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Abstract: Minimum Bayes factors are commonly used to transform two-sided p-values to lower
bounds on the posterior probability of the null hypothesis, in particular the bound −e · p · log(p).
This bound is easy to compute and explain; however, it does not behave as a Bayes factor. For
example, it does not change with the sample size. This is a very serious defect, particularly for
moderate to large sample sizes, which is precisely the situation in which p-values are the most
problematic. In this article, we propose adjusting this minimum Bayes factor with the information to
approximate an exact Bayes factor, not only when p is a p-value but also when p is a pseudo-p-value.
Additionally, we develop a version of the adjustment for linear models using the recent refinement of
the Prior-Based BIC.
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1. Introduction

By now, it is well known by practitioners that p-values are not posterior probabilities
of a null hypothesis, which is what science would need to declare a scientific finding. So
p-values, and particularly the threshold of 0.05, need to be recalibrated. Two widespread
practical attempts are (i) the so-called Robust Lower Bound on Bayes factors BF ≥ −e ·
p · log(p) [1] and (ii) the replacement of the ubiquitous α = 0.05 by α∗ = 0.005 [2]. These
suggestions, which are an improvement of usual practice, fall short of being a real solution,
mainly because the dependence of the evidence on the sample size is not considered. Still,
the Robust Lower Bound is useful since it is valid from small sample sizes and onward
and only depends on the p-value. It is known that the evidence of a p-value against a
point null hypothesis depends on the sample size. In [3], they consider p-values in linear
models and propose new monotonic minimum Bayes factors that depend on the sample
size and converge to −e · p · log(p) as the sample size approaches infinity, which implies it
is not consistent, as Bayes factors are. It turns out that the maximum evidence for an exact
two-tailed p-value increases with decreasing sample size. There are several proposals in
the literature, and most do not depend on the sample size, while those that do continue to
be Robust Lower Bounds; however, neither behaves like a real Bayes factor. In this article,
we propose to adjust the Robust Lower Bound −e · p · log(p) so that it behaves in a similar
or approximate way to actual Bayes factors for any sample size. A further complication
arises, however, when the null hypotheses are not simple, that is, when they depend on
unknown nuisance parameters. In this situation, what is usually called p-values are only
pseudo-p-values [4] (p. 397). So, we first need to extend the validity of the Robust Lower
Bound to pseudo-p-values. The effect of adjusting this minimum Bayes factor with the
sample size is shown in a simulation in Section 5.1.

The outline of the article is as follows: In Section 2 we define pseudo-p-values using
the p-value definition of [4] (p. 397) and extend for them the validity of the Robust Lower
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Bound. In Section 3, we present the adaptive significance levels that will be used for
incorporating the sample size in the lower bound: the general adaptive significance level
presented in [5] and the refined version for linear models developed in [6]; in both cases,
we use versions calibrated using the Prior-Based BIC (PBIC) [7]. In Section 4, we derive
adaptive approximate Bayes factors and apply them to pseudo-p-values in Section 5. We
close in Section 6 with some final comments.

2. Valid p-Values and Robust Lower Bound

Under the null hypotheses, p-values are well known to have Uniform(0, 1); in [4]
(p. 397), a more general definition is given.

Definition 1. A p-value p(X) is a statistic satisfying 0 ≤ p(x) ≤ 1 for every sample point x.
Small values of p(X) give evidence that H1 : θ ∈ Θc

0 is true, where Θ0 is some subset of the
parameter space and Θc

0 is its complement. A p-value is valid if, for every θ ∈ Θ0 and every
0 ≤ α ≤ 1,

Pθ(p(X) ≤ α) ≤ α.

Based on this definition, we can say that there are valid p-values that are Uniformly
Distributed in (0, 1), that is,

Pθ(p(X) ≤ α) = α for every θ ∈ Θ0 and every 0 ≤ α ≤ 1, (1)

and others that are not, that is, when there is at least one α, such that

Pθ(p(X) ≤ α) < α for every θ ∈ Θ0. (2)

Remark 1. We consider any valid p-value complying with (2) a pseudo-p-value.

The “Robust Lower Bound” (RLB), as we call it here and proposed by [1], is

BL(p) =

{
−e · p · log(p) p < e−1

1 otherwise

The authors consider that under the null hypothesis, the distribution of the p-value,
p(X), is Uniform(0, 1). Alternatives are typically developed by considering alternative
models for X, but the results then end up being quite problem-specific. An attractive
approach is instead to directly consider alternative distributions for p itself. In effect, they
consider that, under H1, the density of p is f (p|ξ), where ξ is an unknown parameter. So,
consider testing

H0 : p ∼ Uniform(0, 1) versus H1 : p ∼ f (p|ξ)

If the test statistic (T) has been appropriately chosen so that large values of T(X) would
be evidence in favor of H1 , then the density of p under H1 should be decreasing in p. A
class of decreasing densities for p that is very easy to work with is the class of Beta(ξ, 1)
densities, for 0 < ξ ≤ 1, given by f (p|ξ) = ξ pξ−1. The uniform distribution (i.e., H0) arises
from the choice ξ = 1 [1]. The expression BL(p) = infall π Bπ(p), where Bπ(p) is the Bayes
factor of H0 to H1 for a given prior density π(ξ) on this alternative.

Note that this calibration has already been proposed in [8]. Another class of decreasing
densities is Beta(1, ξ) with ξ > 1. This leads to the “−e · q · log(q)” calibration, where
q = 1− p see [9].

In contrast with Remark 1, if we consider p(X) a pseudo-p-value under H0, that is,

p ∼ Beta(ξ0, 1) with ξ0 > 1, fixed but arbitrary,
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under the test
H0 : p ∼ Beta(ξ0, 1) vs. H1 : p ∼ f (p|ξ)

with f (p|ξ) ∼ Beta(ξ, 1) for 0 < ξ ≤ ξ0, then a generalized Robust Lower Bound RLBξ0
can be defined as

BL(p, ξ0) =

{
−e · ξ0 · pξ0 log(p) p < e−

1
ξ0

1 otherwise
(3)

where ξ0 has to be estimated or calculated theoretically (see [10] for a proposal when
extending for multiple testing). Any value ξ0 6= 1 corresponds to a pseudo-p-value.

On the other hand, since f (p|ξ) = ξ pξ−1 has its maximum in ξ = − 1
log(p) < 1 with

p < e−1, then f (p|ξ) is decreasing for ξ > − 1
log(p) , thus for any Bayes factor B01

B01 ≥ BL(p) > BL(p, ξ0) with ξ0 > 1 (4)

see Figure 1.

Figure 1. Extended Robust Lower Bound RLBξ0 as a function of p for different values of ξ0.

In the following, we calibrate RLBξ0 such that RLBξ0 ≈ B01.

