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Abstract: The purpose of this paper is to propose a new algorithm based on stochastic expectation
maximization (SEM) to deal with the problem of unobserved values when multiple interactions
in a linear mixed-effects model (LMEM) are present. We test the effectiveness of the proposed
algorithm with the stochastic approximation expectation maximization (SAEM) and Monte Carlo
Markov chain (MCMC) algorithms. This comparison is implemented to highlight the importance
of including the maximum effects that can affect the model. The applications are made on both
simulated psychological and real data. The findings demonstrate that our proposed SEM algorithm
is highly preferable to the other competitor algorithms.

Keywords: linear mixed-effects model; interactions; missing data; censored data; EM algorithm; SEM
algorithm

1. Introduction

The time between the presentation of a stimulus and a participant’s motor response
is the oldest and most widely used measure for exploring the functioning of the human
mind. In 1869, ref. [1] theorized this duration, called reaction time (RT), as involving three
sets of activities: perceptual mechanisms, cognitive processing and motor preparation.
Based on the assumption that the first and last sets of processing can be considered as
having virtually identical duration for the same task, any change in RTs between two
experimental conditions is then interpreted as indicating a change in the duration of
cognitive processing. RT is then considered by psychologists as a tool to explore cognitive
processing mechanisms ([2]).

Psycholinguistics research on the cognitive mechanisms involved in language recogni-
tion or production frequently uses RT as a measure of behavior. Like all scientific disciplines,
psycholinguistics relies on hypothesis testing to support its theoretical propositions. Since
the early 2000s, researchers have taken up linear mixed-effects models (LMEMs). As described
by [3], a LMEM allows for the proper consideration of one of the characteristics of psycholin-
guistic experiments: the presence of two random-effect variables. Indeed, the experimental
structure of the experiments conducted in this field involves having a group of participants
process a set of stimuli (see hereafter). Thus, the statistical analysis must allow the inclusion
of these two random-effect variables, i.e., participants and items, in the structure of the
model. The introduction of LMEM was thus an important methodological advance for
psycholinguistics.

There is, however, one point that has not received much attention from psycholinguists.
Experimentation with human beings is often subject to many vagaries. Imagine researchers
whose goal is to understand how an adult retrieves the spelling of a word from their
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memory ([4]). They ask a group of thirty participants to write down the names of 150 images
presented on a computer screen. A device allows them to measure the time between the
appearance of the image on the screen and the first writing gesture of the participant. These
researchers can potentially collect 4500 RT values. However, between trials lost for technical
reasons, spelling errors, and certain habits during data analysis (e.g., censoring of data
greater than two standard deviations from the mean, right-censoring data), a non-negligible
number of data are removed. For example, ref. [4] reported removing just over 20% of
the data.

The issue of missing and censored data has received relatively little attention in
psycholinguistics (see, however, [5,6]). This is especially true since the introduction of
LMEMs. Psycholinguists assume that these models can be run on a sample of data with
“holes”. The analysis strategy is then of the “keep the case empty” type, ignoring the bias
that this introduces in the estimation of the parameters of the model and thus of the
decisions taken. The objective of this work is thus to develop algorithms to manage the
presence of missing and censored data in these psycholinguistic experiments. Two points
are to be taken into account. On one hand, experimental designs in scientific psychology
may involve assumptions about interactions between two or more fixed-effect variables.
On the other hand, researchers suggest, for theoretical reasons, that all interactions between
fixed-effect variables and random-effect variables made possible by the model should
be included ([7]). The potential presence of these two types of interactions (fixed–fixed
variables; random–fixed variables) are constraints on the development of the missing
data procedure.

Let us first recall that the LMEM ([8]) is an extension of the simple linear model that
allows both fixed and random effects to be represented. In 1861, the LMEM was introduced
under the name of a one-way random-effects model ([9]), that is, a model with one random
variable and without any fixed variable. From 1990 and onward, ref. [9] underlined that
LMEMs became popular in many research applications including economics, sociology,
insurance, agronomy, epidemiology, genetics, etc. They are used in longitudinal data
analysis, multilevel modeling and small estimations. The analysis of this type of models
is presented in [10]; for more literature about the methodology, theoretical results and
software, see the books [11–14]. LMEMs are fitted and analyzed in R by using the package
lme4 or lmertest ([15]).

In [16], the author presented the fixed interactions between two factors in an LMEM,
using the maximum product interaction F-test. Ref. [17] was interested in the sample size
of an LMEM. He proposed a formula to estimate the sample size based on testing a mixed
model that contained fixed interactions. In 2019, ref. [18] proposed an estimation method to
recover the principal effects and interactions, because the existing method did not allow the
integration of these effects in a mixed data frame. They approved that the proposed method
gave optimal results to their applications’ conditions. On the same side, ref. [19] presented
the estimation of the fixed interactions. These interactions are normally introduced by the
product of the variables, but the algebraic transformations revealed that this technique
did not produce a within-unit estimator. A Monte Carlo method confirmed that the FE
(fixed-effects) estimator of (x, z) was biased, if one of these variables was correlated with
another one. In order to present the interaction between x and z, it is possible to use the
current syntax x ∗ z. This consideration is called “double-demeaned”; it is less efficient than
the standard FE and only works with T < 2. For the application in R, the Markov chain
Monte Carlo method is applied using the package mcmc. Ref. [20] introduced the MCMCpack
package that contains functions to perform Bayesian inference using a posterior simulation
for a number of statistical models (https://CRAN.R-project.org/package=MCMCpack
(accessed on 14 Jun 2011)), while [21] presented the package MCMCglmm (https://cran.r-
project.org/web/packages/MCMCglmm/index.html (accessed on 2 February 2010)) for
the MCMC method to fit the generalized linear mixed-models for multiple response vectors.
This method was also used by [22] to identify unknown parameters in the biological field,
such as detecting the concentration of target molecules, because of the importance of this

https://CRAN.R-project.org/package=MCMCpack
https://cran.r-project.org/web/packages/MCMCglmm/index.html
https://cran.r-project.org/web/packages/MCMCglmm/index.html
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method for extracting the information. The MCMC method was applied in the work of [23]
to solve mechanical problems by using a Bayesian method.

Ref. [24] presented five types of LMEMs by introducing two random variables (see
Appendix A.1), where the models were compared to show the importance of including the
maximum effects that could affect the model.

One of the solutions that handles the missing data can be the expectation–maximization
(EM) algorithm. It is a very useful algorithm for the estimation of the maximum likelihood
function. This method can be a solution when the only data available do not allow the
estimation of the parameters ([25]), and/or the expression of the likelihood is analytically
impossible to maximize.

In other words, it aims to provide an estimator when the problem comes from the
presence of missing data. When the data are incomplete, the knowledge of these values
would make it possible to estimate the parameters. The EM algorithm takes its name from
the fact that at each iteration, it operates two distinct steps:

Step E: This step is called the expectation (E) step, where we are interested in finding the
expected value of the unobserved or unknown variables given the observed data
and the value of the parameters.

Step M: This step is called the maximization (M) step; in this step, we maximize the
expected log-likelihood by using the estimation of the unknown data carried out
in the previous step. These parameter estimates are then used to determine the
distribution of the unknown variables in the next iteration.

At some points, the expectation or the maximization steps are impossible to apply
directly ([26]); from there, the use of an extension form of EM is useful, such as MCEM,
where the (E) step is replaced by a Monte Carlo simulation, or SAEM, where the (E) step is
replaced by a stochastic approximation. SAEM was a solution of nonlinear mixed-effects
models (NLMEM). Ref. [27] proposed a new methodology for maximum likelihood estima-
tion in mixtures of nonlinear mixed-effects models. The resulting MSAEM (mixture SAEM)
algorithm is now implemented in the Monolix software tool.

