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Abstract: In nuclear reactors, tracking the loss and production of neutrons is crucial for the safe
operation of such devices. In this regard, the microscopic cross section with the Doppler broadening
function is a way to represent the thermal agitation movement in a reactor core. This function usually
considers the Maxwell–Boltzmann statistics for the velocity distribution. However, this distribution
cannot be applied on every occasion, i.e., in conditions outside the thermal equilibrium. In order to
overcome this potential limitation, Kaniadakis entropy has been used over the last seven years to
generate generalised nuclear data. This short review article summarises what has been conducted so
far and what has to be conducted yet.
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1. Introduction

In 2001, Giorgio Kaniadakis presented [1] a new one-parameter deformation for the
exponential function, which describes power-law asymptotic behaviour. He did this in
order to obtain a novel distribution that generalises the Maxwell–Boltzmann (MB) one.
This new deformed exponential is provided by:

expκ(x) ≡
(√

1 + κ2x2 + κx
)1/κ

, (1)

where the κ parameter represents the level of deformation concerning the standard expo-
nential. Hence, when κ → 0 , the deformed exponential reduces to exp(x).

The expκ(x), function obeys the following condition:

expκ(x) expκ(−x) = 1. (2)

By considering the deformed exponential function, one can obtain a new statistical dis-
tribution, starting from a particle system in the velocity space and postulating a generalised
density of entropy, given by [1,2]:

σκ( f ) = −
∫

d f ln{κ}(α f ). (3)

With that, after some calculations, one can arrive at the following distribution func-
tion [1–3]:

fκ(V, T) = A(κ) expκ

(
−MV2

2kBT

)
, (4)
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where in nuclear reactor physics terms, M is the nucleus mass, V is the velocity of the
target nucleus, kB the Boltzmann constant, T is the temperature of the medium, and A(κ) is
defined as [2,3]:

A(κ) =

(
|κ|M
πkBT

)n/2(
1 +

3|κ|
2

)Γ
(

1
2|κ| +

3
4

)
Γ
(

1
2|κ| −

3
4

) (5)

Two significant advantages of using deformed statistics, such as those of Kaniadakis
or Tsallis [4], are the capacity to describe systems with long-term time correlations [5] and
the capacity to describe physical phenomena outside thermal equilibrium [3].

Given this considerable versatility, one can find several scientific papers that have
applied the Kaniadakis-type deformed statistics. To illustrate this usefulness, one can
cite works in astrophysics [6], cosmology [7], DNA analysis [8], quark–gluon plasma [9],
game theory [10], error theory [11], information theory [12], random matrices [13], fractal
systems [14], dusty-type plasmas [15], gravitational physics [16,17], epidemiology [18],
Jeans instability of self-gravitating systems [19], and nuclear reactor physics [3,20–23].

In the present work, we will review the seven years of application of Kaniadakis
statistics in the nuclear reactor physics area, presenting the theories developed until now
and reflecting on their future prospects.

2. Microscopic Cross Sections and the Doppler Broadening Function

In nuclear reactors, the power generation is guided by neutrons being absorbed by
unstable nuclides (uranium, for instance), which, in turn, split into fast-moving lighter
nuclides. This fission process generates energy plus additional neutrons, which, again, split
other nuclides, starting the nuclear chain reaction.

To understand the neutron–nucleus reaction, it is necessary to present the concept of
microscopic cross sections, which are characterized by the probability that a certain reaction
will occur and is represented by σ.

Specifically, from a nuclear reactor physics point of view, one can think in cross sections
in the diversity of nuclear reactions, which occur inside a nuclear reactor. These reactions
are usually divided in two types. The first one is scattering, σs, which has the subdivisions
of inelastic scattering, σin, and elastic scattering, σe. The second division is the absorption
types, σa, such as radiative capture, σγ, (n, α) reactions, σ(n,α), and, of course, fission, σf .
Considering all the possible reactions, one can define a conception of a total microscopic
cross section, σt, which is, consequently, the sum of all of types and summarizes the
probability that any type of neutron–nuclear reaction will occur:

σt = σs + σa = σe + σin + σf + σγ + σ(n,α) + . . . (6)

The nuclear cross sections will vary strongly according to the incident neutron energy
and weakly from the incident beam angle. For this reason, the beam angle is usually
ignored in nuclear reactor applications.