Lemma 1. BL(pval , ξ) = −e · ξ · pξ
val · log(pval) ≥ e · ξ · pξ

val > pξ
val , for, 0 < pval < e−1 and

ξ ≥ 1. Note that BL(pval , 1) = BL(pval)

Proof. Appendix A.

Theorem 1. The RLBξ is a valid p-value for ξ ≥ 1, that is,

P(BL(p, ξ) ≤ α|p ∼ f (p|ξ)) ≤ α, for each 0 ≤ α ≤ 1.

Proof. Appendix A.

3. Adaptive α with PBIC Strategy

The Bayesian literature has been criticizing for several decades the implementation
of hypothesis testing with fixed significance levels and, in particular, the use of the scale
p-value < 0.05. An adaptive α allows us to adjust the statistical significance with the
amount of information; see [5,11,12]. The adaptive values we work with in this section
were calculated so that they allow to arrive to results equivalent to those obtained with a
Bayes factor. In [5], the authors present an adaptive α based on BIC as

αn(q) =
[χ2

α(q) + q log(n)]
q
2−1

2
q
2−1n

q
2 Γ
( q

2
) × Cα, (5)

where Cα is a calibration constant, and strategies for calculating it are presented in [5]. It
yields a consistent procedure; it alleviates the problem of the divergence between prac-
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tical and statistical significance; and it makes it possible to perform Bayesian testing by
computing intervals with the calibrated α-levels.

An adaptive α is also presented in [6], but this time it is a version refined to nested
linear models with calibration based on the Bayesian information criterion based on Prior
PBIC [7],

α(b,n)(q) =
[gn,α(q) + log(b) + C]

q
2−1

b
n−j

2(n−1) ·
(

2(n−1)
n−j

)q/2−1
Γ
( q

2
) × exp

{
− n− j

2(n− 1)
(gn,α(q) + C)

}
. (6)

Here, b =
|Xt

jXj |
|Xt

i Xi |
and Xi, Xj are design matrices and

C = 2
qi

∑
mi=1

log
(1− e−vmi )√

2vmi

− 2
qj

∑
mj=1

log
(1− e−vmj )√

2vmj

,

vml =
ξ̂ml

[dml (1+ne
ml
)]

with l = i, j corresponding to each model. Here, ne
ml

, with l = i, j, refers

to The Effective Sample Size (called TESS) corresponding to that parameter; see [7].
The adaptive α in (5) can also be presented using the PBIC strategy (this strategy was

not considered in [5]), and the following expression is obtained

αn(q) =
[χ2

α(q) + q log(n) + C]
q
2−1

n
q
2 2

q
2−1Γ

( q
2
) × exp

{
−1

2

(
χ2

α(q) + C
)}

. (7)

Note that this adaptive α is still of BIC structure, since the expression χ2
α(q) + q log(n)

remains.

Example: Binomial Models

Consider comparing two binomial models S1 ∼ binomial(n1, p1) and S2 ∼
binomial(n2, p2) via the test

H0 : p1 = p2 vs. H1 : p1 6= p2.

Defining n = n1 + n2 and p̂, the MLE from p1 − p2, then (7) gives

αn =

[
2

nπ(χ2
α(1) + log(n) + C)

]1/2
× exp

{
−1

2

(
χ2

α(1) + C
)}

, (8)

here, χ2
α(1) is the quantile α from chi-square with d f = 1, C = −2 log

(1− e−v)√
2v

,

v = p̂2/[d(1 + ne)], d =

(
σ2

1
n1

+
σ2

2
n2

)
, ne = max

{
n2

1
σ2

1
, n2

2
σ2

2

}
d.

Table 1 shows the behavior of this adaptive αn for α = 0.05 and different values of n1
and n2.

Table 1. Adaptive α via PBIC in (8) for testing equality of two proportions for different
sample sizes when α = 0.05.

Adaptive α via PBIC (αn)

n1 n2 n = n1 + n2

10 10 0.0068
25 25 0.0040
50 50 0.0027

100 50 0.0021
50 100 0.0021

100 100 0.0018
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4. Adjusting RLBξ Using Adaptive α

In this section, we combine (3) with the formulas for adaptive α in (6) and (7) for
adjusting RLBξ and obtaining an approximation to an objective Bayes factor. Indeed, we
adjust the RLBξ through the expression B(α) = BL(α, ξ0) · g(·), where g is determined in
such a way that when B(α) is evaluated in (6) or (7), it converges to a constant (this allows
us to obtain equivalent results from the Frequentist and Bayesian point of view, that is, the
decision does not change).

Substituting p in (3) by the adaptive α value in (7) results in the following expression.

B(α, q, n, ξ0) = −αξ0 log(α)Γ(q/2)ξ0 n
ξ0q

2

[
2

χ2
α(q) + q · log(n) + C

] ξ0q
2 −(ξ0−1)

. (9)

For a Uniform(0, 1) p-value with ξ0 = 1, this expression simplifies to

B(α, q, n) = −α log(α)Γ(q/2)n
q
2

[
2

χ2
α(q) + q · log(n) + C

] q
2
. (10)

The refined version of this calibration for linear models is obtained when (3) is evalu-
ated in (6)

B(α, q, n, b) = −α log(α)Γ(q/2)b
n−j

2(n−1)

[
2(n− 1)

(gn,α(q) + log(b) + C)(n− j)

] q
2

(11)

in this case, we only consider ξ0 = 1.

Balanced One-Way Anova
Suppose we have k groups with r observations each, for a total sample size of kr, and

let H0 : µ1 = · · · = µk = µ vs. H1 : At least oneµi different. Then, the design matrices for
both models are

X1 =


1
1
...
1

 , Xk =



1 0 . . . 0
1 0 . . . 0
...

... . . .
...

1 0 . . . 0
0 1 . . . 0
0 1 . . . 0
...

... . . .
...

0 1 . . . 0
...

... . . .
...

0 0 . . . 1
0 0 . . . 1
...

... . . .
...

0 0 . . . 1



, b =
|Xt

kXk |
|Xt

1X1|
= k−1rk−1,

and the adaptive α for the linear model in accordance with what was presented in [6] is

α(k, r) =
[gr,α(k− 1)− log(k) + (k− 1) log(r) + C]

k−3
2(

k−1rk−1
) r−1

2(r−1/k)
(

2(r−1/k)
r−1

) k−3
2 Γ
(

k−1
2

) × exp
{
− r− 1

2(r− 1/k)
(gr,α(k− 1) + C)

}
.