The aim of this paper was to perform the SEM algorithm, under an LMEM by including
two types of incomplete data (the censored and the MAR types) and by taking into consider-
ation for the first time the interactions, where our proposed model contains the interactions
between fixed variables and fixed–random variables. This document is organized as fol-
lows: In Section 2, we present three algorithms based on the expectation–maximization (EM)
method, the first one is called the SAEM algorithm, the second is our proposed SEM algorithm
and the third one is based on the MCMC method. We also present the incomplete data types,
divided into missing data and censored one. In Section 3, we define the proposed model
with some specific cases. In Section 4, we introduce a method to achieve the convergence.
In Section 5, we compare the results obtained from simulated psychological and real data.
In Section 6, we conclude the proposed study with some perspectives and future directions.

2. Methodology
2.1. EM Algorithm

As previously said, the EM algorithm is a widely used algorithm in the case of
incomplete data; in this situation, the maximum likelihood function is difficult or impossible
to use to estimate the parameter vector θ of the considered model. We formalize directly an
iteration from which we can understand clearly how this algorithm works:

− Let y = (y1, . . . , yn) be the independent and identically distributed (i.i.d.) observations
of likelihood p(y|θ).

− The maximization of log p(y|θ) is impossible.
− We consider hidden data z = (z1, . . . , zn) which make the maximization of the likeli-

hood of the complete data possible when known.
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− As we do not know these data z, we estimate the likelihood of the complete data by
taking into account all the known information so the estimator is given as follows (E
step):

Q(θ|θk−1) = E[log p(y, z; θ|y; θk−1)], (1)

where θk−1 is the vector of the parameters at iteration k− 1.
− Finally, we maximize this estimated likelihood to determine the new value of the

parameter (M step). Thus, the transition from iteration k − 1 to iteration k in the
algorithm consists in determining the parameters vector at iteration k, θk:

θk = arg max
θ

Q(θ|θk−1).

where θ0 is chosen arbitrarily. When one of these two steps are impossible to complete,
we can consider an extension form of the EM algorithm such as the SAEM, SEM or MCEM
algorithms. In the next subsection, we derive the SAEM algorithm into the formula of
the EM algorithm.

2.1.1. SAEM Algorithm

The stochastic approximation expectation maximization (SAEM) algorithm was pro-
posed by [26], in which the E step was replaced by a stochastic approximation. The stochas-
tic approximation algorithm was first introduced by [28] and also used by [29], where the
algorithm generates iterates of the form:

θk = θk−1 − γk[h(θk−1) + εk],

where γk is a sequence of positive step sizes, h is a function of θ, and εk is a constant such
that εk = E[h(θk)]. From this form, the SAEM algorithm is obtained where the E step of the
EM algorithm is divided into two steps; consider the iteration k:

First, we sample a realization zk of the latent variable from the conditional distribution
(pθk−1

(z|y)) of z given y, using the value of the parameter θk−1 at iteration k− 1.

Second, by using the realization zk from the first step, we update the value of Qk(θ|θk−1)
(see, (1)) through a stochastic approximation procedure.

Then, the algorithm continues as follows:

Initialization step: Initialize θ0 in a fixed compact set.

Then, for all k ≥ 1, the kth iteration consists in three steps:

Simulation step: simulate zk from the conditional distribution pθk−1
(.|y).

Stochastic approximation step: compute the quantity

Qk(θ) = Qk−1(θ) + γk

(
1

m(k)

m(k)

∑
j=1

log f (zk(j); θ)−Qk−1(θ)

)
,

where mk is the number of simulations at each iteration.

Maximization step: update the parameter value according to θk = arg maxθ Qk(θ).

The SAEM algorithm is more efficient compared to the MCEM, where, at each iteration,
the simulation of the missing values is repeated and the ones obtained previously are not
used. In the SAEM, all the simulated missing values contribute to the expectation step and
that is the advantage of this algorithm where the maximization step is cheaper than the
simulation one. Next, we consider the SEM algorithm to show how it differs from an SAEM.
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2.1.2. SEM Algorithm

The SEM approach is a specific case of the SAEM algorithm. In the SEM algorithm, the step
size is set to zero γk = 0 and the number of simulations by iteration is constant (usually,
mk = 1).

This method is an extension of the EM algorithm and is a solution when the maximum
likelihood is impossible to complete. This algorithm was introduced by [30], where between
the steps E and M, they used a stochastic step that consisted in generating a complete
sample containing latent variables from the conditional density, based on the observed
data. Starting with an initial position θ0, an iteration k of the SEM algorithm, where, to each
θk, a θk+1 is associated, is defined as follows:

Step E: Compute the conditional density f (y|x; θk);
Step S: Draw zk from the conditional distribution, then obtain the complete sample

yk = (x, zk);
Step M: Update the parameters θk+1 by maximizing the likelihood function based on the

complete vector yk.

In the next subsection, we consider the MCEM algorithm to show how a Monte Carlo
simulation is used in the EM algorithm.

2.1.3. MCEM Algorithm

In 1990, ref. [31] proposed to replace the expectation step to compute Q(θ|θk−1) by a
Monte Carlo integration, hence the name MCEM algorithm (Monte Carlo EM). At iteration k,
the E step is replaced by the following procedure:

Simulation step (S-step): generate m(k) realizations zk(j) (with j = 1, . . . , m(k))) of
the missing data vector under the distribution function p(z; θk)

Monte Carlo integration: compute the approximation of Q(θ|θk−1) according to:

Qk(θ) =
1

m(k)

m(k)

∑
j=1

log f (zk(j); θ).

The maximization step remains unchanged.
As said before, these algorithms can be used in such a way as to handle the unobserved

values of the data that are defined in this next subsection.

2.2. Incomplete Data

We can talk about incomplete data when the values in our response vector are not all
observed for many reasons; we can also say it is a question without an answer.

These types of data are a common problem recognized by statisticians. Ref. [32]
presented many solutions to handle this problem based on simple and multiple imputa-
tions. Ref. [33] proposed to handle the incomplete data in a hierarchical model by using the
SEM algorithm.

In this work, we are interested in data that contain two types of incomplete values:
censored data denoted by Yc and missed data Ymiss. In the next subsection, the censored
data are considered.

2.2.1. Censoring

Censored data are any data for which we do not know the exact event time.
There are two types of censored data: right-censored and left-censored.

Right-censored data: these are data where the event has not yet been achieved when
the study is finished.

Left-censored data: these are data when the event is achieved before the study starts.
We consider in this paper both censoring types of (left- and right-censoring) data with

four percentages (0%, 5%, 10% and 20%). Let t be the censoring level and T the set of
censored indices that can be written as T = {(i1, . . . , ip+k) ∈ I, Yi1,...,ip+k ,j < t or Yi1,...,ip+k ,j >



Entropy 2023, 25, 473 6 of 27

t}, and let Y = (Yo, Yc), with Yo = {Yi1,...,ip+k ,j, (i1, . . . , ip+k) /∈ T} the vector of observed
response variables and Yc = {Yi1,...,ip+k ,j, (i1, . . . , ip+k) ∈ T} defining the vector of censored
response variables. The second type is the missing data, defined in the next subsection.

2.2.2. Missing Data

In general, missing values are produced when a value in the data is not represented
for a given variable, for many reasons that can be linked to the objective of the study (for
example, participants do not answer the questions). This appears in many research studies,
particularly when collecting data and where participants are studied over a period of time.

At first, studies were developed assuming no missing values. In the late 1980s, with the
advancement in technology, that problem attracted the attention of many researchers who
wished to study several techniques for handling it. Depending on the reasons for their
absence, these values could be divided into three types: missing completely at random
(MCAR), missing at random (MAR) and missing not at random (MNAR).

In Appendix A.2, we define the types of missing value and the methods to generate
these types in a simulation study.

In this paper, we are interested in imputing the MAR type of missing data with four
percentages (0%, 5%, 10% and 20%), which are crossed with four other percentages of
censoring, resulting in 16 cases of incomplete data. For the missing data, we denote by
Yo the vector of observed response variable and Ymiss the missed one, so Y = (Yo, Ymiss).
In the next section, we present the main results of this work.