Of all these types of nuclear cross sections, the radiative capture, σγ, is significantly
relevant for nuclear reactor analysis since this is an important factor for removing neutrons
from the chain reactions. This process occurs when the incident neutron is absorbed by the
nucleus, forming a compound one. After this absorption, this new compound nucleus will
decay by the emission of high-energy gamma radiation.

The process of compound nucleus formation occurs only at those energies at which the
centre of mass (CM) incident neutron energy plus the neutron binding energy matches the
exact energy level of the compound nucleus. Due to this, by adding the Heisenberg’s un-
certainty principle considerations, one can obtain a resonance behaviour for the functional
dependence of the capture cross sections on the neutron kinetic energy.

In nuclear reactors, neutrons are generated in a highly energetic state in thermal
nuclear reactors, far from the ideal energy range to fission U235 nuclei. Consequently, it is
necessary to decrease the neutron energies. This process—called neutron slowing down—is
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conducted by multiple collisions (scattering) in moderators, such as water, graphite, or
heavy water. Nevertheless, these scattering processes can lead to absorption, generating
undesirable neutron losses.

These absorptions occur in an energy range called the resonance region and are
represented by the neutron cross sections. These cross sections, in turn, depend on the
relative speed between the neutron and the nuclei. Considering that the nuclei are in
thermal motion, the relative velocity can be different (greater or less) than the neutron
speed. That fact causes a Doppler effect in the existent neutron cross sections in the
resonance region [24].

A way to represent this Doppler effect is by utilising the nuclear cross-section through
the single-level Breit–Wigner (SLBW) resonance cross section formula. Although there are
more modern methodologies, the SLBW method is easier to implement. Besides, it can
present analytical functions for reactor physics calculations and, consequently, produce
faster processing times [3,25].

One of the cross-section expression components is the Doppler broadening function,
which considers a medium in thermal equilibrium at a temperature T. Additionally, the
different velocities of the target nuclei are described by the Maxwell–Boltzmann (MB)
distribution [26]. The averaged capture resonance cross section formula using the Breit–
Wigner methodology represents the thermal nuclei movement and is expressed by [24]:

σγ = σ0
Γγ

Γ

(
E0

E

)1/2
ψ(x, ξ). (7)

where:
Γγ/Γ ≡ the probability that, once formed, the compound nucleus decays to the ground

state of the original nucleus by gamma emission;

ξ ≡ Γ(
4E0kBT

A

) 1
2

; (8)

x ≡ 2
Γ
(E− E0); (9)

A is the mass number, kB is the Boltzmann constant, σ0 is the value of the total cross
section, Γγ is radiative line width, Γ is total width of the resonance as measured in the
laboratory coordinates, E0 is the resonant energy, E is the energy of the incident neutron,
and ψ(x, ξ) is the so-called Doppler broadening function.

The Doppler broadening function, after the Bethe and Placzek [27] approximation, can
be represented by:

ψ(ξ, x) ≡ ξ

2
√

π

+∞∫
−∞

dy
1 + y2 exp

[
−ξ2(x− y)2

4

]
(10)

where:
y ≡ 2

Γ
(ECM − E0) (11)

and ECM is the centre-of-mass energy.
Its formulation usually takes into consideration the Maxwell–Boltzmann distribution.

By doing a formal analysis, it is possible to note that ψ(ξ, x) is affected by the temperature,
i.e., the higher the temperature, the broader the resonance curve, with a peak attenuation,
resulting in a higher probability of loss of neutrons by absorption. This effect is represented
in Figure 1:



Entropy 2023, 25, 478 4 of 16Entropy 2023, 25, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 1. The temperature rise causes the Doppler broadening effect in a resonance curve [28]. 
Source: de Abreu (2020, p. 14). 

As shown in Figure 1, there is an enlargement in the energy range—illustrated by the 
𝑥𝑥 variable—caused by the temperature rise (T1 to T2), which affects the curve’s width. 
This leads to the probability increase in absorption.  

The Doppler broadening function is also known as the first Voigt function. It repre-
sents an even function, i.e., it has symmetry with respect to the energy variable, x. 