Here, the number of replicas r is The Effective Sample Size (TESS). Therefore, the
approximate Bayes factor for this test calculated with (8) is

B(α, k, r) = −α log(α)Γ((k− 1)/2)
(

k−1rk−1
) r−1

2(r−1/k)
[

2(r− 1/k)
(gr,α(k− 1)− log(k) + (k− 1) log(r) + C)(r− 1)

] k−1
2
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A very important case arises when k = 2. For this situation, the last formula simpli-
fies to

B(α, r) = −α log(α)
( r

2

) r−1
2r−1

 2(r− 1)π

(gr,α(1)− log
( r

2

)
+ C)(r− 1)

 1
2

(12)

5. Obtaining Bounds for P(H0|Data)

In this section, we use (9) and (11) to produce bounds for the posterior probability of
the null hypothesis H0.

Since for any Bayes factor B01

B01 ≥ BL(p, ξ0) with ξ0 ≥ 1, fixed but arbitrary,

a lower bound for the posterior probability of the null hypothesis can be obtained as

min P(H0|Data) =
[

1 +
1

BL(p, ξ0)

]−1
. (13)

Figure 2 shows these posterior probabilities (called PRLBξ0
) for different values of ξ0.

To simplify the use of these Bayes factors, we call BFGξ0 the Bayes factor of Equation (9),
BFG the Bayes factor of Equation (10), and BFL the Bayes factor of Equation (11).

Figure 2. Lower bound for posterior probability for the null hypothesis H0 (in (13)) for
ξ0 = 1, ξ0 = 1.1, ξ0 = 1.2, ξ0 = 1.3.

5.1. Testing Equality of Two Means

Consider comparing two normal means via the test

H0 : µ1 = µ2 versus H1 : µ1 6= µ2,

where the associated known variances, σ2
1 and σ2

2 , are not equal.

Y = Xµ + ε =



1 0
...

...
1 0
0 1
...

...
0 1


(

µ1
µ2

)
+

 ε11
...

ε2n2

,

×ε ∼ N(0, diag{σ2
1 , . . ., σ2

1︸ ︷︷ ︸
n1

, σ2
2 , . . ., σ2

2}︸ ︷︷ ︸
n2

)
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Defining ν = (µ1 + µ2)/2 and ζ = (µ1 − µ2)/2 places this in the linear model comparison
framework,

Y = B
(

ν

ζ

)
+ ε

with

B =



1 1
...

...
1 1
1 −1
...

...
1 −1


where we are comparing M0 : ζ = 0 versus M1 : ζ 6= 0.
So, for BFG and BFL,

C = −2 log
(1− e−v)√

2v

v =
ζ̂2

d(1 + ne)
, d =

(
σ2

1
n1

+
σ2

2
n2

)
, ne = max

{
n2

1
σ2

1
,

n2
2

σ2
2

}(
σ2

1
n1

+
σ2

2
n2

)
.

A special case is the standard test of equality of means when σ2
1 = σ2

2 = σ2. Then,

ne = min
{

n1

(
1 +

n1

n2

)
, n2

(
1 +

n2

n1

)}
.

On the other hand, considering µ = µ1 − µ2 with σ2
1 = σ2

2 = σ2:

• H0 : µ1 = µ2 ←→ µ = 0;
• H1 : µ1 6= µ2 ←→ µ 6= 0.

Assuming priors:

• µ|σ2, H1 ∼ Normal(0, σ2/τ0), τ0 ∈ (0, ∞);
• π(σ2) ∝ 1/σ2 for both H0 and H1.

The Bayes factor is

BF01 =

(
n + τ0

τ0

)1/2
(

t2 τ0
n+τ0

+ l

t2 + l

) l+1
2

(14)

where

t =
|Ȳ|

s/
√

n

a t-statistic with degrees of freedom l = n− 1 and n = n1 + n2; see [13].
Figure 3 shows the posterior probability for the null hypothesis H0 when n = 50 and

n = 100 for the Robust Lower Bound with ξ0 = 1 (called PRLB), the Bayes factor BFL
(called PBFL), the Bayes factor BFG (called PBFG), and the Bayes factor BF01 (called PBF01).
Note that the posterior probability with BF01 when τ0 = 6 looks very similar to the result
obtained using the Bayes factors BFL and BFG.

We now present a simulation that shows how our adjustment, or calibration, to RLBξ

works quite similarly to an exact Bayes factor. We perform the following experiment: We
simulate r data points from each of the two normal distributions, N(µ1, σ) and N(µ2, σ).
We reproduce this K times. For all K simulations, µ1 − µ2 = 0. For all K replicates, we
test the hypotheses H0 : µ1 = µ2 vs. H1 : µ1 6= µ2, and then we count how many of the
p-values lie between 0.05− ε and 0.05. Note that all of these p-values would be considered
sufficient to reject H0 if α = 0.05 is selected. Finally, we determine the proportion of these
“significant” p-values obtained from samples where H0 is true.
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Figure 3. Posterior probability for the null hypothesis H0 for n = 50 and n = 100 using the
Bayes factor RLBξ0 with ξ0 = 1, the Bayes factor BF01, and the Bayes factor BFL and BFG.

Table 2 presents the mean percentage of these significant p-values coming from sam-
ples, where H0 is true for 100 iterations of the simulation scheme with K = 8000, σ = 1,
and ε = 0.05 for r = 10, 50, 100, 500, and 1000. As expected, the distribution of the p-values
behaved Uniform(0, 1) under H0, since H0 was assumed true in the K replicates. Table 2
also presents the proportion of posterior probability of H0 greater than or equal to 0.5 (50%)
when using the RLBξ , when corrected according to the method suggested in this document
(Equations (10) and (11)), and when an exact Bayes factor (Equation (14)) is used. It is clear
that the method suggested here behaves very similarly to an exact Bayes factor.

Table 2. Mean percentage of p-values less than 0.05 (considered significant) coming from
data generated under the null hypothesis for 100 experiments, where K = 8000 testing
problems are generated under H0 : µ1 = µ2. This experiment is performed for different
groups with sample sizes r. Corrected and uncorrected Bayes factors are considered, as
well as an exact Bayes factor.

% Of Samples with P(H0|x) ≥ 0.5

r % Of Samples with p < 0.05 RLBξ BFG BFL BF01

10 5% 0% 58% 66% 75%
50 5% 0% 81% 86% 87%

100 5% 0% 86% 89% 91%
500 5% 0% 94% 96% 96%
1000 5% 0% 95% 96% 97%

5.2. Fisher’s Exact Test

This is an example where the p-value is a pseudo-p-value (see the example 8.3.30
in [4]). Let S1 and S2 be independent observations with S1 ∼ binomial(n1, p1) and S2 ∼
binomial(n2, p2). Consider testing H0 : p1 = p2 vs. H1 : p1 6= p2.
Under H0, if we let p be the common value of p1 = p2, the joint pmf of (S1, S2) is

f (s1, s2|p) =
(

n1

s1

)(
n2

s2

)
ps1+s2(1− p)n1+n2−(s1+s2)

and the conditional pseudo-p-value is

p(s1, s2) =
min{n1,s}

∑
j=s1

f (j|s), (15)

the sum of hypergeometric probabilities, with s = s1 + s2.
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Remark 2. It does not seem to be simple to estimate the appropriate ξ0 that best fits the pseudo-p-
value in (15), in Figure 4 some arbitrary possibilities are given.