3. Main Results
3.1. The Proposed Model

Motivated by psychological data, in which we typically have two random variables,
participants designed by S and items designed by I, we consider a model that contains p
covariates {x1; x2; . . . ; xp} and two random variables. The predicted variable, also named
the variable of interest, is denoted by Y. Then, we consider the following linear mixed
model:

Y = β0,s,i + β1,s,ix1 + β2,s,ix2 + . . . + βp,s,ixp + rj,i,s, (2)

with r the residual of the model that follows a normal distribution. We give:

β0,s,i = δ0 + S0,s + I0,i

β1,s,i = δ1 + S1,s + I1,i

β2,s,i = δ2 + S2,s + I2,i
...
βp,s,i = δp + Sp,s + Ip,i.

By a replacement of these considerations in Equation (2), our model can be rewritten
as follows:

Y = δ0 + δ1x1 + δ2x2 + . . .+δpxp

+ S0,s + S1,sx1 + S2,sx2 + . . . + Sp,sxp

+ I0,i + I1,ix1 + I2,ix2 + . . . + Ip,ixp

+ r.

By taking
X =

[
1 x1 x2 . . . xp+k

]
=
[
1 xj

]
, δ =

(
δ0 δj

)T

and denoting by T the transpose matrix,

Z =
[
zj
]
=
[
xj
]
, u =

[
uj
]
=
[
Sj,l,s + Ij,l,i

]T ;
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and ejl =
[
ej
]
.

This leads us to rewrite our model as follows:

Y = Xδ +
K

∑
k=1

zkuk + e = Xδ + Zu + e,

where E(Y) = Xδ and Var(Y) = V = ZGZT + R, with u ∼ N (0, G), e ∼ N (0, R) and
Cov(u, eT) = 0.

Now, by including all the interactions, the general model can be written as:

Y = F + IFF + R + IFR + e,

where we take:

F = δ0 + δ1x1 + . . . + δpxp︸ ︷︷ ︸
fixed variables

,

IFF = δp+1xp+1 + . . . + δp+kxp+k︸ ︷︷ ︸
interaction between fixed-fixed variables

,

R = (S1,sx1 + I1,ix1) + . . . + (Sp,sxp + Ip,ixp)︸ ︷︷ ︸
random variables

,

IFR = (Sp+1,sxp+1 + Ip+1,ixp+1) + . . . + (Sp+k,sxp+k + Ip+k,ixp+k)︸ ︷︷ ︸
interaction between fixed-random variables

,

and e = (S0,s + I0,i) + r︸ ︷︷ ︸
residuals

.

We set k, the number of interactions, as k = 2p − p− 1 and let j, l ∈ [1, p + k].
Our random participants variable is given as follows:

Sj,l,s ∼ N (0, ΣS),

and the variance–covariance matrix of the participants is written as

ΣS =

{
σ2

j,S ; if j = l

ρSσj,Sσl,S ; otherwise.

We consider that the items random variable also follows a normal distribution:

Ij,l,I ∼ N (0, ΣI);

then, the variance–covariance matrix of the items is given by:

ΣI =

{
σ2

j,I ; if j = l

ρIσj,Iσl,I ; otherwise.

For j, l ∈ [1, p + k], the variance–covariance matrix G is equal to:

G = Σu =

{
σ2

j,S + σ2
j,I ; if j = l

ρSσj,Sσl,S + ρIσj,Iσl,I ; otherwise.
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The goal is to predict our model by determining the parameters δ and u; we propose to
use Henderson’s linear system ([34]) based on the maximum likelihood function. This
approach is presented in Appendix A.3. The matrix R has the form:

R =


I ; if j = l ≤ n− p− k
σ2

ej
; if j = l > n− p− k

0 ; otherwise,

where n represents the total number of observations. Therefore, with Z = (z1, . . . , zp+k),
the variance of Y is equal to:

V =

[
(

p+k

∑
j=1

zjΣu1,uj)z1 + (
p+k

∑
j=1

zjΣu2,uj)z2 + . . . + (
p+k

∑
j=1

zjΣup ,uj)zp + . . .

+(
p+k

∑
j=1

zj)Σup+k ,uj zp+k

]
+ R.

The linear system equations of Henderson applied in this study is also presented in Ap-
pendix A.4. In the next subsection, we present some specific cases.

3.2. Specific Cases

In this section, we show how the model can be simplified if we take the following
two cases: first, only the fixed–fixed interaction part is presented and second, there is no
interaction.

3.2.1. Case 1: Fixed–Fixed Interaction

In this case, we consider the interactions between the fixed variables. Then, in the
random part, the u vector is equal to 0:

u =
[
u1 u2 . . . up up+1 . . . up+k

]T

=
[
0 0 . . . 0 0 . . . 0

]T ;

therefore, the V matrix is equal to:

V = R =


I ; if j = l ≤ n− p− k
σ2

ej
; if j = l > n− p− k

0 ; otherwise.

For more mathematical development, see Appendix A.4.

3.2.2. Case 2: No Interactions

In this case, there are no interactions between the variables; our model is simplified,
where the random part with the fixed–fixed interaction is ignored:

X =
[
1 xj

]
; δ =

(
δ0 δj

)T ; Z =
[
zj
]
; u =

[
uj
]
=
[
0 0 . . . 0

]T ; ejl =
[
ej
]
.

The V matrix is reduced to:

V = R =


I ; if j = l ≤ n− p
σ2

ej
; if j = l > n− p

0 ; otherwise.

See the simplified system in Appendix A.4. Next, we present how the SEM algorithm can be
applied in this work.
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3.3. SEM Algorithm

In this paper, we propose to handle missing data and censored problems in the presence
of interactions by using the SEM algorithm, proposed by [33]. The stochastic expectation max-
imization (SEM) algorithm is a method used to estimate the parameters when it is complicated
to use the EM algorithm; it is a particular case of multiple imputations (MI).

To understand MI ([35]), we need to know the idea behind a simple imputation (SI)
in which the nonobserved data {Yno} (missed or censored) are replaced by a value and
then the parameters are estimated using known methods to maximize the likelihood
function. To obtain a robust estimate, the simple imputation can be repeated several times
with different values of {Yno} and the results can be combined. This method is called
multiple imputations.

We applied the algorithm after crossing the MAR values with the censored ones (see
Algorithm 1). In the SEM algorithm ([30]), the values of {Yno} are drawn from the conditional
distribution of the nonobserved data given the observed ones using the current values of the
parameters. We generated samples from PΘ(Yno|Yo) where this distribution was calculated
using Gibbs’s sampling; the procedure is underlined in Algorithm 1 (the SEM method using
Gibbs’s sampling was developed in [33]). For more information about the expectation
maximization algorithm, see [36]. In the next subsection, we present the extension form of
the SEM that leads us to the SAEM algorithm.

Algorithm 1 SEM algorithm: N is the number of iterations of the SEM algorithm, M is the
burn-in level, Y1, . . . , Yn is the response vector, G is the number of iterations of Gibbs
sampling, Y[ui] is the response vector with respect to the ith random variable, and fixed is
the summation of the fixed effects with the fixed interaction part.
Input: N, M, Y1, . . . , Yn, and G.

1: Random initialization of Θ
2: for j = 1, . . . , N do
3: for g = 1, . . . , G do
4: draw e(g) from N (0, σ2

e , lower = min(e) − fixed − u(g−1), upper = max(e) −
fixed− u(g−1))

5: draw u(g)
1 from N (0, Σu1 , lower = max(min(Y[u1]) − u(g−1)

2 − e(g)), upper =

min(max(Y[u1])− u(g−1)
2 − e(g)))

6: draw u(g)
2 from N (0, Σu2 , lower = max(min(Y[u2]) − u(g)

1 − e(g)), upper =

min(max(Y[u2])− u(g)
1 − e(g)))

7: end for
output: Yno obtained from sampled (u(G),e(G))

8: Θj+1 = argmaxΘ L(Θ|Yo, Yno)
9: end for

10: Θ̂ = (N −M)−1 ∑N
j=M+1 Θj

output: Θ̂

3.4. SAEM Algorithm

In the SEM algorithm, Θj+1 (the parameter at state j + 1) depends only on Θj and Yj.
By taking T the operator of the EM algorithm and M, the operator which associates Θj+1
with Yj via step M, the updated parameter Θj+1 can be written as follows (see [30]):

Θj+1 = T(Θj) + V(Θj, Yj),

where V(Θj, Yj) = M(Yj)− T(Θj).
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The SAEM algorithm (see also Algorithm 2) is an extension form of the SEM algorithm.
Starting with an initial position Θ0, the iteration of the SAEM algorithm, to which for each
Θj, a Θj+1 is associated, is defined by the equation:

Θj+1 = T(Θj) + γjV(Θj, Yj),

where γj is the step size, which is a decreasing sequence of positive real numbers starting
with γ0 = 1, γj 7→ 0 when j 7→ ∞. The theoretical and practical performance values of
the SAEM algorithm are strongly dependent on the speed of convergence towards 0 and
the regular decreasing of the sequence γj, which explains the importance of choosing the
step size.