The Doppler broadening phenomenon is of crucial importance for the control of ther-
mal nuclear reactors. This relevance can be observed if one analyzes the expressions for 
the average cross sections of resonance capture, Equation (7), and scattering, given by: 

𝜎𝜎�𝑆𝑆 = 𝜎𝜎0
Γ𝑛𝑛
Γ
𝜓𝜓(𝜉𝜉, 𝑥𝑥) + 𝜎𝜎0

R
𝜆𝜆0
𝜒𝜒(𝜉𝜉, 𝑥𝑥) + 4𝜋𝜋𝑅𝑅2 (12) 

where: 
Γn Γ ≡⁄  the probability that, once formed, the compound nucleus decays to the 

ground state of the original nucleus by neutron emission; 
𝜒𝜒(𝜉𝜉, 𝑥𝑥) ≡ interference term; 
4𝜋𝜋𝑅𝑅2 ≡ potential scattering term. 
Another way of realizing the importance of the Doppler broadening phenomenon is 

through the Doppler temperature coefficient. When the fuel temperature of a thermal re-
actor is increased, there is a growth in the energy range of the nuclear resonances. Hence, 
there is a decrease in the probability of resonance escape (𝑒𝑒), i.e., a reduction in the frac-
tion of fission neutrons moderated to the thermal range without suffering resonant ab-
sorption. As the resonance escape probability decreases, the multiplication factor, 
(𝑘𝑘𝑒𝑒𝑓𝑓𝑓𝑓), and, consequently, the reactivity, (𝜌𝜌), will also be reduced. This relationship is 
represented in the fuel temperature coefficient—also known as the Doppler temperature 
coefficient [29]: 

𝛼𝛼𝑇𝑇𝑓𝑓 =
𝜕𝜕𝜌𝜌
𝜕𝜕𝑇𝑇𝑓𝑓

=
1
𝑒𝑒
𝜕𝜕𝑒𝑒
𝜕𝜕𝑇𝑇𝑓𝑓

, (13) 

where 𝑇𝑇𝑓𝑓 is the fuel temperature. 

2.1. Literature Review of Doppler Broadening Functions Approximations Using the  
Maxwell–Boltzmann Distribution 

Figure 1. The temperature rise causes the Doppler broadening effect in a resonance curve [28]. Source:
de Abreu (2020, p. 14).

As shown in Figure 1, there is an enlargement in the energy range—illustrated by the
x variable—caused by the temperature rise (T1 to T2), which affects the curve’s width. This
leads to the probability increase in absorption.

The Doppler broadening function is also known as the first Voigt function. It represents
an even function, i.e., it has symmetry with respect to the energy variable, x.

The Doppler broadening phenomenon is of crucial importance for the control of
thermal nuclear reactors. This relevance can be observed if one analyzes the expressions
for the average cross sections of resonance capture, Equation (7), and scattering, given by:

σS = σ0
Γn

Γ
ψ(ξ, x) + σ0

R
λ0

χ(ξ, x) + 4πR2 (12)

where:
Γn/Γ ≡ the probability that, once formed, the compound nucleus decays to the ground

state of the original nucleus by neutron emission;
χ(ξ, x) ≡ interference term;
4πR2 ≡ potential scattering term.
Another way of realizing the importance of the Doppler broadening phenomenon

is through the Doppler temperature coefficient. When the fuel temperature of a thermal
reactor is increased, there is a growth in the energy range of the nuclear resonances. Hence,
there is a decrease in the probability of resonance escape (p), i.e., a reduction in the
fraction of fission neutrons moderated to the thermal range without suffering resonant
absorption. As the resonance escape probability decreases, the multiplication factor,

(
ke f f

)
,

and, consequently, the reactivity, (ρ), will also be reduced. This relationship is represented
in the fuel temperature coefficient—also known as the Doppler temperature coefficient [29]:

αTf =
∂ρ

∂Tf
=

1
p

∂p
∂Tf

, (13)

where Tf is the fuel temperature.
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2.1. Literature Review of Doppler Broadening Functions Approximations Using the
Maxwell–Boltzmann Distribution

Over the years, several methods have been developed to obtain approximations of the
Doppler broadening function using standard Maxwell–Boltzmann statistics. Therefore, it is
relevant to make a brief review of the literature regarding the main methods used, as these
methods should also be natural candidates in obtaining generalized solutions.

