce the
amount of computation and to recover the depth map accurately [3].

Our main contributions in this paper are as follows:

(i) The Global Feature Interaction Network (GFI-Net) was designed in which the geomet-
ric information of the scene is fully utilized. The use of geometric information helps to
construct fine-grained depth maps. In addition, the depth of the plane parallel to the
camera is continuous.

(ii) The Global Interactive Attention Mechanism (GIAM) was designed to improve the
accuracy of the depth map, guaranteeing the same depth at the same distance from
the camera plane. It fully preserves the network’s channel and spatial information,
enhances the interaction between the three dimensions of the feature map width,
height, and channel, and mitigates information loss.

(iii) Using the Transformer block as an encoder avoids the loss of information from contin-
uous down-sampling and increases the accuracy of depth estimation while improving
the perceptual field of the network. The global–local fusion module was designed to
efficiently fuse low-level pixel information with high-level semantic information to
build a fine-grained depth map and connect a low-complexity decoder.

(vi) The experimental results on the NYU-Depth-v2 and KITTI datasets showed that our
network model achieved state-of-the-art performance, achieving depth continuity in
planes parallel to the camera and recovering more complete details. Testing in real
scenarios demonstrated the network’s good generalization.

2. Related Work

Monocular depth estimation is the recovery of the depth information of a scene. It is
divided into traditional methods and methods based on deep learning. The most representa-
tive of the traditional methods is the Structure From Motion (SFM) [6].
SFM [6] is used to calculate and recover the 3D information of a scene and the corre-
sponding camera parameters by taking multiple images of the same scene. However,
SFM [6] restores blur to areas such as repeated textures and material transparency in depth
and is very computationally intensive. A deep-learning-based approach can effectively
solve these problems. Traditional codec structures [7], depth regression networks [8,9],
and depth classification networks [5,10,11] are the three basic deep learning methods for
monocular depth estimation. Eigen [7] designed a depth estimation network model with
a coarse-to-fine optimization. The model consists of two convolutional neural networks
connected in series, where the coarse estimation network aims to extract the global infor-
mation about the image. The coding characteristics of the convolutional neural network
greatly improve the performance of the depth estimation network [7,10,12] and can be bet-
ter extended to other tasks. In addition, BTS [1] has suggested a local planar guidance layer
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that outputs plane coefficients and then uses them in the full-resolution depth estimation.
The post-optimization network uses the local information to refine the coarse depth pre-
diction results. Ning [9] proposed a unified autoregressive coder–decoder model that can
handle multiple visual tasks at the same time. AdaBins [5] is a typical depth class network
that defines the monocular depth estimation problem as a classification task, dividing the
depth values adaptively into a number of units and obtaining high-performance results.
Agarwal [11] proposed a new strategy to predict the depth as a problem of pixel query
refinements.

The Transformer network was first proposed for Natural Language Processing (NLP)
tasks, which is also utilized in the field of computer vision currently. To overcome the
limitations of Recurrent Neural Networks (RNNs) in natural language processing, Vaswani
et al. [13] proposed a self-attentive mechanism with a Multi-Layer Perceptron (MLP).
A Vision Transformer (ViT) [14] was initially developed in the realm of computer vi-
sion to handle the difficulties of image classification. However, few researchers have
attempted to solve the depth estimation task using the Transformer block as a backbone.
AdaBins [5] used a minimized version of the vision Transformer to estimate depth intervals
adaptively. Vision Transformers for Dense Prediction (DPT) [4] employ a ViT to enlarge
the perceptual area and then couple a convolutional-neural-network-based decoder for
dense prediction. However, their network parameters are too large. In addition, the DPT’s
training requires an additional dataset. Agarwal [11] used the encoder backbone based on
the Swin Transformer to improve efficiency. In contrast, our encoder reduces complexity
while retaining the receptive field and does not require additional datasets.

