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Abstract: The computer vision, graphics, and machine learning research groups have given a signif-
icant amount of focus to 3D object recognition (segmentation, detection, and classification). Deep
learning approaches have lately emerged as the preferred method for 3D segmentation problems
as a result of their outstanding performance in 2D computer vision. As a result, many innovative
approaches have been proposed and validated on multiple benchmark datasets. This study offers
an in-depth assessment of the latest developments in deep learning-based 3D object recognition.
We discuss the most well-known 3D object recognition models, along with evaluations of their
distinctive qualities.

Keywords: deep learning; 3D object recognition; 3D object segmentation; 3D object detection;
3D object classification

1. Introduction

3D object identification based on point clouds is a crucial component of a wide range
of real-world applications, including autonomous navigation, housekeeping robots, recon-
struction of architectural models of buildings, face recognition, preservation of endangered
historical monuments, the creation of virtual worlds for the film and video game industries
and augmented/virtual reality. In comparison to image-based detection, LiDAR (Light De-
tection and Ranging) delivers consistent depth information that may be utilised to correctly
locate and classify objects. By utilising its active sensor, LIDAR can properly estimate range,
which is becoming increasingly crucial in the perception system of current autonomous
cars and robotics. LiDAR semantic segmentation seeks to estimate the labels for each point,
which is essential for the perception system to comprehend its surroundings. Some of the
LiDAR-based 3D recognition methods included in this survey are listed in Table 1. The
accessibility of affordable sensors like the Microsoft Kinect has also made it possible for
consumers to get short-range indoor 3D data and nowadays structure from motion (SfM)
photogrammetry and neural radiance fields (Nerf) are becoming more popular. The direct
acquisition of 3D data from the sensors is one of the main advantages of motion capture
which makes it possible to get results relatively faster, sometimes even in real time. Thus,
real-time motion capture of fast-moving objects is accomplished.

Identifying 3D objects from visual data has always been difficult. A scene may be
recorded as 3D point clouds using 3D scanning tools like LiDAR or RGB-D sensors. Nev-
ertheless, unlike pictures, LiDAR point clouds are sparse and have a highly varied point
density due to factors such as non-uniform 3D sampling, the effective range of the sensors,
occlusion, and relative position. It is difficult to conduct scene interpretation on LiDAR se-
quences due to the disorder and irregularity in the point cloud. The majority of algorithms
currently in use only utilize the 2D information observed in RGB images to estimate the 3D
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bounding boxes by constructing pipelines from 2D data. These techniques result in a signif-
icant trade-off between efficiency and efficacy as they require numerous post-processing
steps to combine predictions and delete unnecessary boxes. As an alternative to conven-
tional 2D-based techniques, several methods employ 3D recognition techniques including
segmentation, detection, and classification of 3D objects to add more 3D computations to
the object detection pipeline.

Table 1. Some LiDAR-based 3D Object Recognition Methods included in this Survey.

Modality Method Category Methods

LiDAR-based Voxel-based
VoxelNet [1],
SECOND [2]

LiDAR-based Point-based

PointRCNN [3],
STD [4],
PointPillars [5],
SA-SSD [6],
SLidR [7]

LiDAR-based Graph-based PointGCN [8]

LiDAR-Camera Fusion Multi-view AVOD [9]

A fundamental and complex task in computer vision and graphics is the segmentation
and classification of 3D scenes. Building computer methods that identify the fine-grained
labels of objects in a 3D environment is the goal of 3D segmentation, which has a variety of
applications including autonomous driving, mobile robotics, industrial control, augmented
reality, and medical picture analysis. 3D Object Segmentation can be further classified into
three categories: Semantic segmentation to identify the labels for object classes like table
and chair; Instance segmentation to make a distinction between various occurrences of
the same class labels; and Part segmentation to further break down instances into their
various parts, such as the armrests, legs, and backrest of a single chair. Due to the fact
that 3D data, such as RGB-D, point clouds, projected pictures, voxels, and mesh, contain
richer geometric, shape, and scale information with less background noise than 2D data, 3D
segmentation provides a more thorough understanding of a scene than 2D segmentation.
The majority of 3D systems employ two-stage methods to detect 3D objects, much like 2D
image-based object systems: first, they create proposals, and then they perform detection.
The 3D detection framework is simultaneously made more complex and more intriguing by
the special characteristics of 3D systems, such as various data formats and the availability
of both 2D and 3D images.