To conduct this review, we focused on works that considered the approaches proposed
by Bethe and Placzek in the year 1936 and which were crucial for the development of the
deformed solution for ψκ(ξ, x).

2.1.1. Beynon and Grant Methods (1963)

In 1963, T. D. Beynon and I. S. Grant published, in the journal Nuclear Science and
Engineering, an article that proposed two different methods for calculating the Doppler
broadening function and for the interference term (ψ(ξ, x) and χ(ξ, x)), calculated with the
aid of a “digital machine”.

The first of these proposed methods use Chebychev polynomial expansions, while the
second uses the Gauss–Hermite method. According to the authors, this second method
was developed as an alternative to the first due to the excessive memory space spent [30].
Considering that this justification no longer represents a concern for most researchers due
to the advancement of technology, the present work will only present the first method,
which is more widespread in the literature [3,22,23,25,28,31].

As previously mentioned, the first method proposed by Beynon and Grant, in their
1963 work, carried out the expansion of the exponential part of the integrands of the
Doppler broadening function in Chebyshev polynomials. Once this was conducted, the
terms were integrated one by one. Before making the expansion, the authors presented the
following definitions:

a =
ξ

2
(14)

b = ξ·x (15)

Thus, the proposed series are represented as follows:

ψ(a, b) = a
{√

π·cos(ab)·[1− E2(a)]·ea2
+ J(a, b)

}
·e−

1
4 b2

(16)

where:

J(a, b) = 1
a

{
1
2! (ab)2 − 1

4! (ab)4 + 1
6! (ab)6 · · ·

}
+ 1

2a3

{
1
4! (ab)4 − 1

6! (ab)6 · · ·
}

+ · · ·+ 1√
πa2n+1 Γ

(
2n+1

2

)
·
{

1
[2(n+1)]! (ab)2n+1 · · ·

}
+ · · ·

(17)

and

E2(a) =
2√
π

a∫
0

e−y2
dy. (18)

The Γ(z) term represents the gamma function, which is one of the most common
special functions in discussions of physical problems. One of the possible ways to express
this function is [32]:

Γ(z) ≡
∞∫

0

e−tez−1dt, Re(z) > 0. (19)

Still, in their article, the authors of the work argued that the proposed approximation
works well for values where b < 6. For values where b ≥ 6, the authors suggested using
the asymptotic expansions method [33].
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The following method consists of the Taylor series expansion of the term 1/
(
1 + y2)

of the Doppler broadening function around y = x, given by [34]:

1
(1 + y2)

=
1

(1 + x2)
− 2x

(1 + x2)
2 (y− x) +

−1 + 3x2

(1 + x2)
2 (y− x)2 · · · . (20)

By substituting the above-mentioned equation in the approximation proposed by Bethe
and Placzek and then performing the integration of all terms, the expansion is obtained:

Ψ(ξ, x) =
1

(1 + x2)

{
1 +

2
(
−1 + 3x2)

ξ2(1 + x2)
2 +

12
(
1− 10x2 + 5x4)
ξ4(1 + x2)

4 · · ·
}

. (21)

For large values of x, Equation (21) tends to:

Ψ(ξ, x) ≈ 1
(1 + x2)

. (22)

Through Equation (21), it is possible to obtain results for the Doppler broadening
function considering temperatures close to zero Kelvin [34].

The consideration of alternating methods for different ranges of b (b < 6 and b ≥ 6 ) is
a strategy that was applied in later works [22,31].

The tables of values for the Doppler broadening function and for the interference term
generated by the work of Beynon and Grant were essential for the reactor physics field,
being present even in two of the main books in this field [24,29].

2.1.2. Campos and Martinez Method (1987)

In 1987, Campos and Martinez published, in the journal Annals of Nuclear Energy,
the article “The dependence of practical width on temperature”. This work, among other
topics, presented a new procedure for calculating the Doppler broadening function. To
do that, the authors used the definitions of Beynon and Grant for the first Voigt function,
ψ(ξ, x), and the interference term, χ(ξ, x), also known as second Voigt function.