Ref. [37] performed many tests to see which sequence was more efficient, and they
obtained two types of sequences that were significant, one of a slow mode:

γj = cos(
j× π

2N
),

the other type was of a linear mode:

γj = −
(j + 1)

N
.

Ref. [38] chose the decreasing sequence from their previous experiments [39]; they took
that sequence as

γj = cos(N × α)1{0≤j≤20} +
c√

j
1{j>20}, where cos(20× α) =

c√
20

= 0.3.

That sequence was also chosen by [40,41] in a nonlinear mixed model as 1 at the first
iteration and (j− N)−1 during the last iterations.

Algorithm 2 SAEM algorithm: N is the number of iterations of the SEM algorithm, M is the
burn-in level, Y1, . . . , Yn is the response vector, G is the number of iterations of Gibbs’s
sampling, γj is the decreasing sequence, Y[ui] is the response vector with respect to the
ith random variable, and fixed is the summation of the fixed effects with the fixed interac-
tion part.
Input: N, M, Y1, . . . , Yn, and G.

1: Random initialization of Θ
2: for j = 1, . . . , N do
3: for g = 1, . . . , G do
4: draw e(g) from N (0, σ2

e , lower = min(e) − fixed − u(g−1), upper = max(e) −
fixed− u(g−1))

5: draw u(g)
1 from N (0, Σu1 , lower = max(min(Y[u1]) − u(g−1)

2 − e(g)), upper =

min(max(Y[u1])− u(g−1)
2 − e(g)))

6: draw u(g)
2 from N (0, Σu2 , lower = max(min(Y[u2]) − u(g)

1 − e(g)), upper =

min(max(Y[u2])− u(g)
1 − e(g)))

7: end for
output: Yno obtained from sampled (u(G),e(G))

8: Θj+1 = argmaxΘ γj × L(Θ|Yo, Yno)
9: end for

10: Θ̂ = (N −M)−1 ∑N
j=M+1 Θj

output: Θ̂

When applying these two algorithms, we were confronted with a problem of conver-
gence caused by the presence of the interaction between the fixed and random variables.



Entropy 2023, 25, 473 11 of 27

Therefore, in the next section, we present how to handle this problem by using the Hamil-
tonian Monte Carlo algorithm.

4. Convergence of Parameters

While introducing the fixed–random effect in the application section, we faced a
convergence problem in the SEM and SAEM algorithms when using the standard form
of Monte Carlo (MC). In order to solve this problem, we propose to use the hybrid MC
algorithm ([42]), which uses the symmetric Metropolis–Hastings algorithm to accept or
reject a proposal based on the Hamiltonian function, hence the name of the algorithm,
the Hamiltonian Monte Carlo algorithm (HMC). In the next subsection, we present how to
implement the HMC algorithm.

Implementation

The Hamiltonian function H(p, q) is written in term of the joint density π(p, q):

H(p, q) = − log π(p, q),

which decomposes into two terms:

H(p, q) = − log π(p|q)− log π(q)

= K(p, q) + V(p, q).

The first term corresponds to the density of the target distribution, the second one is
determined by the target distribution when K(p, q) is unconstrained and must be specified
by the implementation.

The acceptance probability of moving from state (p0, q0) to (pi, qi) is determined using
the Metropolis–Hastings algorithm ([43,44]), with Q(pi, qi|p0, q0) being the probability
density defining each proposal:

a(pi, qi|p0, q0) = min
(

1,
Q(p0, q0|pi, qi)π(pi, qi)

Q(pi, qi|p0, q0)π(p0, q0)

)
.

Referring to the symmetric Metropolis ([45]), the acceptance probability is simplified to
the form:

a(pi, qi|p0, q0) = min
(

1,
π(pi, qi)

π(p0, q0)

)
= min

(
1,

exp(−H(pi, qi))

exp(−H((p0, q0))

)
= min(1, exp(−H(pi, qi) + H(p0, q0))).

In this study, we considered that we had evidence of the convergence towards stationarity
due to the Markov Chain (see, [45,46]).

In the next section, we present some numerical applied results based on a psychological
simulation and then real data.

5. Numerical Experiment

This section aims to compare the SEM algorithm proposed in this paper with other
methods in the presence of incomplete data in a complete LMEM. The method was first
applied to simulated data, then to real ones.

5.1. Simulated Data

The simulation data were created from an experimentally obtained database. In order
to explore the cognitive process of retrieval in memory of the spelling of French words,
30 participants had to handwrite the label of 150 drawings of objects, constituting a database
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of 4500 RTs ([4]). After removing the RTs corresponding to technical errors, spelling er-
rors, and censoring data greater than 2.5 standard deviations from the mean, 3434 values
remained. Ref. [4] performed a linear regression analysis involving nine fixed-effects vari-
ables. In the present work, we retained two of them. The first was an estimate of the age
at which the image name was acquired in childhood (age of acquisition, AoA hereafter).
This factor is one of the most important predictors of picture-naming RTs ([47]. The second
fixed-effects variable corresponded to the number of letters in a picture label (Lett_cat).
We performed a median split to obtain a categorical variable. Thus, image labels with a
number of letters lower than the sample average were considered as short words and those
with a higher number of letters were considered as long words. The interaction between
these two fixed-effects variables was included in the model. Finally, there were two random
effect variables: items, i.e., the 150 image labels produced by the 30 participants, and the
participants themselves. The fixed–random interaction between AoA and the participants
was also included in the LMEM.

Therefore, the model could be written as follows:

RTs = b0 + b1 ×AoA + b2 × Lett_cat + b3 ×AoA× Lett_cat

+ participants + items + AoA× participants + e.

In this section, we illustrate the proposed algorithm by comparing the results to the SAEM
and MCMC algorithms using different proportions of incomplete data. The comparison
was performed by computing the mean absolute error (MAE), which measured the errors
between the reference and the predicted vectors (with Θ as the reference value and Θ̂ as
the predicted one); the standard equation of the MAE is given by:

MAE =
1
n

n

∑
i=1
|Θ̂i −Θi|.

We also computed the linear correlation between the parameters
(

LCor = Cov(Θ̂i ,Θi)

σ(Θ̂i)σ(Θi)

)
and

the Spearman rank correlation
(
RCor = 1− 6 ∑ d2

n(n2−1) , where d2 is the square of the difference

in the ranks of the two coordinates
)
.

In this numerical section, we provide the 16 cases to see the performance of the
methods in the absence of one of these two considered types of unobserved values (MAR
type/censored data) or in the presence of a low or high percentage. In addition, we used
the simulated data of 4500 observations after testing our proposed methods on a larger
number of observations. We obtained the same results as those for 4500 values.

After the implementation of our algorithm, we checked the convergence by illustrating
the values of the estimated parameters obtained at each iteration; this is presented in
Figure 1.

In Figure 2, we plotted the normalized residuals of each case. We observed a similar
dispersion between the standard simulated data and the SEM algorithm, while we noticed a
small but visible scattering by implementing the SAEM algorithm, and finally, we observed
that when we used the MCMC method, the residuals were dispersed far from the normal line.