Approaches to 3D object classification continue to advance significantly in the deep
learning era. Deep learning methods have recently taken the lead in numerous academic
fields, including computer vision, speech recognition, and natural language processing.
Deep learning for 3D object recognition has seen an increase in interest from the research
community over the past ten years, driven by its success in learning potent features.
However, there are still a lot of problems with 3D deep learning techniques. For instance,
it can be challenging to combine characteristics from the RGB and depth channels. It is
challenging to use local features in point clouds due to their irregularity, and transforming
them into high-resolution voxels is quite computationally intensive. Despite 2D image
detection, recognition, segmentation, and classification tasks being quite successful, using
deep learning on 3D data is still difficult due to the sparse nature of most 3D data.

This study offers a thorough analysis of current developments in 3D object recognition
using deep learning techniques including the benchmarking models, such as VoxelNet [1],
OctNet [10], etc. It concentrates on examining frequently employed building components,
convolution kernels, and full architectures, highlighting the benefits and drawbacks of
each model. Over 33 representative papers that include 26 benchmark and state-of-the-art
models and 7 benchmark datasets that have been used by many models over the last five
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years are included in this study. Despite the fact that certain notable 3D object recognition
surveys, such as those on RGB-D semantic segmentation and point cloud segmentation,
have been published, these studies do not exhaustively cover all 3D data types and common
application domains. Most importantly, these surveys only provide a general overview
of 3D object recognition techniques, including some of their advantages and limitations.
Figure 1 shows the timeline of the different 3D Object Recognition approaches that were
included in this survey, based on their year of publication. The figure also shows the dataset
with which the performance of the models was evaluated.

Figure 1. Timeline of different 3D Object Recognition Techniques discussed in this survey and the
dataset they were evaluated based on their year of publication.

The models surveyed in this article are selected depending on parameters like the
dataset the models have been trained and/or evaluated upon, the method category they
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belong to, and the function they perform including, classification, segmentation, etc. Most
of these models have used some benchmark datasets, like, SemanticKITTI [11] and Stanford
3D Large-Scale Indoor Spaces (S3DIS) [12] to validate and compare their performances
with state-of-the-art technologies. Therefore, this study discusses some of the benchmark
deep learning methods for 3D object recognition, and the main contributions are as follows:

• This work thoroughly discusses some of the state-of-the-art and/or benchmarking
deep learning techniques for 3D object recognition, which includes segmentation,
object detection, and classification, by utilizing a variety of 3D data formats, including
RGB-D (IMVoteNet) [13], voxels (VoxelNet) [1], point clouds (PointRCNN) [3], mesh
(MeshCNN) [14] and 3D video (Meta-RangeSeg) [15].

• We provide an extensive analysis of the relative advantages and disadvantages of
different types of 3D object identification methods.

• Our work places special emphasis on deep learning techniques created expressly for
3D object recognition, including 3D segmentation, detection and classification.

2. Datasets

There are different benchmarking datasets that can be utilised to evaluate and improve
the performance of deep learning models in 3D object recognition. These datasets contain
scans of real-world objects which could include scenes from indoor and outdoor images.
The datasets discussed in this survey are some of the benchmark datasets that are currently
being used by many 3D object recognition methods. Only the datasets that have been
used by the 3D object identification methods discussed in this survey paper in Section 3
(3D Segmentation), Section 4 (3D Detection), and Section 5 (3D Classification) will be
listed. This includes the KITTI 3D Object Detection [16], SemanticKITTI [11], ModelNet10
and ModelNet40 [17], (S3DIS) [12], (nuScenes) [18], ScanNet [19] and ScanObjectNN [20]
datasets. Datasets that are specific only to some 3D recognition methods, for example,
3D-CT dataset which is specific to HiLo-Network [21] or Multi-view images of rotated
objects (MIRO) which is specific to RotationNet [22], will not be included in this survey.
Table 2 provides the properties of data provided by different datasets.