For this, the authors differentiated both the integral definition of the Doppler broaden-
ing function and the interference term in relation to x, arriving at the following differential
equation [31]:

4
ξ2

∂2ψ(ξ, x)
∂x2 + 4x

∂ψ(ξ, x)
∂x

+
ξ2

4

[
2 + ξ2x2 + ξ2

]
ψ(ξ, x) = ξ2 (23)

subject to the following initial conditions:

ψ(ξ, x)|x=0 = ψ0 =
ξ
√

π

2
e

ξ2
4

[
1− erf

(
ξ

2

)]
(24)

∂ψ(ξ, x)
∂x

∣∣∣∣
x=0

= 0. (25)

To solve the proposed differential equation, Campos and Martinez (1987) used the
power series expansion method, presenting the following result:

ψ(ξ, x) =
∞

∑
n=0

cnx2n, (26)

with the coefficients generated from the recurrence formulas:

c0 = ψ0; (27)
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c1 =
ξ2

8

[
ξ2 −

(
ξ2 + 2

)
ψ0

]
; (28)

cn+1 = − ξ2

4

[(
4n + ξ2 + 2

)
cn + ξ2cn−1

(n + 2)(n + 1)

]
(29)

Similarly to Beynon and Grant, Campos and Martinez also used the alternation of
methods for different ranges of b (b < 6 and b ≥ 6), using the same Taylor expansion
method, demonstrated by Equation (21) for values of b ≥ 6.

Additionally, in this 1987 work, an expression for the temperature-dependent practical
width was developed, which, in turn, was used later in developing the Campos–Martinez
model for resonance integrals for isolated ones [31,35].

2.1.3. The Palma, Martinez, and Silva Method (2006)

In 2006, Palma, Martinez, and Silva published, in the Journal of Nuclear Science and
Technology, the article “The derivation of the Doppler broadening function using Frobenius
method” [36].

In this work, the authors solved Equation (23) using a different methodology from the
one proposed by Campos and Martinez: utilizing the Frobenius method for the resolution
of the homogeneous part of the equation and the method of variation of parameters to
obtain the particular solution.

Taking this into account, the solution for the obtained Doppler broadening function was:

ψ(ξ, x) =
ξ
√

π

2
e−

ξ2
4 (x2−1)cos

(
ξ2x
2

)[
1 + Reφ(ξ, x) + tan

(
ξ2x
2

)
Imφ(ξ, x)

]
(30)

where

φ(ξ, x) = er f
(

iξx− ξ

2

)
(31)

To measure the method’s accuracy, the authors compared the results of Equation (30)
with results obtained from Padé’s four-pole method [37,38], which is widely used in
calculating the function of Doppler broadening and for calculating resonance integrals.
According to Palma et al., approximations of this type are better than using the Taylor
series to describe functions with poles.

This comparison concluded that the proposed solution presented relative percentage
errors lower than the Padé method [36].

3. Kaniadakis Entropy in the Context of Nuclear Reactor Physics

In the context of the current thermal nuclear reactors scenario, it is appropriate to
apply the Maxwell–Boltzmann statistics to treat the nuclei velocities distribution. How-
ever, considering the perspective of a new generation of nuclear reactors with different
characteristics, the MB approach will not be enough, especially if one considers describing
situations outside the thermal equilibrium [3].

Guedes et al. [3] proposed using the Kaniadakis statistics to obtain an expression for
the Doppler broadening function, which could be capable of contemplating situations other
than the regular nuclear reactors, for instance, in the context of thermal non-equilibrium.

To do this, the authors proposed a new integral expression, ψκ(ξ, x), starting from the
Doppler broadening function without any approximations, Ψ(ξ, x), given by [3]:

Ψ(ξ, x) ≡ π

√
2kBT

M
ξ

+∞∫
− 2

Γ EO

dy
1 + y2

∫ v(x)+vr(y)

v(x)−vr(y)
dVV f (V, T), (32)
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where v is the neutron velocity, vr the relative velocity between the neutron and the nucleus,
and f (V, T) is the chosen nuclei velocities distribution. By substituting the Kaniadakis
statistics, fκ(V, T), into the equation above, one has [3]:

Ψ(ξ, x) ≡ π

√
2kBT

M
A(κ)ξ

+∞∫
− 2

Γ EO

dy
1 + y2

∫ v(x)+vr(y)

v(x)−vr(y)
dVV expκ

(
−MV2

2kBT

)
. (33)