Attention mechanisms are derived from the study of human vision. Humans selec-
tively focus on a part of all information and overlook other apparent information due
to bottlenecks in information processing. Several researchers have examined how to in-
crease the performance of attention mechanisms in computer vision tasks. The most
representative of this work is Squeeze-and-Excitation Networks (SENets). The SENet [15]
was the first network to select the important channels using the channel attention mech-
anism and channelwise feature fusion. However, it is less effective at pixel selection.
FcaNet [16] popularized the compression of the channel attention mechanism in the
frequency domain and proposed a method of multi-spectral channel attention. Both
the spatial and channel aspects are taken into account by a later attention mechanisms.
Woo et al. [17] presented the Convolutional Block Attention Module (CBAM), which sets up
channel and spatial attention operations sequentially, whereas Park et al. [18] proposed the
Bottleneck Attention Module (BAM), which accomplishes this in parallel. Both, however,
overlook the channel–spatial interactions, resulting in the loss of cross-dimension informa-
tion. Therefore, for the monocular depth estimation network, we developed an attention
mechanism that can capture the interactions of the three parts: the channel, spatial breadth,
and height. This operation allows for the introduction of geometric features, which increase
the depth estimate accuracy and depth map detail recovery.

Monocular depth estimation networks based on deep learning also suffer from the
following problems:

(i) The encoder in the network greatly compresses the resolution of the image when
extracting features from the network input, resulting in inaccurate edge localization
by the decoder when recovering the depth map, so many methods are investigating
the precise location of depth edges with large variations in the depth map. As in
Figure 1 [10], from left to right, the scene images, the true values of the depth values,
and the estimation results of the existing network model are shown. In Figure 1 [10],
the edges of the sofa in the first row, the edges of the bedside table in the second row,
and the items on the dining table in the third row appear to have blurred depth edges,
as shown in the white boxes. Therefore, the Transformer block is used as an encoder
to reduce information loss and improve the accuracy of the depth map.

(ii) The existing monocular depth estimation algorithm based on depth learning rarely
considers the relative change of pixel information, which will lead to the phenomenon
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of depth discontinuity in the plane parallel to the camera. As in Figure 2 [10], from left
to right, the real picture of the scene, the real value of the depth value, and the depth
estimation results of existing methods are shown. In the existing estimation results,
the same plane parallel to the camera will have depth discontinuity. As shown in the
white box in the Figure 2 [10], the wall in the first row, the blackboard on the back
wall in the second row, and the wall in the third row all have depth discontinuities.
Therefore, the global attention interaction mechanism was designed in the network to
capture the interactive information of the width, height, and channel of the feature
map. Interactive information can effectively capture the relative position relationship
between pixels and solve the problem of discontinuity at the same depth.

Figure 1. Example of inaccurate edge positioning [10].

Figure 2. Examples of discontinuities in the same plane depth [10].

3. Methods
3.1. Global Feature Interaction Network

The global feature interaction network obtains the depth map Ŷ ∈ RH×W×1 from
one image I ∈ RH×W×3, which consists of a Transformer encoder, a global interaction
attention mechanism, a low-complexity decoder, and a local–global feature fusion module.
(Ŷ represents the depth map. I stands for the image. R represents the matrix space. H
represents the height of the feature map. W represents the width of the feature map. C
represents the number of channels in the feature map.) Figure 3 shows the overall architec-
ture of the network. The Transformer encoder is more suitable for dense prediction. While
preserving the global receptive field of the network, the Transformer encoder avoids the
problem of inaccurate depth map detail recovery caused by the huge compressed image’s
resolution [4]. The global attention interaction mechanism module enables the network to
capture the interactive information between the three dimensions of the channel, feature
map width, and height and improves the encoder’s ability to extract global features from
RGB images. The low-complexity decoder can obtain a high-precision depth map while
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retaining the low complexity of the network [3]. The local–global feature fusion module
fully fuses the low-scale pixel position information and the high-scale semantic information
to improve the detail recovery capability of the network. In the next subsections, we go
over each of the four proposed modules in depth.

Figure 3. The architecture of the proposed global feature interaction network consists of four compo-
nents: an Transformer encoder, a global interaction attention mechanism, a decoder, and a feature
fusion module.