It is important to note that in Bayesian tests with a point null hypothesis, it is not
possible to use continuous prior densities, because these distributions (as well as posterior
distributions) will grant zero probability to p = (p1 = p2). A reasonable approximation
will be to give p = (p1 = p2), a positive probability π0, and to p 6= (p1 = p2) the prior
distribution π1g1(p), where π1 = 1− π0 and g1 proper. One can think of π0 as the mass
that would be assigned to the real null hypothesis, H0 : p ∈ ((p1 = p2)− b, (p1 = p2) + b)
if it had not been preferred to approximate by the null point hypothesis. Therefore, if

π(p) =

{
π0 p = (p1 = p2)

π1g1(p) p 6= (p1 = p2)

then

m(s) =
∫

Θ
f (s|p)π(p)dp

= f (s|(p1 = p2))π0 + π1

∫
p 6=(p1=p2)

f (s|p)g1(p)dp

= f (s|(p1 = p2))π0 + (1− π0)m1(s)

where m1(s) =
∫

p 6=(p1=p2)
f (s|p)g1(p)dp is the marginal density of (S = S1 + S2) with

respect to g1.
So,

π((p1 = p2)|s) =
π0 f (s|(p1 = p2))

m(s)

thus

posterior odds =
π((p1 = p2)|s)

1− π((p1 = p2)|s)

=
f (s|(p1 = p2))π0

m(s)(1− f (s|(p1 = p2))π0

m(s)
)

=
f (s|(p1 = p2))π0

m(s)− f (s|(p1 = p2))π0

=
f (s|(p1 = p2))π0

(1− π0)m1(s)

=
π0 f (s|(p1 = p2))

π1m1(s)

= prior odds · f (s|(p1 = p2))

m1(s)

and the Bayes factor is

B01 =
f (s|(p1 = p2))

m1(s)
.

Now, if we take g1(p) = Beta(a, b) such that E(p) =
a

a + b
= (p1 = p2), then

BFTest =
B(a, b)

B(s + a, n1 + n2 − s + b)
ps(1− p)n1+n2−s.
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Figure 4 shows the posterior probability for the null hypothesis H0 when n = n1 +
n2 = 50 and 100, for the Robust Lower Bound, the Bayes factor BFGξ0 (called PBFGξ0

), the
Bayes factor BFG (called PBFG), and the Bayes factor BFTest (called PBFTest ). We can note that
all the PBFGξ0

are comparable, even though in the case ξ0 = 1 (PBFG) it is a p-value and not
a pseudo-p-value.

Figure 4. Posterior probability for the null hypothesis H0 for n = 50 and n = 100 using the
Bayes factor RLBξ0 with ξ0 = 1, the Bayes factor BFTest, the Bayes factor BFGξ0 , and the
Bayes factor BFG.

5.3. Linear Regression Models

Consider comparing two nested linear models M3 : yl = λ1 + λ2xl2 + λ3xl3 + εl with
M2 : yl = λ1 + λ2xl2 + εl via the test

H0 : M2 versus H1 : M3,

with 1 ≤ l ≤ n, and the errors εl are assumed to be independent and normally distributed
with unknown residual variance σ2. According to the Equation (3) in [6,7]

b = (n− 1)s2
3(1− ρ2

23),

where s2
3 is the variance xv3, ρ23 is the correlation between xv2 and xv3, and

C = 2 log
(1− e−v2)√

2v2
− 2 log

(1− e−v3)√
2v3

,

where v2 = λ̂2
2/[d2(1 + ne

2)], d2 = σ2/s2
xl2

, ne
2 = s2

xl2
/ maxi{(xi2 − x̄2)

2} and v3 = λ̂2
3/

[d3(1+ne
3)], d3 = σ2(

∼
X

t∼
X)−1, ne

3 =
∼
X

t∼
X / maxi{|

∼
Xi |2}with

∼
X= (In−X∗(X∗tX∗)−1X∗)xl3

and X∗ = (1n|xl2).
As an example, we analyze a data set taken from [14], which can be accessed at

http://academic.uprm.edu/eacuna/datos.html (accessed on 13 January 2022). We want to
predict the average mileage per gallon (denoted by mpg) of a set of n = 82 vehicles using
four possible predictor variables: cabin capacity in cubic feet (vol), engine power (hp),
maximum speed in miles per hour (sp), and vehicle weight in hundreds of pounds (wt).

Through the Bayes factors BFG and BFL, we want to choose the best model to predict
the average mileage per gallon by calculating the posterior probability of the null hypothesis
of the following test

http://academic.uprm.edu/eacuna/datos.html
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H0 : M2 : mpg = λ1 + λ2wtl + εl vs. H1 : M3 : mpg = λ1 + λ2wtl + λ3spl + εl

with α = 0.05, q = 1, j = 3, the posterior probabilities for the null hypothesis H0 are

PBFL = 0.9253192, PBFG = 0.7209449.

The use of this posterior probability in both cases will change the inference, since the
p-value of the F test is p = 0.0325, which is smaller than 0.05.

Findley’s Counterexample

Consider the following simple linear model [15]

Yi =
1√

i
· θ + εi, where εi ∼ N(0, 1), i = 1, 2, 3, . . . , n

and we are comparing the models H0 : θ = 0 and H1 : θ 6= 0. This is a classical and challeng-
ing counterexample against BIC and the Principle of Parsimony. In [7], the inconsistency of
BIC is shown, but the consistency of PBIC is shown in this problem.

Here, we show through the posterior probabilities of the null hypothesis that the Bayes
factor BFG ( based on BIC) is inconsistent, while the Bayes factor BFL ( based on PBIC)
is consistent if it is. We perform the analysis in two contexts: First, when n grows and
α = 0.05 or α = 0.01 are fixed. Second, when n is fixed and 0 < α < 0.05. For calculations

C = −2 log
(1− e−v)√

2v
, v =

θ̂2

d(1 + ne)
, d =

(
n

∑
i=1

1
i

)−1

, ne =
n

∑
i=1

1
i

.

Figures 5 and 6 show, through the posterior probability of the null hypothesis H0, the
consistency of the Bayes factor based in PBIC (PBFL), as well as the inconsistency of the
Bayes factor based in BIC (PBFG).

Figure 5. Posterior probability for the null hypothesis H0 for n = 100, n = 1000 and
n = 10,000 using the Bayes factors BFL and BFG.
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Figure 6. Posterior probability for the null hypothesis H0 for α = 0.05 and α = 0.01 using
the Bayes factors BFL and BFG when n grows.