Table 2. Benchmaring Datasets included in this survey.

Datasets Number
of Frames

Number
of Labels Object Type 5 Common

Classes URL

KITTI 3D Object
Detection [16] 12,000 40,000 Scans of autonomous

driving platform

Car, Cylclist,
Pedestrian, Tram,

Van

https://www.cvlibs.net/datasets/kitti/
(accessed on: 1 February 2023)

SemanticKITTI [11] 43,000 25 Scans from KITTI
Vision odometry

Bicycle, Bicyclist,
Building, Car,

Fence

http://www.semantic-kitti.org/dataset.html
(accessed on: 1 February 2023)

ModelNet [17] 151,128 660 3D CAD scans Bed, Chair, Desk,
Sofa, Table

https://modelnet.cs.princeton.edu/
(accessed on: 1 February 2023)

S3DIS [12] 271 12
Scans of restrooms,
lobbies, stairways,

hallways

Beam, Board,
Chair, Door, Sofa

http://buildingparser.stanford.edu/
(accessed on: 1 February 2023)

nuScene [18] 1000 23 Scans of autonomous
driving platform

Bicycle, Car,
Lane, Stop Line,

Walkaway

https://nuscenes.org/
(accessed on: 1 February 2023)

ScanNet [19] 2,492,518 1513 Scans of bedrooms,
kitchen, offices

Bed, Chair, Desk,
Door, Floor

http://www.scan-net.org/
(accessed on: 1 February 2023)

ScanObjectNN [20] 15,000 2902 Scans of bedrooms,
kitchen, offices

Bag, Bed, Bin,
Box, Desk

https://hkust-vgd.github.io/scanobjectnn/
(accessed on: 1 February 2023)

2.1. KITTI 3D Object Detection

This benchmark dataset’s creators generated unique demanding datasets for stereo, op-
tical flow, visual odometry/SLAM, and 3D object detection tasks. The 3D object dataset [16]

https://www.cvlibs.net/datasets/kitti/
http://www.semantic-kitti.org/dataset.html
https://modelnet.cs.princeton.edu/
http://buildingparser.stanford.edu/
https://nuscenes.org/
http://www.scan-net.org/
https://hkust-vgd.github.io/scanobjectnn/
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focuses on object detection and 3D orientation estimation using computer vision techniques.
This data is collected by manually categorising items in the Velodyne system’s 3D point
clouds of the authors and projecting them back into the picture. This produces tracklets
with precise 3D poses, which may be used to evaluate the effectiveness of 3D orientation
estimation and tracking algorithms. Annotators were engaged to assign tracklets in the
form of 3D bounding boxes to objects such as vehicles, vans, lorries, trams, pedestrians, and
bicycles in order to build 3D object ground truth. This was accomplished by developing a
special-purpose labelling tool that shows 3D laser pointers as well as camera pictures to
improve annotation quality. The number of nonoccluded items in the picture, as well as the
entropy of the object orientation distribution, are used to choose this dataset. High entropy
is desirable for ensuring variety. This dataset contains 12,000 photos and 40,000 objects.
The following methods discussed in this survey have validated their performances on this
dataset: VoxelNet [1], SECOND [2], PointPillars [5], SA-SSD [6], STD [4], PointRCNN [3],
3DSSD [23], AVOD [9] and FuDNN [24]. Table 3 shows the comparison of the performance
of these models on this dataset. The performance is evaluated in average precision (AP).
The comparison is made based on the results published by the developers of these models.
The table shows the average precision (AP) of models evaluated on the car class of the
KITTI validation set. The results were evaluated with an IoU threshold of 0.7.