After some algebraic manipulation to perform the integration of the V variable,
Guedes et al. [3] presented a new function, called iexpκ , since:∫

expκ(x)dx = i expκ(x) + C, (34)

where

i expκ(x) ≡
(√

1 + κ2x2 − κ2x
1− κ2

)
expκ(x); (35)

Noting that:
lim
κ→0

i expκ(x) = ex, (36)

Equation (33) becomes:

Ψ(ξ, x) ≡ ξ

2
√

π
B(κ)

+∞∫
− 2

Γ EO

dy
1 + y2

[
i expκ

(
− 1

2kBT
M(v(x)− vr(y))

2
)
− i expκ

(
− 1

2kBT
M(v(x) + vr(y))

2
)]

. (37)

where:

B(κ) = (2|κ|)3/2
(

1 +
3|κ|

2

)Γ
(

1
2|κ| +

3
4

)
Γ
(

1
2|κ| −

3
4

) . (38)

Finally, by using the Bethe–Placzek [27] approximations, Guedes et al. provided the
integral solution for the Doppler broadening function using the Kaniadakis distribution:

Ψκ(ξ, x) ≈ ψκ(ξ, x) =
ξ

2
√

π
B(κ)

+∞∫
−∞

dy
1 + y2 i expκ

[
−ξ2(x− y)2

4

]
. (39)

Noting again that, when κ tends towards zero, one can obtain the integral solution for
the Doppler broadening function using the Maxwell–Boltzmann distribution.

The primary behaviour with the usage of the Kaniadakis statistical distribution is
the peak attenuation for the resonance curves as the value of κ rises, as one can see in the
Figures 2 and 3 below:
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well–Boltzmann distribution. 

Figure 3. The comparison between the ψκ=0.5(ξ, x) (blue) and ψ(ξ, x) (green) curves. It is possible to
see the peak’s attenuation.
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An animation of this behaviour for different values of κ is available at the following
link: “https://youtu.be/wAeBAETbU1c (Accessed on 1 March 2023)”.

4. Analytical Solutions for the Doppler Broadening Function Using the
Kaniadakis Distribution

Guedes et al. [3] presented the results of the integral formulation for the Doppler
broadening function using the Kaniadakis distribution, Equation (39), by using a numerical
calculation, which, in turn, can present very high processing times when inserted into
complex systems of calculations, such as nuclear reactor simulations.

In the already existing computer codes for nuclear core design, the Doppler broadening
process requires a relatively long computing time to calculate Equation (10). Therefore,
more time will be needed to calculate the deformed function, Equation (39). One should
keep in mind that the Doppler broadening function for neutron cross sections should be
calculated for each energy mesh point, isotope, and temperature.

In order to surpass this potential problem, de Abreu et al. proposed an analytical
solution for the integral expression. To do that, the authors started by obtaining a dif-
ferential equation for ψκ(ξ, x) from the integral expression, using the same methodology
by Campos and Martinez for obtaining an analytical expression for ψ considering the
Maxwell–Boltzmann distribution.

∂2ψκ(ξ, x)
∂x2 − ξ2x

2

[(
κ2 − 1

)2
+ 1

(κ2 − 1 )

]
∂ψκ(ξ, x)

∂x
+

ξ2

4

[
−2
(

κ2 − 1
)
+ ξ2x2 + ξ2

]
ψκ(ξ, x) = − ξ4

4

(
κ2 − 1

)
B(κ). (40)

One relevant thing to mention is that when κ tends to zero, the differential equation
proposed by Abreu et al. [21,22] becomes the equation proposed by Campos and Martinez,
proving the validity of the solution.

Initially, to solve the deformed differential equation using the Kaniadakis distribution,
the authors used the same method by Palma, Martinez, and Gonçalves, i.e., the Frobenius
method, for the homogeneous part and the parameter variation method for the particular
solution. However, to eliminate some of the approximations and assumptions made, a new
paper was published later using the dependent variable method to solve the homogeneous
part of the equation.