6. Discussion and Final Comments

1. Lower bounds have been an important development to give practitioners alternatives
to classical testing with fixed α levels. A deep-seated problem with the useful bound
−e · p · log(p) is that it depends on the p-value, which it should, but it is static, not a
function of the sample size n. This limitation makes the bound of little use for moderate
to large sample sizes, where it is arguably the correction to p-values more needed.

2. The approximation develops here as a function of p-values, and sample size has
a distinct advantage over other approximations, such as BIC, in that it is a valid
approximation for any sample size.

3. The (approximate) Bayes factors (9) and (11) are simple to use and provide results
equivalent to the sensitive p-value Bayes factors of hypothesis tests. In this article,
we extended the validity of the approximation for “pseudo-p-values,” which are
ubiquitous in statistical practice. We hope that this development will give tools to
the practice of statistics to make the posterior probability of hypotheses closer to
everyday statistical practice, on which p-values (or pseudo-p-values) are calculated
routinely. This allows an immediate and useful comparison between raw-p-values
and (approximate) posterior odds.
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Appendix A

Proof of Lemma 1. Let h(pval) = −e · ξ · log(pval), then
d[h(pval)]

dpval
= − e · ξ

pval
< 0; thus,

h is decreasing with minimum at ξ = e−1. So, h(pval) ≥ h(e−1) = e · ξ, which implies
BL(pval , ξ)/pξ

val = h(pval) ≥ e · ξ, so BL(pval , ξ) ≥ e · ξ · pξ
val > pξ

val

Proof of Theorem 1. First of all, it can be seen that BL(p, ξ) = −e · ξ · pξ · log(p) is well-
defined, since 0 ≤ BL(p, ξ) ≤ 1.

Let α ∈ [0, 1] and denote by DB the subset of Rp (range of p), such that

−e · ξ · pξ · log(p) ≤ α,

then
(BL(p, ξ) ≤ α) = [−e · ξ · pξ · log(p) ≤ α] = (p ∈ DB)

where (p ∈ DB) is the event that consists of all the result x, such that the point p(x) ∈ DB.
Therefore,

FB(α) = P(BL(p, ξ) ≤ α|p ∼ f (p|ξ)) = P(−e · ξ · pξ · log(p) ≤ α|p ∼ f (p|ξ))
= P(p ∈ DB|p ∼ f (p|ξ))

=
∫

DB

fp(p)dp

=
∫ ρ

0
ξ pξ−1dp

= ρξ

where ρ is determined such that

0 < ρ <
1
e

and α = −e · ξ · ρξ · log(ρ)

as shown in the Figure A1 for the case when ξ = 1.

Figure A1. Proof of Theorem 1: graph of the generalized Robust Lower Bound for ξ = 1
(BL(p, 1)), identifying the value ρ where −e · ρ · log(ρ) = α.

Now, by Lemma 1 FB(α) = ρξ < −e · ξ · ρξ · log(ρ) = α.
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Appendix B. Codes

I =seq ( 1 , n1+n2 , 1 )
y= I
for ( i in I ) {
y [ i ]=1
}
re turn ( y )
}
Y=function ( n1 =10 , n2 =10) {
I = s e q ( 1 , n1 , 1 )
y= r e p ( −1 , n1+n2 )
f o r ( i in I ) {
y [ i ]=1
}
re turn ( y )
}
ml=function ( n1 =10 , n2 =10) { r e t u r n ( lm (X( n1 , n2 )~Y( n1 , n2 ) ) ) }
sigma=function ( n1 =10 , n2 =10) {
r e t u r n ( a s . numeric ( summary ( ml ( n1 , n2 ) ) $sigma ^2 ) ) }
d=function ( n1 =10 , n2 =10) { r e t u r n ( s igma ( n1 , n2 ) * ( 1 / n1 +1/ n2 ) ) }
ne=function ( n1 =10 , n2 =10) { r e t u r n ( min ( n1 *(1+ n1 / n2 ) , n2 *(1+ n2 / n1 ) ) ) }
beta .= function ( n1 =10 , n2 =10) {
r e t u r n ( a s . numeric ( ml ( n1 , n2 ) $ c o e f f i c i e n t s [ 2 ] ^ 2 ) ) }
v=function ( n1 =10 , n2 =10) {
r e t u r n ( b e t a . ( n1 , n2 ) / ( d ( n1 , n2 ) * ( 1 + ne ( n1 , n2 ) ) ) ) }
C=function ( n1 =10 , n2 =10) {
r e t u r n ( −2* l o g ((1 − exp ( −v ( n1 , n2 ) ) ) / ( s q r t ( 2 ) * v ( n1 , n2 ) ) ) ) }
# Adaptive alpha eq . 8
alphabinom=function ( n1 , n2 , alpha ) {
s q r t ( 2 / ( ( n1+n2 ) * p i * ( q c h i s q ( a lpha , d f =1 , l o w e r . t a i l =F )
+ l o g ( n1+n2 )
+C( n1 , n2 ) ) ) ) * exp ( −( q c h i s q ( a lpha , d f =1 , l o w e r . t a i l =F )
+C( n1 , n2 ) ) / 2 )
}

# RLB_xi
RLB=function ( a , b ) {

−exp ( 1 ) * b * a^b * l o g ( a ) }
pval=seq ( 0 . 0 0 1 , 0 . 3 6 , 0 . 0 0 0 0 1 )
p l o t ( pval , RLB( pval , 1 ) , c o l =4 , l t y =4 ,
ylab=express ion ( paste ( B [ L ] ( p , x i [ 0 ] ) ) ) ,
x lab=express ion ( paste ( p ) ) , type =" l " )
l i n e s ( pval , RLB( pval , 1 . 1 ) , c o l =5 , l t y =5)
l i n e s ( pval , RLB( pval , 1 . 2 ) , c o l =6 , l t y =6)
l i n e s ( pval , RLB( pval , 1 . 3 ) , c o l =7 , l t y =7)
legend ( 0 . 0 1 , 1 , c o l =c ( 4 , 5 , 6 , 7 ) ,
c ( express ion ( paste ( x i [ 0 ] = = 1 ) ) ,
express ion ( paste ( x i [ 0 ] = = 1 . 1 ) ) ,
express ion ( paste ( x i [ 0 ] = = 1 . 2 ) ) ,
express ion ( paste ( x i [ 0 ] = = 1 . 3 ) ) ) ,
l t y =c ( 4 , 5 , 6 , 7 ) , cex = 0 . 8 )
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p l o t ( pval , RLB( pval , 1 ) ,
ylab=express ion ( paste ( B [ L ] ( p , 1 ) ) ) ,
x lab=express ion ( paste ( p ) ) , type =" l " )
a b l i n e ( h=RLB ( . 1 , 1 ) , l t y =2 , c o l =" blue " )
a b l i n e ( v=0)
a b l i n e ( h=0)
segments ( 0 . 1 , 0 , 0 . 1 , RLB ( 0 . 1 , 1 ) , l t y =2)
arrows ( 0 . 0 0 1 , RLB ( 0 . 1 , 1 ) , 0 . 0 2 5 , 0 . 8 , length = 0 . 1 )
arrows ( 0 . 1 , 0 , 0 . 1 2 5 , 0 . 2 , length = 0 . 1 )
legend ( 0 . 0 1 , 0 . 9 , express ion ( paste ( alpha ) ) , bty = "n " )
legend ( 0 . 1 1 , 0 . 3 , express ion ( paste ( rho ) ) , bty = "n " )

alpha=seq ( 0 . 0 0 0 0 0 0 0 0 0 0 0 1 , . 0 5 , . 0 0 0 0 1 )
# p o s t e r i o r p r o b a b i l i t y of H_0
pP=function ( a ) {