Table 3. Average Precision (AP) comparison of different 3D object recognition algorithms in the car
class of KITTI 3D validation set with IoU threshold 0.7.

Models Dataset Average Precision (AP) IoU Threshold

VoxelNet [1] KITTI 3D
Object Detection [16] 81.97 0.7

AVOD [9] KITTI 3D
Object Detection [16] 84.41 0.7

SECOND [2] KITTI 3D
Object Detection [16] 87.43 0.7

PointRCNN [3] KITTI 3D
Object Detection [16] 88.88 0.7

STD [4] KITTI 3D
Object Detection [16] 89.7 0.7

3DSSD [23] KITTI 3D
Object Detection [16] 89.71 0.7

SA-SSD [6] KITTI 3D
Object Detection [16] 90.15 0.7

PointPillars [5] KITTI 3D
Object Detection [16] 90.19 0.7

FuDNN [24] KITTI 3D
Object Detection [16] 92.48 0.7

2.2. SemanticKITTI

SemanticKITTI [11] is a big dataset with remarkable detail in point-wise annotation
and 28 classifications that may be used for a variety of purposes. This dataset’s authors
concentrated on laser-based semantic segmentation and semantic scene completion. The
collection differs from previous laser datasets as it contains exact scanwise annotations of
sequences. Ultimately, all 22 sequences of the KITTI Vision Benchmark’s odometry [16],
totaling over 43,000 scans, have been annotated. Furthermore, the revolving laser sensor’s
whole horizontal 360-degree field of view has been labelled. This massive dataset was
developed to inspire the creation of innovative algorithms, allowing researchers to study
new research avenues and improve the assessment and comparison of these unique al-
gorithms. This dataset is based on the KITTI Vision Benchmark’s odometry dataset [16],
which depicts inner city traffic, residential neighbourhoods, motorway scenes, and country
roads in and around Karlsruhe, Germany. The original odometry dataset comprises 22 se-
quences, with sequences 00 to 10 serving as the training set and sequences 11 to 21 serving
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as the test set. The same division has been used for this training and test set to maintain
consistency with the original benchmark. Moreover, by giving labels exclusively for the
training data, the original odometry benchmark is not altered. Altogether, this dataset has
23,201 complete 3D scans for training and 20,351 for testing, making it by far the biggest
publicly available dataset. The following models discussed in this survey have validated
their performances on this dataset: 3D-CNN [25], Meta-RangeSeg [15] and SLidR [7]. It
was difficult to compare these models as the results published in the original paper were
with different metrics.

2.3. ModelNet

ModelNet [17] is a large-scale object collection of 3D computer graphics CAD models,
created by combining 3D CAD models obtained from 3D Warehouse, 261 CAD model
websites indexed with the Yobi3D search engine, common item categories searched from
the SUN database [26] that contain at least 20 object instances per category, and models
from the Princeton Shape Benchmark [27]. Several previous CAD datasets were limited
in terms of both the number of categories and the number of instances per category. The
authors carefully verified each 3D model and deleted unnecessary items, including floor
and thumbnail pictures, from each CAD model such that each mesh model has just one
object from the identified category. This dataset comprises 151,128 3D CAD models from
660 different item categories. ModelNet10 and ModelNet40 are the common datasets
that have been used in research works. The following methods discussed in this survey
have validated their performances on this dataset: GRA [28], OctNet [10], RotationNet [22],
PointGCN [8], InSphereNet [29], FPConv [30], GLR [31], RSMix [32], GDANet [33] and Point
Transformer [34]. Table 4 shows the comparison of accuracy of PointGCN [8], GLR [31],
RSMix [32] and RotationNet [22] evaluated on ModelNet10 dataset. Results of OctNet [10]
could not be compared as the developers did not use any metric to measure the performance
of that model. Table 5 shows the comparison of accuracy of PointGCN [8], InSphereNet [29],
FPConv [30], GLR [31], RSMix [32], GDANet [33], GRA [28] and RotationNet [22] evaluated
on ModelNet40 dataset.