Our results are visualized quantitatively in Table 1. Based on the MAE value, we can
observe that the SEM gave the lowest values in all cases except for the case of 5% MAR
and 20% censoring, where the SAEM (8.108) beat the SEM (8.118) by a very narrow margin.
By observing the full vectors, the SEM gave the best parameter values in two cases: (0%, 10%)
and (20%, 5%). In the other cases, we observed that with a high percentage of MAR (20%),
b2 and b3 in the SAEM method gave the closest values while for the other parameters, it
was the SEM algorithm. In all cases, we see that the MCMC was not a good choice either
for the parameters values or for the other measurements. Moreover, we can see that for
LCor (respectively, Rcor), the SEM and the SAEM algorithms gave approximately the same
results 0.999 (respectively, 1) in all cases. This showed that these two methods had a small
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difference except for the case of (20%, 5%) where the RCor of the SAEM algorithm decreased
from 1 to 0.9285. The MCMC had an RCor ranging between a maximum value of 1 and a
minimum value of 0.738; that maximum value was obtained with 5% of MAR and the absence
of censored data.

(a)

(b)
Figure 1. Value of the parameter estimates at each the SEM iteration with a burn-in period M = 10,
we separate the parameters according to their values in (a), we plot b0, b1, sig1 and sig2 and in (b),
we plot b2, b3, sig3 and sig4.
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(a) (b)

(c) (d)
Figure 2. Normalized residual presented; (a)-standard simulated data, (b)-SEM algorithm, (c)-SAEM
algorithm, (d)-MCMC algorithm.
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Table 1. Comparison of the SEM algorithm with the SAEM and MCMC algorithms in the complete model
with the different percentages of incomplete data where the number of iterations was 50. sig1, sig2,
sig3 and sig4 represent the standard deviations of the participants, items, the IFR part and the error,
respectively. The percentages on the left present the MAR, and on the right are the percentages of
censored data.

(0%, 0%) (0%, 5%) (0%, 10%) (0%, 20%)

Θ̂i Reference SEM SAEM MCMC SEM SAEM MCMC SEM SAEM MCMC

b0 1045 1044 1045 1068 1044 1043 1010 1047 1047 822.8
b1 93.16 93.54 88.51 48.82 93.91 89.37 41.25 93.51 88.84 77.96
b2 −52.28 −51.30 −42.33 −36.75 −52.50 −47.30 51.49 −30.27 −51.66 18.26
b3 2.80 3.17 −0.18 6.92 4.43 5.52 −14.44 −1.79 5.02 −18.20

sig1 14.57 14.65 14.43 5.29 14.65 12.54 12.56 14.70 12.17 11.30
sig2 230.8 231.7 225.9 350.5 231.1 223.0 430.5 233.2 219.0 538.7
sig3 9.79 9.81 9.84 2.80 9.80 8.13 8.61 9.81 9.12 8.94
sig4 282.0 282.0 275.5 283.1 282.0 269.4 277.8 282.0 253.5 253.9

MAE 0 0.421 3.637 28.07 0.505 4.628 51.84 3.935 6.575 83.64
LCor 1 0.999 0.999 0.992 0.999 0.999 0.971 0.999 0.999 0.915
RCor 1 1 1 0.904 1 1 0.738 1 1 0.833

(5%, 0%) (5%, 5%) (5%, 10%) (5%, 20%)

Θ̂i SEM SAEM MCMC SEM SAEM MCMC SEM SAEM MCMC SEM SAEM MCMC

b0 1044 1038 1004 1069 1037 1019 1069 1036 963 1078 1038 780
b1 93.30 94.33 93.79 87.57 90.04 52.82 88.07 90.90 45.29 86.52 90.75 80.88
b2 −46.69 −53.57 −49.05 −49.96 −42.94 −28.23 −52.68 −47.94 55.58 −32.18 −50.21 26.67
b3 1.04 4.58 6.55 8.27 1.27 8.63 9.70 6.75 −11.90 3.82 5.61 −15.79

sig1 15.19 13.65 16.59 15.25 17.02 8.34 15.36 13.93 16.19 15.79 12.80 4.10
sig2 231.0 223.7 213.6 229.8 218.7 332.4 228.9 216.0 412.7 232.4 211.9 518.8
sig3 9.94 7.93 11.07 9.97 8.63 5.05 9.95 7.52 10.61 10.11 8.42 6.56
sig4 282.4 281.4 347.6 282.6 275.0 349.4 282.6 268.7 342.2 282.6 253.2 317.6

MAE 1.146 2.646 16.78 4.970 5.516 34.43 5.089 6.287 62.03 8.118 8.108 88.97
LCor 0.999 0.999 0.996 0.999 0.999 0.991 0.999 0.999 0.971 0.999 0.999 0.911
RCor 1 1 1 1 1 0.928 1 1 0.738 1 1 0.809

(10%, 0%) (10%, 5%) (10%, 10%) (10%, 20%)

Θ̂i SEM SAEM MCMC SEM SAEM MCMC SEM SAEM MCMC SEM SAEM MCMC

b0 1070 1037 981 1069 1035 999 1070 1034 938 1080 1037 759
b1 86.59 94.05 90.52 87.58 90.27 50.902 88.10 90.80 46.43 86.29 90.33 81.31
b2 −45.96 −50.70 −62.01 −45.00 −39.50 −44.14 −47.79 −44.57 45.21 −28.34 −48.01 23.38
b3 6.79 5.26 12.25 6.69 1.46 14.45 8.13 6.78 −8.83 2.53 5.81 −16.26

sig1 14.80 24.43 4.36 14.97 27.35 25.00 15.15 22.09 30.51 15.93 21.39 18.64
sig2 228.7 220.1 205.1 230.0 215.3 323.1 229.1 212.5 401.1 232.5 208.7 506.5
sig3 9.79 11.46 5.94 9.89 12.10 6.336 9.88 10.16 13.87 10.11 10.50 8.73
sig4 282.4 279.6 398.0 282.5 273.2 389.6 282.5 267.2 379.8 282.5 251.8 354.3

MAE 5.608 4.699 30.12 5.387 8.279 40.15 5.424 8.191 68.85 8.747 9.636 93.20
LCor 0.999 0.999 0.990 0.999 0.999 0.987 0.999 0.999 0.969 0.999 0.999 0.908
RCor 1 1 0.904 1 1 0.976 1 1 0.833 1 1 0.833
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Table 1. Cont.

(20%, 0%) (20%, 5%) (20%, 10%) (20%, 20%)

Θ̂i SEM SAEM MCMC SEM SAEM MCMC SEM SAEM MCMC SEM SAEM MCMC

b0 1045 1035 896 1045 1044 908 1045 1036 857 1051 1039 687
b1 93.34 94.05 100.8 93.70 80.78 64.43 94.05 90.14 57.35 92.78 89.41 91.59
b2 −35.09 −38.36 2.54 −34.54 −128.87 21.66 −36.11 −34.79 97.19 −19.91 −39.24 85.55
b3 −1.82 1.90 −16.60 −1.55 39.61 −13.36 −0.36 4.00 −31.09 −4.73 3.67 −42.98

sig1 12.12 26.88 29.49 12.44 11.70 39.89 12.62 25.58 33.25 13.62 26.53 22.49
sig2 230.9 211.4 204.7 231.8 118.2 315.9 231.3 204.4 387.9 233.1 200.9 485.3
sig3 8.84 11.33 8.95 8.98 5.15 11.48 9.03 10.91 10.93 9.41 11.76 6.227
sig4 282.3 276.2 465.9 282.3 265.3 453.6 282.3 264.0 442.2 282.4 249.2 411.6

MAE 3.261 8.002 57.07 3.374 32.83 67.38 2.994 10.905 93.01 6.343 12.47 117.2
LCor 0.999 0.999 0.969 0.999 0.991 0.969 0.999 0.999 0.944 0.999 0.998 0.873
RCor 1 1 0.976 1 0.9285 0.928 1 1 0.761 1 1 0.833

We marked in bold for each case the closest value to the reference among the three considered methods (the
reference vector here was the simulated one that did not contain any missed value).

5.2. Real Data

In this section, we applied the three algorithms to the database used to create the
simulated data. Of the 4500 RTs recorded during the experiment (30 participants producing
the names of 150 items), 115 were removed by right censoring (2.56% of MNAR). Ref. [4]
also removed 951 values, creating 21.13% of missing MCAR/MAR data. By applying the three
proposed algorithms with some missing data to solve the problem in the presence of fixed
and fixed–random interactions, we obtained the results presented in Table 2. The results
were compared with respect to the initial vector where the missed values were treated
by keeping the cases empty (KE). Interestingly, this is how missing and censored data are
handled in psycholinguistic studies.