3.2. Transformer Encoder

The network uses the Transformer encoder to be able to solve the dense prediction
problem. In order to extract the global information of RGB images in the network, the
encoder used in this section uses layered Transformer-based blocks to expand the receptive
field. It avoids the problem of continuous down-sampling greatly compressing the resolu-
tion and leading to inaccurate detail edge recovery when the decoder recovers the depth
map. The network input image pixel size is 680 × 480. Then, it is embedded into the neural
network in block mode through a 3× 3 convolution operation. The patches are utilized
as the Transformer block’s inputs. Each Transformer block consists of three modules: self-
attention operation, MLP-Conv-MLP, and patch merging. We used four Transformer blocks,
and each block generates 1

4 , 1
8 , 1

16 , and 1
32 scale features with [C1, C2, C3, C4] dimensions.

Following successive Transformer encoding, multi-scale features are obtained, with the
lower-level features rich in pixel location information and the higher-level features rich
in semantic information of the image. Fusing pixel location information and semantic
information of the scene is important for the depth estimation task detail recovery problem.

3.3. Global Interaction Attention Mechanism

The depth estimation task suffers from the problem of depth discontinuities occurring
in the same plane at the same distance. To solve this problem, a global attention mechanism
is designed to reduce the information leakage during encoding and to expand the global
information interaction. The proposed global attention mechanism captures important
features of three parts, namely channel, spatial width, and height, and enhances the features
of the interaction across the parts. We redesigned the submodule using the CBAM’s
sequential channel and spatial attention mechanism [17]. The entire procedure is seen in
Figure 4 and is detailed in Equations (1) and (2) [17]. The features from the encoder are
defined as F1 ∈ RC×H×W , and the intermediate state outputs from the GAM are F2 and F3,
respectively.

F2 = Mc(F1)⊗ F1 (1)

F3 = Ms(F2)⊗ F2 (2)
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where Mc represents the operation of channel attention on the feature map and Ms rep-
resents the operation of spatial attention on the feature map. ⊗ stands for multiplication
between elements.

Figure 4. The illustration of GAM module.

The channel attention module in the depth estimation network uses 3D permutation
to retain three dimensions of information. The spatial dependencies across dimensions are
then amplified using a two-layer MLP. MLP is an encoder–decoder architecture that em-
ploys the r reduction ratio of the BAM [18]. Attention operations in the channel dimension
help the encoder capture high-level semantic information in the scene so that the depth
estimated by the depth estimation network is continuous in a plane parallel to the camera.

The spatial attention module in the depth estimation network use two convolutions,
which fuse the features in the spatial dimension. In this part, we set the reduction ratio
to equal r, which is the same as the BAM. The max-pooling operation was removed in
this part in order to keep the feature map and reduce the information loss caused by
max-pooling during encoding. However, the spatial attention module can occasionally
increase the number of parameters in the model considerably. Therefore, we employed
group convolution with channel shuffle [19] in our depth estimation network to prevent a
major rise in parameters.

The illustrations the two modules are shown in Figure 5.

Figure 5. The illustration of the channel and spatial attention modules.

3.4. Lightweight Decoder

Image I is passed through the encoder to obtain a feature map of size 1
32 H× 1

32 W×C4.
To reconstruct the depth map, our network utilizes a decoder [3], which is lightweight
and efficient. It is used in order to make the feature map bm F3’s size become H×W × 1.
To recover the original size, most earlier work stacked numerous bilinear up-sampling
layers with convolution or deconvolution layers. However, this model performs better
with decoders that have fewer convolution and bilinear up-sampling layers. The 1 ×
1 convolution reduces the channel dimension to Nc and decreases the computational
complexity. The features are then scaled up to H×W × Nc, utilizing continuous bilinear
up-sampling. Finally, to obtain the expected depth map, we used two convolutional layers
and a softmax layer.
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3.5. Local–Global Feature Fusion Module