The solution of the deformed differential equation for ψκ is divided in two based on
the above-mentioned works of Beynon and Grant [30] and Campos and Martinez [31]: one
for |x·ξ| < 6 and other for |x·ξ| ≥ 6. The first one can be represented by:

ψk(ξ, x) = Λ(x, ξ)
[
D(ξ, x) + Ωg(ξ, x)

]
, (41)

where
D(ξ, x) ≡ [∆(ξ)·cos(Θ)], (42)

Ωg(ξ, x) ≡ Π(x, ξ)·[iΩ1(ξ, x) + Ω2(ξ, x)]; (43)

Λ(ξ, x) = exp
(

ξ2 − ξ2x2

4

)
· ξ
√

πB(κ)
4

; (44)

Π(ξ, x) =

√
ξ4 − 2ξ2κ2

−ξ2 + 2κ2 · exp
(
−κ2

2

)
; (45)

∆(ξ) =
2− 2er f

(
ξ
2

)
1− κ2 . (46)

Ω1(ξ, x) = sin(Θ)·
[
er f (P1)κ

2 − er f (P1) + er f (P2)κ
2 − er f (P2)

]
; (47)

https://youtu.be/wAeBAETbU1c
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Ω2(ξ, x) = cos(Θ)·
[
2er f (P3)κ

2 − 2er f (P3)− er f (P1)κ
2 + er f (P1) + er f (P2)κ

2 − er f (P2)
]
; (48)

P1(ξ, x) =
−iξ2x +

√
ξ4 − 2ξ2κ2

2ξ
; (49)

P2(ξ, x) =
−iξ2x−

√
ξ4 − 2ξ2κ2

2ξ
; (50)

P3(ξ, x) =

√
ξ4 − 2ξ2κ2

2ξ
; (51)

Θ(ξ, x) =
x
2

√
ξ4 − 2ξ2κ2; (52)

The solution for the |x·ξ| ≥ 6 domain is obtained by the conduction of asymptotic
expansions in the Taylor series. Thus, the expression for ψκ(ξ, x) in this case is:

ψκJ|x·ξ| ≥ 6K ∼= B(κ)·
[

1
(1− κ2)(1 + x2)

+
−3κ2ξ2 − κ2ξ2x4 + 4− 12x2

2ξ2(κ2 − 1)(1 + x2)
3 + . . .

]
(53)

In a more recent paper [25], the authors also calculated the computational processing
times. They obtained an average value of 4.6 for the ratio (numerical/analytical), confirming
the predicted faster processing times for the analytical solution.

In parallel with the development of analytical solutions, da Silva et al. [39] proposed
a method to establish a relation of equivalence among the standard Doppler broadening
function, ψ(ξ, x), and the deformed one, ψκ(ξ, x).

The effective medium temperature model consists of determining the temperature,
Te f f , which will have the Doppler broadening function from the perspective of the Maxwell–
Boltzmann distribution reproducing the same value for the function using Kaniadakis
distribution in the actual temperature (T) of the medium, that is:

ψκ(x, ξ) ∼= ψκ

(
x, ξ̃
)

(54)

where:
ξ̃ ≡ Γ(

4E0 kBTe f f /A
)1/2 (55)

and
ξ ≡ Γ

(4E0 kBT/A)1/2 (56)

Applying the polynomial regression method optimised by the genetic algorithm
technique, the values of ξ̃ and, consequently, of the effective medium temperature, Te f f ,
were obtained.

Thus, the deformed Doppler broadening function, ψκ(x, ξ), according to the Kani-
adakis distribution, can be obtained directly via the original Doppler broadening function
by replacing the medium temperature, T, with the effective temperature of the medium, Te f f .

According to the authors, the model proved to be a much faster and simpler method
for calculating deformed Doppler broadening functions concerning the numerical ap-
proach [39].

In this ‘twenty years of Kaniadakis entropy’ issue, a paper was published [23], apply-
ing the analytical solution for ψk to calculate deformed nuclear cross sections in the nuclear
data processing code FRENDY, developed by the Japan Atomic Energy Agency.
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One of the contributions of this work was to study the relevance of the so-called
Gaussian error function, er f , in the proposed analytical formulation for ψk. The erf function
is defined by:

er f (x) =
2√
π

∫ x

0
e−t2

dt. (57)

Due to its complexity, many programming code libraries use approximations to calcu-
late these functions. These approximations, in turn, result in errors. The authors then used
the Faddeeva Package [28] to minimise these, especially for the tails (far from the resonance
peaks) regions.