Table 2. Comparison of the initial parameters in the KE method versus the parameters estimated after
the application of the SEM, SAEM and MCMC algorithms. The initial parameters presented here are the
ones obtained from the model that contained 1066 NA (NA represent the incomplete data; here, we had
115 censored data and 951 missing data.

Θ̂ KE SEM SAEM MCMC

b0 852.5 875.7 892.334 1298
b1 146.6 134.2 120.4 −161.4
b2 158.6 126.1 79.63 −335.3
b3 −58.12 −42.08 −26.72 146.6

sig1 184.3 196.0 203.5 216.9
sig2 133.0 127.8 94.87 221.05
sig3 37.05 28.67 32.84 66.13
sig4 279.5 302.5 262.9 516.6

6. Conclusions

In this study, we proposed an algorithm based on the stochastic expectation maxi-
mization (SEM) to estimate the parameters under a linear mixed-effects model (LMEM) that
contained fixed–fixed and fixed–random interactions in the presence of different percent-
ages of incomplete data.

The simulated and real data showed that the proposed SEM algorithm gave the best
results compared to other competitors, where the bias of the parameters was smaller than
the bias in the SAEM and MCMC algorithms.

The simulation results were obtained by using statistical software R (see Appendix A.5
for some source code).
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We plan to extend this approach by considering a more complicated level of interaction
such as random–random effects and the interactions between more than two variables.
Another direction could be to consider an extension of the present work by considering a
generalized model under the logistic regression by taking one for the NA values and zero
for the observed ones.
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Appendix A

In the following section, we present how [24] defined the models by including the
maximum effects. It is interesting to show the types of missing data with the implemen-
tation methods. Then, the approach of Henderson is introduced and our model matrices
to estimate the parameters are defined. Finally, we present some source code of the SEM
algorithm.

Appendix A.1. Models Extension

Ref. [24] compared five types of models in order to prove the importance of taking the
maximum effects. They presented the two random variables subject, designed by S, and
items, designed by I. By taking i as the items’ index, s as the subject’s index and c as the
observation, the first model was the maximum model that contained the fixed and random
intercepts with the interactions, including also ρS and ρI :

Yc,i,s = β0 + S0,s + I0,i + (β1 + S1,s + I1,i)Xc + εc,i,s,(
S0,s
S1,s

)
∼ N

((
0
0

)
,
(

τ2
00 ρSτ00τ11

ρSτ00τ11 τ2
11

))
,(

I0,i
I1,i

)
∼ N

((
0
0

)
,
(

w2
00 ρIw00w11

ρIw00w11 w2
11

))
,

εc,i,s ∼ (0, σ2).

The second model differed by its correlation parameters, where S0,s and S1,s (respectively,
I0,i and I1,i) were independent. ρS (respectively, ρI) was set to zero:

Yc,i,s = β0 + S0,s + I0,i + (β1 + S1,s + I1,i)Xc + εc,i,s, (A1)(
S0,s
S1,s

)
∼ N

((
0
0

)
,
(

τ2
00 0
0 τ2

11

))
,(

I0,i
I1,i

)
∼ N

((
0
0

)
,
(

w2
00 0
0 w2

11

))
,

εc,i,s ∼ (0, σ2).
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In the third model, they reduced Equation (A1) by ignoring the items’ random slopes (the
interaction between the items’ fixed and random effects), where w11 was set to 0:

Yc,i,s = β0 + S0,s + I0,i + (β1 + S1,s)Xc + εc,i,s,(
S0,s
S1,s

)
∼ N

((
0
0

)
,
(

τ2
00 0
0 τ2

11

))
,

I0,i ∼ (0, w2
00),

εc,i,s ∼ (0, σ2).

The fourth model kept the random items’ slope and excluded that of the subject, where
τ11 = 0:

Yc,i,s = β0 + S0,s + I0,i + (β1 + I1,i)Xc + εc,i,s,

S0,s ∼ (0, τ2
00),(

I0,i
I1,i

)
∼ N

((
0
0

)
,
(

w2
00 0
0 w2

11

))
,

εc,i,s ∼ (0, σ2).

The fifth model excluded the two random slopes (for items and subject), where τ11 = w00 = 0:

Yc,i,s = β0 + S0,s + I0,i + β1Xc + εc,i,s,

S0,s ∼ (0, τ2
00),

I0,i ∼ (0, w2
00),

εc,i,s ∼ (0, σ2).

In the next section, we present the different types of missing data and how to generate
them using different methods.

Appendix A.2. Missing Data Types and Imputations

Let M be the missing data indicator that defines what is known and what is missing.
The response variable is denoted by Y in the complete data, where Y = {Yo, Yno} with
Yo is the observed part and Yno is the nonobserved one. Ref. [48] denoted the missing
part by Ymiss. Consider a dataset of p variables and n subjects, with Y = {Y1, . . . , Yp}. Y
should look like a matrix of n rows and p columns. In the literature on missing data, see
also [49,50].

We show in this section the three types of missing values and how to generate them in
a simulation study based on a rule in each case ([51]).

We start with the first type named MCAR.
The missing completely at random type (MCAR) is a special case of the MAR type that

is presented later. In this type, the value is missed due to chance and the absence is not
related to the subject, so the distribution of M does not depend on Yo or on Ymiss and is
identical for all the observations:

P(M|Y) = P(M),

The statistical advantage of MCAR data is that the analysis remains unbiased, none of the
variables is affected more than another.

Suppose that each subject has a probability π of being missed from a variable, the miss-
ing data rule is given by P(M = 1) = π. From this rule, we can determine various proper-
ties associated with the MCAR data such as the expected percentage of missing values and
the expected number of missing data patterns in the MCAR data.
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If we are working with univariate patterns, let n be the number of subjects in the data
and K the random variable indicating the number of subjects with missing values in the
data that follows a binomial distribution given by K ∼ B(n, π), where 0 ≤ π ≤ 1. Since
E(K) = nπ and V(K) = nπ(1− π), the expected percentage of missing values is:

E(Π) =
1
n
E(K)

= π,

where Π = K
n is the random variable that defines the estimated percentage of missing

values in a sample. the variance of this estimated percentage is given by:

V(Π) =
1
n2V(K)

=
π(1− π)

n
.

In this case, we have two missing data patterns, pattern 1 includes subjects with complete
data; pattern 2 includes subjects with missing data. Let Ij be the indicator variable of the
event, where pattern j is present in at least one subject in the sample with j ∈ {1, 2}, The
probability that pattern 1 is present in at least one subject is P(I1 = 1) = E(I1) = 1− πn.
The probability that pattern 2 is present in at least one subject is P(I2 = 1) = E(I2) =
1− (1− π)n. Let D be the number of distinct missing data patterns, D = ∑2

j=1 Ij; we can
determine the expected value:

E(D) =
2

∑
j=1

E(Ij)

= (1− πn) + (1− (1− π)n)

= 2− πn − (1− π)n.

(A2)

Therefore, in MCAR data that contain more than two missing data patterns, the expected
number of distinct pattern in a sample is given by:

E(D) = m−
m

∑
j=1

(1− ηj)
n,

with η1, . . . , ηm are the corresponding probabilities for patterns 1, . . . , m, and depends only
on the probability of missing values in each variable i (i.e., π1, . . . , πl). m = 2l is the number
of patterns and l is the total number of variables. Generally, the most used method to
implement the MCAR type is randomly deleting the desired percentage of missing values.

The second type is MAR.
Missing at random is the most classic case; Rubin and D.B (1976) defined missing data

to be MAR if the distribution of missing data did not depend on Ymiss:

P(M|Y) = P(M|Yo).