The integration of local and global information is essential to the task of depth es-
timation. By obtaining an attention map for each feature, we used a fusion module to
self-adaptably select and combine local and global information [3]. Figure 6 depicts the
detailed structure of the feature fusion module. Firstly, in order to fuse the local and global
information, both FD and FE reduce the channel dimensions to 64 by the channel reduction
module. Secondly, the global and local features are concatenated in the channel dimension.
Thirdly, the spliced features are subjected to two concatenated Conv-BatchNorm-ReLU
operations, followed by a Conv-Sigmoid operation to obtain the channel attention map.
Fourthly, the obtained channel attention map is multiplied with the original global informa-
tion and local information to obtain Hi

D. Hi
D represents the feature after local feature and

global feature fusion. To reinforce local continuity, we avoided reducing the scale feature’s
size to 1/4. Fusing pixel location information and semantic information of the scene is
important for the depth estimation task detail recovery problem.

Figure 6. Detailed description of the local–global feature fusion module.

3.6. Loss Function

In order to calculate the loss between the predicted depth map Ŷ and the ground truth
depth map Y , a scale-invariant log-scale loss was used to train the model. The specific
formula is as follows:

L =
1
n ∑

i
d2

i −
1

2n2

(
∑

i
d2

i

)
(3)

where di = log yi− log y∗i . y∗i and yi represent the i-th pixel in Ŷ and Y . n is the number
of pixels.

4. Experiments

The experiments in this section were performed by training and testing on the NYU
Depth V2 and KITTI datasets, the most widely cited monocular depth estimation datasets at
present. The depth estimation accuracy results obtained in the experiment were compared
and analyzed. The results of depth estimation were also visualized and analyzed. Ablation
experiments were conducted on the global attention mechanism module of the network to
verify the effectiveness of each component. Finally, it was tested on a real scene to verify
the generalization of the network model.

4.1. Dataset

The NYU Depth V2 [20] dataset is an indoor scene dataset with depth ground truth
values for 3D scene understanding, as shown in Figure 7a. The dataset comprises 464
distinct scenes taken by a Microsoft Kinect in various buildings, of which 249 were utilized
for training and 215 for testing. The dataset, which is a subset of the NYU dataset with
segmentation labels, consists of 1449 picture pairings, of which 795 were utilized for
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training and the remaining 654 for depth estimation testing. The photos have a resolution of
640× 480.

Figure 7. Sample images of (a) NYU-Depth-v2 and (b) KITTI.

The KITTI [21] dataset was gathered outdoors utilizing a transportable in-vehicle
platform, as illustrated in Figure 7b. The RGB images were captured by stereo-aligned
and corrected cameras. A revolving Velodyne laser scanner placed on the driving vehicle
captured a depth map. The KITTI dataset contains data collected from genuine photographs
in the “city”, “residential”, and “road” categories. The KITTI dataset’s 56 scenes were
separated into two parts: 28 for training and 28 for testing. The depth maps’ ground truth
was created by projecting the 3D points from the LiDAR onto the left RGB camera using the
supplied intrinsic and extrinsic parameters. Because the 3D points are not dense enough,
the resulting pictures are quite sparse. The photos have a resolution of 1224× 368.

4.2. Implementation Detail

The network model we built was implemented on the pytorch framework. In the
training phase, the model used the one-cycle learning rate strategy, and the optimizer was
Adam. The number of epochs was set to 25. Batch_size was set to 4. In the encoder stage,
the pre-training parameters of MiT-b4 were migrated to reduce the training time. Initialize
the encoder using the parameters of MiT-b4 [22]. Set the values of F1

E to [64× 112× 114].
Set the values of NC to 64. The size of the convolution kernel was [3× 3]. The hardware
used an NVIDIA 2080ti GPU. The Ubuntu system version was 18.04. In order to facilitate
fair comparison, use Eigen’s predefined center clipping on the NYU Depth V2 dataset for
evaluation. The maximum range of set depth was 10 m. Use the clipping defined by Garg
on the KITTI dataset, and set the maximum range of depth estimation to 80m.