5. Kaniadakis’ Entropy Validation in the Nuclear Reactor Physics

Other areas that employed the Kaniadakis statistics can validate its results through
observational data (stellar clusters, for instance). For an example of this validation, one can
present the high-quality agreement between the theoretical curves for cosmic rays’ flux
using the Kaniadakis distribution and observational data. As one can see in reference [2], the
Kaniadakis statistics represented the observational data better than the standard Maxwell-
Boltzmann one.

However, in nuclear physics reactors, this is not possible. Thus, one needs to find ways
to validate the applicability of this generalised entropy in the nuclear engineering area.

From this perspective, it is crucial—from a validation point of view—to verify the
existence of a pertinency in applying the Kaniadakis method in the reactor physics area.
Hence, one of the first necessary steps is to generate deformed nuclear data and compare it
to the Maxwell–Boltzmann results.

Nevertheless, before this step, it was necessary to validate the analytical solution itself.
Hence, in a 2020 work, de Abreu [28] generated the first deformed data using the following
equations for the deformed radiative capture cross sections obtained through the Doppler
broadening function considering the Kaniadakis distribution:

σκ
γ = σ0

(
Γγ

Γ

)(
E0

E

) 1
2
ψκ(ξ, x) (58)

To calculate these cross sections, the authors used the parameters — illustrated in
Table 1—of the 238 isotope of uranium in the 6.67 eV peak resonance:

Table 1. Resonance data for the 6.67 eV line.

E0(eV) Γn(eV) Γγ(eV) σ0 (b) Γp(eV)

6.67 0.00152 0.026 2.16× 105 1.26
Source: Duderstadt and Hamilton [24] (1976, p. 335).

Using the above-mentioned data and Equation (58), the authors generated the de-
formed analytical data by using the numerical and analytical expressions for ψκ(ξ, x) to
compare them with each other, as shown in Figure 4.

The results show a robust agreement between both solutions, which gives conditions
to proceed in the validation steps.

However, even with the results in conformity with the predicted behaviour concerning
the numerical results, applying the Kaniadakis distribution in a proper nuclear data gener-
ator tool is still necessary for certification purposes. In this sense, one needs to insert the
analytical solution into nuclear data processing codes, preferably into ones recognised and
used by peers around the world, for instance, FRENDY [28,29], NJOY [40], PREPRO [41],
or NECP-Atlas [42]. The advantage of using these systems is that they can process official
evaluated nuclear data libraries, such as ENDF, CENDL, JEFF, or JENDL.
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Therefore, a paper in this twenty-year commemorative issue was published, generat-
ing, for the first time, deformed data using the Kaniadakis distribution for two important
nuclides: technetium 99 and plutonium 238, as one can see in Figures 5 and 6. To do that,
they chose the FRENDY nuclear data processing code [28,29].
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ing k = 0.1 and the 95.7 eV peak generated by the FRENDY data processing code [23]. Source:
de Abreu et al. (2022, p. 12).

By analysing the data, the authors found compatibility between the expected peak
attenuation behaviour of the deformed curves compared to the Maxwell–Boltzmann data
for different resonance peaks.

These results represent a significant step in validating the Kaniadakis statistics in the
nuclear fission area.

6. Next Steps and Perspectives of Kaniadakis Entropy in the Nuclear Reactor Physics

Much work has been conducted on nuclear reactor physics with the Kaniadakis
deformed statistics. However, to proceed with this investigation, there is still a question to
answer: which value (or range) of κ fits with current and future nuclear reactors?

In this sense, future works will need to proceed with the work inside data generation
codes and use its results of deformed nuclear cross sections in other nuclear reactor simu-
lations to find the closest values of the deformation factor, κ, in order to fit the standard
nuclear reactor behaviour.

Another possible and relevant step is implementing the Kaniadakis methodology in
modern theoretical methods, such as the multi-level Breit–Wigner and Reich–Moore meth-
ods. With this implementation, it would be possible, for instance, to generate a deformed
nuclear cross section for other nuclides, such as the isotopes 235 and 238 of uranium.
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