MAR data occur when the absence is not random but can be explained by the variables for
which complete information exists. More generally, we are in the MAR type if the cause
of missing values is not related to the goal of the study. If Y1 has missing values, then
it is regressed on other variables Y2 to Yl . The missing values in Y1 are then replaced by
the obtained predictive values. Similarly, if Y2 has missing values, then the Y1, Y3 to Yp
variables are used in the prediction model as independent variables. Thus, the missing
values are replaced with the predicted ones. The missing data rules for MAR data can be
organized into several categories: single-cutoff method, multiple-cutoff method, percentile
method and logistic regression method.
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Here, we define these three rules.
Single-cutoff method: Consider Y1 as the variable with missing value and Y2 is the

missing data predictor with a cutoff point a. If a subject has Y2 ≥ a, then its probability of
being missing from Y1 is π1, and if Y2 < a, then its probability of being missing from Y1
is π2. Let U be an indicator that takes the value 1 (U = 1) when Y2 ≥ a and U = 0 when
Y < a. The missing data rule is given as:

P(M = 1|U = 1) = π1 ; P(M = 1|U = 0) = π2,

where the parameters associated with this rule are π1 and π2, and π0 is the probability that
Y2 is equal to or greater than the cutoff: P(Y2 ≥ a) = P(U = 1) = π0. To find the expected
percentage of missing values, we first calculate the unconditional probability of a subject
being missing from Y1:

πmiss = P(M = 1)

= P(M = 1|U = 1)P(U = 1) + P(M = 1|U = 0)P(U = 0)

= π1π0 + π2(1− π0).

The expected percentage of missing values in a sample is given by:

E(Π) = πmiss

= π1π0 + π2(1− π0),

and the variance of this estimated percentage of missing values is written as:

V(Π) =
πmiss(1− πmiss)

n
.

Multiple-cutoff method: One advantage of this method is that it can be used to create
a nonlinear relationship between the missing data indicator and the missing data predictor.
To create a nonlinear relationship between the indicator and the predictor, we need to fix
an upper cutoff and a lower cutoff. Suppose we fix the two cutoff points a and −a, U = 1
when Y2 ≥ a or Y2 ≤ −a, and U = 0 when −a < Y2 < a. The missing data rule can be
written as:

P(M = 1|U = 1) = π1 ; P(M = 1|U = 0) = π2, (A3)

and we can see that this missing data rule is the same as the missing data rule in the
single-cutoff method. In the case of a linear relationship, we need to specify two or more
cutoff points in the missing data predictor. Suppose we take the quartile points (Q1, Q2 and
Q3) as a cutoff, let V be a discrete uniform random variable created based on the values of
Y2 and that takes the following values:

V =


1 if Y2 < Q1

2 if Q1 ≤ Y2 < Q2

3 if Q2 ≤ Y2 < Q3

4 if Y2 ≥ Q3.

(A4)

Then, for the linear relation case, the missing data rule is given by:

P(M = 1|V = 1) = π1; P(M = 1|V = 2) = π2;

P(M = 1|V = 3) = π3; P(M = 1|V = 4) = π4.
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Let n be the total number of subjects and nj be the number of subjects in each quartile
group. The variance of the estimated π0 is:

V(Π0) =
π0(1− π0)

n
,

and the variance of the estimated πj where j ∈ {1, 2, 3, 4} is defined as follows:

V(Πj) =
πj(1− πj)

nj
.

We can calculate each subject’s probability of being missing by calculating the marginal
probability of M = 1:

πmiss = P(M = 1)

= π1π0 + π2π0 + π3π0 + π4π0,

and the expected percentage of missing values can be written as:

E(Π) = πmiss

= π1π0 + π2π0 + π3π0 + π4π0;

thus, the variance of this estimated percentage is given by:

V(Π) =
πmiss(1− πmiss)

n
.

To implement the missing data rule in (A4), researchers typically delete π1 subjects with
Y2 < Q1, π2 subjects with Q1 ≤ Y2 < Q2, and so on.

Percentile method: This case is an extension of the multiple-cutoff method, where
each subject has a probability of being missing that depends on its percentile rank in the
missing data predictor.

If there is a direct relation between the missing data indicator and the predictor, then
the missing data rule is defined by:

P(M = 1|Y2 = qk) =
k

100
,

where qk is the Y2 value corresponding to its kth percentile. If there is an indirect relation-
ship, then the missing data rule is defined as:

P(M = 1|Y2 = qk) = 1− k
100

.

Logistic regression method: When generating MAR data by using the logistic regres-
sion method, the logistic regression model is considered as the missing data rule and the
population regression coefficients of the model are the parameters associated with the
missing data rule. Then, the logistic regression model for subject i is written as:

log
(

P(Mi = 1|y2,i)

1− P(Mi = 1|y2,i)

)
= β0 + β1y2,i,

where y2,i is the subject i’s value on Y2. The probability of being missing for each subject is
given by:

P(Mi = 1|y2,i) =
1

1 + e−β0−β1y2,i
.

Because the above function is continuous, it means the probability of being missing for Y1
gradually increases or decreases as the value of Y2 increases. With the logistic regression,
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there is no simple formula for calculating the expected percentage of missing data, so we
estimate the expected percentage of missing data by calculating the mean of the probabilities
in a sample with a large sample size:

πmiss =
1
n

n

∑
i=1

1
1 + e−β0−β1y2,i

.

The third and last type is the MNAR data:
In missing not at random data, the cause of missing data is related to the variable of

interest. In this type, the probability that an observation is missing depends on the observed
Yo and the missing data Ymiss. If Y1 is neither MCAR nor MAR, then it is MNAR. Generating
MNAR data is the same as generating MAR data; the only difference is that in MNAR data the
probability of missing values depends on the variable’s own value and not on the observed
values of the other variables. Therefore, we can change the missing data predictor to the
variable with missing values, then we use one of the methods presented above to generate
MAR data. For example, to change rule (A3) that generates MAR data to one that generates
MNAR data, we only need to replace the variable Y2 by Y1; therefore, the corresponding
missing data rule for generating MNAR data is when Y1 value is above a cutoff point a. Y1
has a π1 probability of being missing, otherwise, Y1 has a π2 probability of being missing.

Next, we define the linear system of Henderson to deal with the parameters’ estimation.

Appendix A.3. Henderson’s Approach

In order to estimate the parameters δ̂ and û, we need to maximize the log function
(δ̂, û) = arg maxδ,u ln f (Y, u). We define f (Y, u) = f (Y|u) f (u) with Y|u ∼ N (Xδ + Zu, R)
and u ∼ N (0, G), so we can write:

−2 ln f (Y|u) = N ln(2π) + ln | R | +(Y− Xδ− Zu)
′
R−1(Y− Xδ− Zu),

−2 ln f (u) = q ln(2π) + ln | G | +u
′
G−1u.

Denote l(δ, u; Y) = ln f (Y, u); to maximize this function, we need to cancel the first deriva-
tives of ln f (Y, u) with respect to δ and u:

∂[−2l(δ, u; y)]
∂δ

= −2X
′
R−1(y− Xδ− Zu) = 0,

∂[−2l(δ, u; y)]
∂u

= −2Z
′
R−1(y− Xδ− Zu) + 2G−1u = 0.

(A5)

From the two equations in (A5), Henderson presented the linear mixed model under the
system: [

X
′
R−1X X

′
R−1Z

Z
′
R−1X Z

′
R−1Z + G−1

][
δ̂
û

]
=

[
X
′
R−1y

Z
′
R−1y

]
(A6)

In the next part, we present how we applied Henderson’s approach to our proposed model.

Appendix A.4. Model Simplification

Complete model: We consider the following matrices, where r determines the rows, c
determines the columns, and l, h ∈ [1, p + k]:

(X
′
R−1X)M×N =


(n− p− k) + σ−2

e1
+ . . . + σ−2

ep + σ−2
ep+1

+ . . . + σ−2
ep+k

; if r = c = 1

∑
n−p−k
j=1 xl,j + ∑

p+k
o=1 xl,n−p−k+oσ−2

eo ; if r = 1; c 6= 1

∑
n−p−k
j=1 xl,jxh,j + ∑

p+k
o=1 xl,n−p−k+oxh,n−p−k+oσ−2

eo ; otherwise.
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(X
′
R−1y)M×1 =

∑
n−p−k
j=1 yj + ∑

p+k
o=1 yn−p−k+oσ−2

eo ; if r = 1

∑
n−p−k
j=1 xl,jyj + ∑

p+k
o=1 xl,n−p−k+oyn−p−k+oσ−2

eo ; otherwise.