A widely recognized assessment approach with five evaluation criteria was presented
in [23] for evaluating and comparing the performance of various depth estimation networks.
The formula for the assessment model is specified as follows:

RMSE =

√
1
|N| ∑

i=N

∥∥di− d∗i
∥∥2 (4)
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RMSE log =

√
1
|N| ∑

i=N

∥∥log(di)− log
(
d∗i
)∥∥2 (5)

Abs Re l =
1
|N| ∑

i∈N

∣∣di− d∗i
∣∣

d∗i
(6)

Accuracies : max
(

di

d∗i
,

d∗i
di

)
= E < thr (7)

where di is the predicted depth value of the pixel i and d∗i denotes the true value of the
depth. N is the total number of pixels with a real depth value and thr is the threshold
value.

4.3. Comparison with the Latest Methods

First, the depth estimation effects of different algorithms were compared on the
NYU Depth v2 dataset. The quantitative experimental results are shown in Table 1. DPT
requires additional training datasets. Some examples of the estimation results are shown in
Figure 8. It can be seen from Table 1 that the algorithm in this section achieved the optimal
results on three indicators, δi, RMSE , and log10. Specifically, the optimal results of 0.908,
0.347, and 0.042 were obtained on the indicators δi, RMSE , and log10, which proved
the effectiveness of the algorithm in this section. Compared with the algorithm in [3], the
algorithm in this paper improved 0.1% on index δi. The error of the RMSE indexes reduced
by 0.8%. In terms of network structure, compared with [3], the algorithm in this section
added a global attention interaction mechanism in the network to reduce information
leakage in the coding process and expand the interaction of the channel, space width, and
height. Compared with [4], the parameter decreased by 83.5%, increased by 0.4% on index
δi, and decreased by 2.8% and 4.5% on indices RMSE and log10, respectively. Compared
with GLPD [3], we added a global interaction mechanism that can capture the interaction
information of the width, height, and channel of the feature graph in the network. At the
same time, a lightweight encoder was migrated, which integrates the location information
of the bottom pixel and the semantic information of the top layer, reducing the loss of the
network and ensuring the effectiveness of the algorithm.

Figure 8. Visualization of the effect on the NYU-Depth v2 dataset. The white boxes in the diagram
refer to areas where detail recovery is better than other works.
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Table 1. The accuracy of the proposed model on the NYU-Depth v2 dataset. Additional datasets are
required to train the DPT model.

Method Params
(M) δ1 ↑ δ2 ↑ δ3 ↑ AbsRel ↓ RMSE ↓ log10 ↓

Eigen [7] 141 0.769 0.950 0.988 0.158 0.641 -
Fu [10] 110 0.828 0.965 0.992 0.115 0.509 0.051
Yin [12] 114 0.875 0.976 0.994 0.108 0.416 0.048
DAV [24] 25 0.882 0.980 0.996 0.108 0.412 -
BTS [1] 113 0.885 0.978 0.994 0.110 0.392 0.047
AdaBins [5] 78 0.903 0.984 0.997 0.103 0.364 0.044
DPT [4] 123 0.904 0.988 0.998 0.110 0.357 0.045
GLPD [3] 62 0.907 0.986 0.997 0.098 0.350 0.042
Ours 67 0.908 0.986 0.997 0.100 0.347 0.042

Some estimation results are shown in Figure 8. The first column in the figure is the
RGB image of the experimental scene, and the following four columns from left to right
are from [3,4], the depth estimation results of the algorithm in this paper, and the ground
truth. As indicated by the box in the figure, this area is more complex in the scene. For
the blackboard marked with the first line of boxes, only the visualization results of this
algorithm clearly show the triangles on the blackboard. For the position of the door frame
marked by the box in the second line, only the algorithm in this paper explicitly learned
the edge of the door frame and the depth of the transparent area in the scene. For the
ladder area marked by the box in the third line, only the algorithm in this paper can learn
the specific contour of the lifebuoy on the ladder. For the bookcase in the living room
marked by the fourth line of boxes, only the algorithm in this paper can learn the edge
contour of the bookcase, and the information in the scene was most accurate. In the rear
area marked by the fifth line box, only the algorithm in this paper explicitly learned the
distance of the object’s relative position. In the scene marked with the sixth line of boxes,
only the algorithm in this paper clearly learned the depth of the wall; there was no fault,
and the edge of the box under the bed in the scene was clear. The global feature interaction
network model algorithm enhanced the interaction between local information and global
information and enhanced the interaction between the width, height, and channel of the
feature map, which made the network learn more fully about the target location of the
scene and restore the details accurately.