1 / ( 1 + 1 / ( a ) ) }
# p o s t e r i o r s p r o b a b i l i t y ( RLB_xi )
p l o t ( alpha , pP (RLB( alpha , 1 ) ) , c o l =4 , l t y =4 , xlab ="p " ,
ylab=express ion ( paste ( minP (H[0 ] / x ) ) ) , type = " l " )
l i n e s ( alpha , pP (RLB( alpha , 1 . 1 ) ) , c o l =6 , l t y =6)
l i n e s ( alpha , pP (RLB( alpha , 1 . 2 ) ) , c o l =9 , l t y =9)
l i n e s ( alpha , pP (RLB( alpha , 1 . 3 ) ) , c o l =10 , l t y =10)
legend ( 0 , . 2 8 , c o l =c ( 4 , 6 , 9 , 1 0 ) ,
c ( express ion ( paste ( P [RLB ] ) ) ,
express ion ( paste ( P [RLB [ 1 . 1 ] ] ) ) ,
express ion ( paste ( P [RLB [ 1 . 2 ] ] ) ) ,
express ion ( paste ( P [RLB [ 1 . 3 ] ] ) ) ) ,
l t y =c ( 4 , 6 , 9 , 1 0 ) , cex = 0 . 8 )

Y=function ( n1 , n2 ) {
c=c b i n d 2 ( c ( r e p ( 1 , n1 ) , r e p ( 1 , n2 ) ) )
r e t u r n ( c ) }
Y1=function ( n1 , n2 ) {
s e t . s e e d ( 2 )
a=rnorm ( n1+n2 , 0 , . 0 5 )
c=c b i n d 2 ( c ( r e p ( 1 , n1 ) , r e p ( 3 , n2 ) ) + a )
r e t u r n ( c )
}
X1=function ( n1 , n2 ) {
c=c b i n d 2 ( c ( r e p ( 1 , n1 ) , r e p ( −1 , n2 ) ) )
r e t u r n ( c )
}
X=function ( n1 , n2 ) {
r e t u r n ( c b i n d 2 (Y( n1 , n2 ) , X1 ( n1 , n2 ) ) )
}
b=function ( n1 , n2 ) {
r e t u r n ( a b s ( d e t ( t (X( n1 , n2))%*%X( n1 , n2 ) ) / d e t ( t (Y( n1 , n2))%*%
Y( n1 , n2 ) ) ) ) }
l . model=function ( n1 , n2 ) { r e t u r n ( lm ( Y1 ( n1 , n2 )~X1 ( n1 , n2 ) ) ) }
beta=function ( n1 , n2 ) { a s . numeric ( l . model ( n1 , n2 ) $ c o e f f i c i e n t [ 2 ] ) }
d=function ( n1 , n2 ) { r e t u r n ( 2 / n1 +2/ n2 ) }
ne=function ( n1 , n2 ) { r e t u r n ( min ( n1 ^2 , n2 ^ 2 ) * ( 1 / n1 +1/ n2 ) ) }
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v=function ( n1 , n2 ) { r e t u r n ( b e t a ( n1 , n2 ) ^ 2 / ( d ( n1 , n2 ) * ( 1 + ne ( n1 , n2 ) ) ) ) }
C=function ( n1 , n2 ) { r e t u r n ( −2* l o g ((1 − exp ( −v ( n1 , n2 ) ) ) / ( s q r t ( 2 ) *
v ( n1 , n2 ) ) ) ) }
# Bayes Factor Linear Version ( Eq . 8 )
BFL=function ( alpha , q , n , b , C, j ) {
− a l p h a * l o g ( a l p h a ) * gamma ( q / 2 ) * b ^ ( ( n− j ) / ( 2 * ( n − 1 ) ) ) *
( ( 2 * ( n − 1 ) ) / ( ( qgamma ( a lpha , s h a p e =q / 2 , r a t e =(n− j ) /
( 2 * ( n − 1 ) ) , l o w e r . t a i l = FALSE )
+ l o g ( b )+C ) * ( n− j ) ) ) ^ ( q / 2 )
}
# Bayes Factor General ( E . q 9)
BFG=function ( alpha , q , n ,C) {
− a l p h a * l o g ( a l p h a ) * gamma ( q / 2 ) * n^( q / 2 ) *
( 2 / ( q c h i s q ( a lpha , q , l o w e r . t a i l =FALSE)+ q * l o g ( n)+C ) ) ^ ( q / 2 )
# Bayes F a c t o r $BF_ {01 } $ ( means )

BF=function ( t , n1 , n2 , alpha ) {
n=n1+n2
l =n−1
r e t u r n ( ( ( n+ t ) / t ) ^ ( 1 / 2 ) * ( ( ( q t ( a lpha , l , l o w e r . t a i l =FALSE ) ) ^ 2 *
( t / ( n+ t ) ) + l ) / ( ( q t ( a lpha , l , l o w e r . t a i l = FALSE))^2+ l ) ) ^ ( ( l + 1 ) / 2 ) )