(X
′
R−1Z)M×N =

∑
n−p−k
j=1 zl,j + ∑

p+k
o=1 zl,n−p−k+oσ−2

eo ; if r = 1

∑
n−p−k
j=1 xl,jzh,j + ∑

p+k
o=1 xl,n−p−k+ozh,n−p−k+oσ−2

eo ; otherwise.

(Z
′
R−1Z)M×N =

∑
n−p−k
j=1 z2

l,j + ∑
p+k
o=1 z2

l,n−p−k+oσ−2
eo ; if r = c

∑
n−p−k
j=1 zl,jzh,j + ∑

p+k
o=1 zl,n−p−k+ozh,n−p−k+oσ−2

eo ; otherwise.

(Z
′
R−1y)M×1 =

[
∑

n−p−k
j=1 zl,jyj + ∑

p+k
o=1 zl,n−p−k+oyn−p−k+oσ−2

eo

]
.

Case of no interactions: In this case, all the matrices of the linear system are simplified
to reach p instead of p + k. ∀l, h ∈ [1, p]:

(X
′
R−1X)M×N =


(n− p) + σ−2

e1
+ . . . + σ−2

ep ; if r = c = 1

∑
n−p
j=1 xl,j + ∑

p
o=1 xl,n−p+oσ−2

eo ; if r = 1, c 6= 1

∑
n−p
j=1 xl,jxh,l + ∑

p
o=1 xl,n−p+oxh,n−p+oσ−2

eo ; otherwise.

(X
′
R−1y)M×1 =

{
∑

n−p
j=1 yj + ∑

p
o=1 yn−p+oσ−2

eo ; if r = 1

∑
n−p
j=1 xl,jyj + ∑

p
o=1 xl,n−p+oyn−p+oσ−2

eo ; otherwise.

(X
′
R−1Z)M×N =

{
∑

n−p
j=1 zl,j + ∑

p
o=1 zl,n−p+oσ−2

eo ; if r = 1

∑
n−p
j=1 xl,jzh,j + ∑

p
o=1 xl,n−p+ozh,n−p+oσ−2

eo ; otherwise.

(Z
′
R−1Z)M×N =

{
∑

n−p
j=1 z2

l,j + ∑
p
o=1 z2

l,n−p+oσ−2
eo ; if r = c

∑
n−p
j=1 zl,jzh,j + ∑

p
o=1 zl,n−p+ozh,n−p+oσ−2

eo ; otherwise.

(Z
′
R−1y)M×1 =

[
∑

n−p
j=1 zl,jyj + ∑

p
o=1 zl,n−p+oyn−p+oσ−2

eo

]
.

Appendix A.5. R Source Code

Finally, we give the source code in R for the SEM algorithm by considering our real data.
library(lme4); # for lmer
library(msm); # for rtnorm
# initial model
model_initial=lmer(RT~AoA*Lett_cat+(1+AoA|participants)+(1|items), data,
control = lmerControl(optimizer="bobyqa", calc.derivs = FALSE));

# random initialization of parameters
b0=fixef(model_initial)[1];
b1=fixef(model_initial)[2];
b2=fixef(model_initial)[3];
b3=fixef(model_initial)[4];
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sig_items=attr(VarCorr(model_initial)$items,"stddev");
sig_parts=attr(VarCorr(model_initial)$participants,"stddev")[1];
sig_parts_conver<-rep(0.0,itermax);
sig_parts.AoA=attr(VarCorr(model_initial)$participants,"stddev")[2];
sig_Err=attr(VarCorr(model_initial),"sc");

Err=rnorm(n, mean=0, sd=sig_Err);
Rand_parts=rep(0,n);
Rand_items=rep(0,n);
Rand_parts.AoA=rep(0,n);
Rand_parts=rep(rnorm(np,mean=0, sd=sig_parts),each=ni);
Rand_items=rep(rnorm(ni,mean=0, sd=sig_items),each=np);
Rand_parts.AoA=rep(rnorm(np,mean=0, sd=sig_parts.AoA),each=ni);

Lett_cat_1=vector(length=n)
for(i in 1:n){
Lett_cat_1[i]<-ifelse(test=(Lett_cat[i]==Lett_cat[2]),1,0)

}

u=runif(1,min=0,max=1);
# acceptance prob based on the Hamiltonian MC
p<-function(x,newx){
a=min(1,exp(x-newx));
if(u<a){
x=newx;

}
else{
x=x;

}
}

# SEM (Algorithm 1)
itermax=50; # max number of iteration for SEM
burnin=10; # burnin length
GS=5; # number of iterations for Gibbs~sampling

# main loop
for(iter in 1:itermax){
# fixed part
fixed=b0+b1*AoA+b2*Lett_cat_1+b3*AoA*Lett_cat_1;
# Gibbs sampling
for(j in 1:GS) {
# Err with contraints
newErr=rtnorm(length(Err),sd=sig_Err,
lower=min(Err)-fixed-Rand_parts-Rand_items-Rand_parts.AoA,
upper=max(Err)-fixed-Rand_parts-Rand_items-Rand_parts.AoA);
p(Err,newErr);
# Rand_parts with contraints
for (a in 1:length(factor(participants))){
Subset1=(participants == participants[a]) & censored;
newRand_parts=Rand_parts;
if (sum(Subset1)>0) {
low=max(min(!is.na(data[participants == participants[a],5]))-Rand_items[Subset1]
-Rand_parts.AoA[Subset1]-Err[Subset1]-fixed[Subset1]);
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upp=min(max(!is.na(data[participants == participants[a],5]))-Rand_items[Subset1]
-Rand_parts.AoA[Subset1]-Err[Subset1]-fixed[Subset1]);

upp=ifelse(upp-low>0,upp,upp+abs(upp-low)+100);
newRand_parts[Subset1]=rtnorm(1,sd=sig_parts, lower=low,upper=upp);
}

}
p(Rand_parts,newRand_parts);
# Rand_items with contraints
for (a in 1:length(factor(items))){
Subset2=(items == items[a]) & censored;
newRand_items=Rand_items;
if (sum(Subset2)>0){
low=max(min(!is.na(data[items == items[a],5]))-Rand_parts[Subset2]
-Rand_parts.AoA[Subset2]-Err[Subset2]-fixed[Subset2]);
upp=min(max(!is.na(data[items == items[a],5]))-Rand_parts[Subset2]
-Rand_parts.AoA[Subset2]-Err[Subset2]-fixed[Subset2]);
upp=ifelse(upp-low>0,upp,upp+abs(upp-low)+100);
newRand_items[Subset2]=rtnorm(1,sd=sig_items, lower=low,upper=upp);

}
}
p(Rand_items,newRand_items);
# Rand_parts.AoA with contraints
for (a in 1:length(factor(participants))){
Subset1=(participants == participants[a]) & censored;
newRand_parts.AoA=Rand_parts.AoA;
if (sum(Subset1)>0) {
low=max(min(!is.na(data[participants == participants[a],5]))-Rand_items[Subset1]
-Rand_parts[Subset1]-Err[Subset1]-fixed[Subset1]);
upp=min(max(!is.na(data[participants == participants[a],5]))-Rand_items[Subset1]
-Rand_parts[Subset1]-Err[Subset1]-fixed[Subset1]);
upp=ifelse(upp-low>0,upp,upp+abs(upp-low)+100);
newRand_parts.AoA[Subset1]=rtnorm(1,sd=sig_parts.AoA, lower=low,upper=upp);

}
}
p(Rand_parts.AoA,newRand_parts.AoA);
# end of Gibbs sampling algorithm

}
# compute the new response vector
RT[censored]=round(fixed[censored]+Rand_parts[censored]+Rand_items[censored]
+Rand_parts.AoA[censored]+Err[censored],0);
# train the model with the complete data
model_final<-lmer(RT~AoA*Lett_cat+(1+AoA|participants)+(1|items), data,
control = lmerControl(optimizer="bobyqa",calc.derivs = FALSE));
# end of SEM algorithm

}
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