Secondly, the depth estimation effects of different algorithms were compared on the
KITTI dataset. The quantitative experimental results are shown in Table 2. The DPT
requires additional training datasets. Some examples of the estimation results are shown in
Figure 9. It can be seen from Table 2 that the algorithm in this paper achieved the best
results on the indicators δi, RMSE , and log10 for the KITTI dataset. Specifically, the optimal
result of 0.996 was obtained on index δi; 2.303 was obtained on index RMSE ; 0.087 was
obtained on index log10; these prove the effectiveness of the algorithm. Compared with
the algorithm in [3], the algorithm in this paper improved the δi index by 3.4%. The error
of RMSE index was reduced by 0.8%. In terms of network structure, compared with [3],
this algorithm added a global attention interaction mechanism in the network to reduce
information leakage in the coding process and expand the interaction of the channel, space
width, and height. Compared with [4], the parameter decreased by 83.5%, increased by 3.8%
on index δi, and decreased by 10.4% and 5.4% on indices RMSE and log10, respectively.
On the KITTI dataset, adding the global interaction mechanism also had a good effect.



Entropy 2023, 25, 421 11 of 16

Table 2. The accuracy of the proposed model on the KITTI dataset. Additional datasets are required
to train the DPT model.

Method Params
(M) δ1 ↑ δ2 ↑ δ3 ↑ AbsRel ↓ RMSE ↓ log10 ↓

Eigen [7] 141 0.702 0.898 0.967 0.203 0.6.307 0.282
Fu [10] 110 0.932 0.984 0.994 0.072 2.727 0.120
Yin [12] 114 0.938 0.984 0.998 0.072 3.258 0.117
BTS [1] 113 0.956 0.993 0.998 0.059 2.756 0.088
DPT [4] 123 0.959 0.995 0.999 0.062 2.573 0.092
AdaBins [5] 78 0.964 0.995 0.999 0.058 2.360 0.088
GLPD [3] 62 0.963 0.995 0.999 0.059 2.322 0.089
Ours 67 0.996 0.966 0.999 0.057 2.303 0.087

Some estimation results are shown in Figure 9. The first column in the figure is the
RGB image of the experimental scene, and the following four columns from left to right
are [3,4], the depth estimation results of the algorithm in this chapter, and the ground truth.
It is not difficult to see that the details of the estimation results of this algorithm were
restored accurately. For example, objects such as cars, branches, and window frames were
clearly delineated in the scene. Therefore, it can be concluded that the addition of the global
attention mechanism was conducive to the restoration of the depth map details.

Figure 9. Visualization of the effect on the KITTI dataset.

4.4. Real Scene Test Results and Analysis

The trained network model was tested on real scenes with good results. The training
model was tested on the home environment, school environment, office environment, and
road environment, respectively. The home environment took the bedroom and restaurant
as the test environment.

The bedroom environment is shown in Figure 10. The training results obtained on
the NYU Depth dataset can be well extended to the home environment. The position of
the target in the scene can be clearly distinguished in the visualization results. As shown
in Figure 10, you can clearly learn the outlines of the TV cabinets, chairs, tea tables, beds,
potted plants. and bedding. It has very rich details. In the dining room environment, as
shown in Figure 11, you can clearly learn the outline of the people and the table in the
scene, and the depth is continuous in the plane parallel to the camera.



Entropy 2023, 25, 421 12 of 16

Figure 10. Visualization of the effect on the bedroom environment.