}
# P l o t p o s t e r i o r s p r o b a b i l i t y
par ( mfrow=c ( 1 , 2 ) )
p l o t ( alpha , pP (RLB( alpha , 1 ) ) , c o l =4 ,
xlab=express ion ( paste ( alpha ) ) ,
ylab=express ion ( paste ( P (H[0 ] / x ) ) ) ,
main =express ion ( paste ( " n = 5 0 , " , " q = 1 , " ,
tau [ 0 ] = = 6 ) ) , type =" l " , ylim = c ( 0 , 1 ) )
l i n e s ( alpha , pP ( BFL ( alpha , 1 , 5 0 , b ( 2 5 , 2 5 ) ,C( 2 5 , 2 5 ) , 2 ) ) ,
c o l =6)
l i n e s ( alpha , pP (BFG( alpha , 1 , 5 0 ,C( 2 5 , 2 5 ) ) ) , c o l =3)
l i n e s ( alpha , pP ( BF ( 6 , 2 5 , 2 5 , alpha ) ) , c o l =9)
legend ( 0 . 0 1 , 1 , c o l =c ( 4 , 6 , 3 , 9 ) ,
c ( express ion ( paste ( P [RLB ] ) ) ,
express ion ( paste ( P [ BFL ] ) ) ,
express ion ( paste ( P [BFG ] ) ) ,
express ion ( paste ( P [ BF [ " 0 1 " ] ] ) ) ) ,

l t y =c ( 1 , 1 , 1 , 1 ) , cex = 0 . 9 )
a b l i n e ( . 5 , 0 , l t y =2)
p l o t ( alpha , pP (RLB( alpha , 1 ) ) , c o l =4 ,
xlab=express ion ( paste ( alpha ) ) ,
ylab=express ion ( paste ( P (H[0 ] / x ) ) ) ,
main = express ion ( paste ( " n = 1 0 0 , " , " q = 1 , " , tau [ 0 ] = = 6 ) ) ,
type =" l " , ylim = c ( 0 , 1 ) )
l i n e s ( alpha , pP ( BFL ( alpha , 1 , 1 0 0 , b ( 5 0 , 5 0 ) ,
C( 5 0 , 5 0 ) , 2 ) ) , c o l =6)
l i n e s ( alpha , pP (BFG( alpha , 1 , 1 0 0 ,C( 5 0 , 5 0 ) ) ) , c o l =3)
l i n e s ( alpha , pP ( BF ( 6 , 5 0 , 5 0 , alpha ) ) , c o l =9)
legend ( 0 . 0 1 , 1 , c o l =c ( 4 , 6 , 3 , 9 ) ,

c ( express ion ( paste ( P [RLB ] ) ) ,
express ion ( paste ( P [ BFL ] ) ) ,
express ion ( paste ( P [BFG ] ) ) ,
express ion ( paste ( P [ BF [ " 0 1 " ] ] ) ) ) ,



Entropy 2023, 25, 618 17 of 20

l t y =c ( 1 , 1 , 1 , 1 ) , cex = 0 . 9 )
a b l i n e ( . 5 , 0 , l t y =2)

# Bayes f a c t o r F i sher ’ s Exact Test

B_01=funct ion ( p , a , b , alpha , n ) {
p^(qbinom ( alpha , n , p , lower . t a i l = FALSE ) ) *
(1 −p ) ^ ( n−qbinom ( alpha , n , p , lower . t a i l = FALSE ) ) *
beta ( a , b)/ beta ( qbinom ( alpha , n , p , lower . t a i l = FALSE)+a ,
n−qbinom ( alpha , n , p , lower . t a i l = FALSE)+b )
}
z=B_01 ( . 7 , 7 , 3 , alpha , 5 0 )
x=B_01 ( . 7 , 7 , 3 , alpha , 1 0 0 )
# P o s t e r i o r s p r o b a b i l i t y
par ( mfrow=c ( 1 , 2 ) )
p l o t ( alpha , pP (RLB( alpha , 1 ) ) , c o l =4 ,
xlab=express ion ( paste ( alpha ) ) ,
ylab=express ion ( paste ( P (H[0 ] / x ) ) ) ,
main = express ion ( paste ( " n = 5 0 , " , " q = 1 " ) ) , type = " l " , ylim = c ( 0 , 1 ) )
l i n e s ( alpha , pP (BFG( 1 , alpha , 2 5 , 2 5 , 1 ) ) , c o l =2)
l i n e s ( alpha , pP (BFG( 1 , alpha , 2 5 , 2 5 , 1 . 1 ) ) , c o l =3)
l i n e s ( alpha , pP (BFG( 1 , alpha , 2 5 , 2 5 , 1 . 2 ) ) , c o l =5)
l i n e s ( alpha , pP (BFG( 1 , alpha , 2 5 , 2 5 , 1 . 3 ) ) , c o l =6)
l i n e s ( alpha , pP ( z ) , c o l =9)
legend ( 0 . 0 1 , 1 , c o l =c ( 4 , 2 , 3 , 5 , 6 , 9 ) ,
c ( express ion ( paste ( P [RLB ] ) ) ,
express ion ( paste ( P [BFG ] ) ) ,
express ion ( paste ( P [BFG [ 1 . 1 ] ] ) ) ,
express ion ( paste ( P [BFG [ 1 . 2 ] ] ) ) ,
express ion ( paste ( P [BFG [ 1 . 3 ] ] ) ) ,
express ion ( paste ( P [ BF [ Test ] ] ) ) ) ,

l t y =c ( 1 , 1 , 1 , 1 , 1 , 1 ) , cex = 0 . 6 )
a b l i n e ( . 5 , 0 , l t y =2)
p l o t ( alpha , pP (RLB( alpha , 1 ) ) , c o l =4 ,
xlab=express ion ( paste ( alpha ) ) ,
ylab=express ion ( paste ( P (H[0 ] / x ) ) ) ,
main = express ion ( paste ( " n = 1 0 0 , " , " q = 1 " ) ) ,
type = " l " , ylim = c ( 0 , 1 ) )
l i n e s ( alpha , pP (BFG( 1 , alpha , 8 0 , 2 0 , 1 ) ) , c o l =2)
l i n e s ( alpha , pP (BFG( 1 , alpha , 8 0 , 2 0 , 1 . 1 ) ) , c o l =3)
l i n e s ( alpha , pP (BFG( 1 , alpha , 8 0 , 2 0 , 1 . 2 ) ) , c o l =5)
l i n e s ( alpha , pP (BFG( 1 , alpha , 8 0 , 2 0 , 1 . 3 ) ) , c o l =6)
l i n e s ( alpha , pP ( x ) , c o l =9)
legend ( 0 . 0 1 , 1 , c o l =c ( 4 , 2 , 3 , 5 , 6 , 9 ) ,

c ( express ion ( paste ( P [RLB ] ) ) ,
express ion ( paste ( P [BFG ] ) ) ,
express ion ( paste ( P [BFG [ 1 . 1 ] ] ) ) ,
express ion ( paste ( P [BFG [ 1 . 2 ] ] ) ) ,
express ion ( paste ( P [BFG [ 1 . 3 ] ] ) ) ,
express ion ( paste ( P [ BF [ Test ] ] ) ) ) ,

l t y =c ( 1 , 1 , 1 , 1 , 1 , 1 ) , cex = 0 . 6 )
a b l i n e ( . 5 , 0 , l t y =2)
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# C and b

Y=function ( n ) {
c=c b i n d 2 ( r e p ( 1 , n ) )
r e t u r n ( c ) }

X1=function ( n ) {
I = s e q ( 1 , n , 1 )
x= I
f o r ( i in I ) {
x [ i ] = 1 / i
}
re turn ( as . matrix ( x ) )
}
Y1=function ( n ) {
s e t . s e e d ( 4 )
a=rnorm ( n , 0 , 1 )
r e t u r n ( a+X1 ( n ) * 0 . 5 )
}
X=function ( n ) {
r e t u r n ( c b i n d 2 (Y( n ) , X1 ( n ) ) )
}
b=function ( n ) {
r e t u r n ( a b s ( d e t ( t (X( n))%*%X( n ) ) / d e t ( t (Y( n))%*%Y( n ) ) ) ) }
l . model=function ( n ) { r e t u r n ( lm ( Y1 ( n)~X1 ( n ) ) ) }
t h e t a =function ( n ) { a s . numeric ( l . model ( n ) $ c o e f f i c i e n t [ 2 ] ) }
d=function ( n ) { r e t u r n ( 1 / a p p l y ( X1 ( n ) , 2 , sum ) ) }
ne=function ( n ) { r e t u r n ( a p p l y ( X1 ( n ) , 2 , sum ) ) }
v=function ( n ) { r e t u r n ( t h e t a ( n ) ^ 2 / ( d ( n ) * ( 1 + ne ( n ) ) ) ) }
C=function ( n ) { r e t u r n ( −2* l o g ((1 − exp ( −v ( n ) ) ) / ( s q r t ( 2 ) * v ( n ) ) ) ) }

# p l o t p o s t e r i o r s p r o b a b i l i t y in function of alpha .

par ( mfrow=c ( 1 , 3 ) )
p l o t ( alpha , pP ( BFL ( alpha , 1 , 1 0 0 , b ( 1 0 0 ) ,C( 5 0 ) , 2 ) ) ,
c o l =4 , xlab=express ion ( paste ( alpha ) ) ,
ylab=express ion ( paste ( P (H[0 ] / x ) ) ) ,
main =express ion ( paste ( " n = 1 0 0 , " , " q = 1 " ) ) ,
type =" l " , ylim = c ( 0 , 1 ) )
l i n e s ( alpha , pP (BFG( alpha , 1 , 1 0 0 ,C( 1 0 0 ) ) ) , c o l =3)
legend ( 0 . 0 1 , 1 , c o l =c ( 4 , 3 ) ,

c ( express ion ( paste ( P [ BFL ] ) ) ,
express ion ( paste ( P [BFG ] ) ) ) ,

l t y =c ( 1 , 1 ) , cex = 0 . 9 )
a b l i n e ( . 5 , 0 , l t y =2)

p l o t ( alpha , pP ( BFL ( alpha , 1 , 1 0 0 0 , b ( 1 0 0 0 ) ,C( 1 0 0 0 ) , 2 ) ) ,
c o l =4 , xlab=express ion ( paste ( alpha ) ) ,
ylab=express ion ( paste ( P (H[0 ] / x ) ) ) ,
main =express ion ( paste ( " n = 1 0 0 0 , " , " q = 1 " ) ) ,
type =" l " , ylim = c ( 0 , 1 ) )
l i n e s ( alpha , pP (BFG( alpha , 1 , 1 0 0 0 ,
C( 1 0 0 0 ) ) ) , c o l =3)
legend ( 0 . 0 1 , 1 , c o l =c ( 4 , 3 ) ,
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c ( express ion ( paste ( P [ BFL ] ) ) ,
express ion ( paste ( P [BFG ] ) ) ) ,

l t y =c ( 1 , 1 ) , cex = 0 . 9 )
a b l i n e ( . 5 , 0 , l t y =2)

p l o t ( alpha , pP ( BFL ( alpha , 1 , 1 0 0 0 0 , b ( 1 0 0 0 0 ) ,C( 1 0 0 0 0 ) , 2 ) ) ,
c o l =4 , xlab=express ion ( paste ( alpha ) ) ,
ylab=express ion ( paste ( P (H[0 ] / x ) ) ) ,
main =express ion ( paste ( " n = 1 0 0 0 0 , " , " q = 1 " ) ) ,
type =" l " , ylim = c ( 0 , 1 ) )
l i n e s ( alpha , pP (BFG( alpha , 1 , 1 0 0 0 0 ,
C( 1 0 0 0 0 ) ) ) , c o l =3)
legend ( 0 . 0 1 , 1 , c o l =c ( 4 , 3 ) ,
c ( express ion ( paste ( P [ BFL ] ) ) ,
express ion ( paste ( P [BFG ] ) ) ) ,
l t y =c ( 1 , 1 ) , cex = 0 . 9 )
a b l i n e ( . 5 , 0 , l t y =2)

# p l o t p o s t e r i o r s p r o b a b i l i t y in function of n .

I =seq ( 1 , 1 0 0 0 , 1 )
BL= I
BL1= I
BG= I
BG1= I
for ( n in I ) {

i =9+n
BL [ n]=BFL ( 0 . 0 5 , 1 , i , b ( i ) ,C( i ) , 2 )
BL1 [ n]=BFL ( 0 . 0 1 , 1 , i , b ( i ) ,C( i ) , 2 )
BG[ n]=BFG ( 0 . 0 5 , 1 , i , C( i ) )
BG1[ n]=BFG ( 0 . 0 1 , 1 , i , C( i ) )

}

m=seq ( 1 0 , 1 0 0 9 , 1 )
par ( mfrow=c ( 1 , 2 ) )
p l o t (m, pP ( BL ) , c o l =4 ,
xlab=express ion ( paste ( " n " ) ) ,
ylab=express ion ( paste ( P (H[0 ] / x ) ) ) ,
main =express ion ( paste ( alpha = = 0 . 0 5 , " , " , " q = 1 " ) ) ,
type =" l " , ylim = c ( 0 , 1 ) )
l i n e s (m, pP (BG) , c o l =3)
legend ( 0 . 0 1 , 1 , c o l =c ( 4 , 3 ) ,

c ( express ion ( paste ( P [ BFL ] ) ) ,
express ion ( paste ( P [BFG ] ) ) ) ,
l t y =c ( 1 , 1 ) , cex = 0 . 8 )
a b l i n e ( . 5 , 0 , l t y =2)
p l o t (m, pP ( BL1 ) , c o l =4 ,
xlab=express ion ( paste ( " n " ) ) ,
ylab=express ion ( paste ( P (H[0 ] / x ) ) ) ,
main =express ion ( paste ( alpha = = 0 . 0 1 , " , " , " q = 1 " ) ) ,
type =" l " , ylim = c ( 0 , 1 ) )
l i n e s (m, pP (BG1 ) , c o l =3)
legend ( 0 . 0 1 , 1 , c o l =c ( 4 , 3 ) ,
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c ( express ion ( paste ( P [ BFL ] ) ) ,
express ion ( paste ( P [BFG ] ) ) ) ,

l t y =c ( 1 , 1 ) , cex = 0 . 8 )
a b l i n e ( . 5 , 0 , l t y =2)
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