Figure 11. Visualization of the effect on the dining room environment.

The school environment takes the conference room, classroom, and library environ-
ment as the test environment. Visualize the result of the depth estimation, which can clearly
restore the contour of the target in the scene. It is helpful to understand the scene. Specifi-
cally, the conference room results are shown in Figure 12, and the classroom environment
is shown in Figure 13. It can clearly restore the outline of the chairs and tables in the scene.
The library environment is shown in Figure 14. Compared with the former two, the library
environment is more complex. The books in the bookcase have more details. The test
results in this paper obtained clear outlines.

Take the school gate, the road in front of the library, and the dormitory building as ex-
amples for the outdoor environment. The visualization results are shown in
Figure 15. The depth map results obtained have clear object boundaries. Specifically,
the school gate, vehicles running on the road, and students walking on the road have clear
edge contours.
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Figure 12. Visualization of the effect on the conference room environment.

Figure 13. Visualization of the effect on the classroom environment.
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Figure 14. Visualization of the effect on the library environment.

Figure 15. Visualization of the effect on the outdoor environment.

5. Ablation Study

In this section, we performed ablation experiments on the publicly available datasets,
NYU-Depth V2 and KITTI, to validate the effectiveness of our method. The roles of
the spatial and channel attention mechanisms in the network model were first assessed
separately. To better understand the contribution of spatial and channel attention, separate
ablation experiments were conducted, where only the spatial attention module or the
channel attention module was used in the network. ch indicates that only the channel
attention module was added. sp indicates that only the spatial attention module was added.
Table 3 shows the results of the ablation experiments on the NYU Depth V2 dataset, and
Table 4 shows the results of the ablation experiments on the KITTI dataset. Experiments
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on the NYU Depth V2 and KITTI datasets showed that the best results of GAM(sp+ch)
were 0.347 and 2.303 on index RMSE . In addition, by observing the important indicator
of the RMSE, it was found that ch and sp alone had little effect on system performance
improvement. Only by capturing the attention of the channel and space at the same time
can the performance of the depth estimation be improved. Compared with the original
algorithm, our proposed algorithm improved the RMSE index by 0.8%. The network can
capture the interaction information in three dimensions: channel information, feature map
width, and height information by adding the global attention mechanism module. The
results showed that this operation obtained the highest accuracy of depth map estimation.

Table 3. Ablation studies on NYU Depth V2.

Method δ1 ↑ δ2 ↑ δ3 ↑ AbsRel ↓ RMSE ↓ log10 ↓
GAM(ch) 0.904 0.985 0.996 0.103 0.352 0.043
GAM(sp) 0.911 0.986 0.997 0.098 0.351 0.042
GAM 0.907 0.986 0.997 0.098 0.350 0.042
GAM(sp+ch) 0.908 0.986 0.997 0.100 0.347 0.042

Table 4. Ablation studies on KITTI.

Method δ1 ↑ δ2 ↑ δ3 ↑ AbsRel ↓ RMSE ↓ log10 ↓
GAM(ch) 0.964 0.995 0.998 0.060 2.327 0.085
GAM(sp) 0.965 0.995 0.998 0.058 2.344 0.089
GAM 0.964 0.995 0.999 0.059 2.322 0.089
GAM(sp+ch) 0.966 0.996 0.999 0.057 2.303 0.087

6. Conclusions

In this paper, the global feature interaction network was proposed to enhance the
recovery of depth information for detailed regions and to obtain highly accurate depth
maps. The interaction information between the three dimensions, the channel information,
height, and width of the feature map, allowed for better recovery of detailed areas and a
continuity of depth over large planes at long distances. More geometric features, such as
object locations and vanishing points, were utilized on a global scale. The model achieved
state-of-the-art accuracy on both the NYU Depth v2 dataset and the KITTI dataset. It also
outperformed existing methods in terms of detail recovery with the low complexity of the
model in terms of the number of parameters. At the same time, it was tested on real scenes,
which proved that the network has good generalization.
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