Table 4. Accuracy comparison of different 3D object recognition algorithms on ModelNet10 dataset.

Models Dataset Accuracy

PointGCN [8] ModelNet10 [17] 91.91

GLR [31] ModelNet10 [17] 95.53

RSMix [32] ModelNet10 [17] 95.9

RotationNet [22] ModelNet10 [17] 98.46

Table 5. Accuracy comparison of different 3D object recognition algorithms on ModelNet40 dataset.

Models Dataset AP

PointGCN [8] ModelNet40 [17] 89.51

InSphereNet [29] ModelNet40 [17] 92.1

FPConv [30] ModelNet40 [17] 92.5

Point Transformer ModelNet40 [17] 92.8

GLR [31] ModelNet40 [17] 93.02

RSMix [32] ModelNet40 [17] 93.5

GDANet [33] ModelNet40 [17] 93.8

RPNet [28] ModelNet40 [17] 94.1

RotationNet [22] ModelNet40 [17] 97.37
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2.4. S3DIS

Stanford 3D Large-Scale Indoor Spaces (S3DIS) [12] dataset contains five large-scale
indoor rooms from three separate buildings, each of which covers around 1900, 450, 1700,
870, and 1100 square metres (total of 6020 square meters). These sections have a variety
of architectural styles and appearances and largely consist of office areas, educational
and exhibition spaces, conference rooms, personal offices, lavatories, open spaces, lobbies,
stairways, and corridors. One of the sections has numerous floors, whereas the others
only have one. With the Matterport scanner, the full point cloud is created automatically
without any operator interaction. There are 12 semantic elements identified, which include
structural components (ceiling, floor, wall, beam, column, window, and door) as well
as regularly encountered goods and furnishings (table, chair, sofa, bookcase, and board).
These classes are finer-grained and more difficult than typical semantic indoor segmentation
datasets. S3DIS features 271 scenes divided into six zones. It includes 13 different types of
semantic labels for scene segmentation. The following methods discussed in this survey
have validated their performances on this dataset: GRA [28] and FPConv [30]. Table 6
shows the comparison of Mean-per-IoU (mIoU) of FPConv [30] and GRA [28] evaluated on
S3DIS dataset.

Table 6. Mean-per-IoU (mIoU) comparison of different 3D object recognition algorithms on
S3DIS dataset.

Models Dataset Mean Per-Class IoU (%)

FPConv [30] S3DIS [12] 66.7

GRA [28] S3DIS [12] 70.8

2.5. nuScene

The nuTonomy scenes (nuScenes) [18] collection is the first to include the whole
autonomous vehicle sensor suite: six cameras, five radars, and one lidar, all with a full
360-degree field of view. nuScenes is made up of 1000 scenes, each of which is 20 s long and
completely annotated with 3D bounding boxes for 23 classes and 8 characteristics. It has
7 times as many annotations and 100 times as many photos as the original KITTI dataset.
nuScenes offers a significant advancement in terms of data quantities and complexity,
and it is the first dataset to give 360-degree sensor coverage throughout the complete
sensor suite. It is also the first AV dataset to incorporate radar data and was obtained
using a public-road-approved AV. Furthermore, it is the first multimodal dataset to include
data from dark and wet situations, as well as object features and scene descriptions in
addition to object class and position. nuScenes is an AV standard for comprehensive scene
knowledge. It enables the study of a variety of tasks such as object identification, tracking,
and behaviour modelling in a variety of environments. The following methods discussed
in this survey have validated their performances on this dataset: SLidR [7] and 3DSSD [23].
It was difficult to compare these models as the results published in the original paper were
with different metrics.

2.6. ScanNet

ScanNet [19] is a dataset of richly-annotated RGB-D scans of real-world environments
containing 2.5M RGB-D images for 1513 scans acquired in 707 distinct spaces. The extent
of this research is largely due to its annotation with estimated calibration parameters,
camera poses, 3D surface reconstructions, textured meshes, dense object-level semantic
segmentations, and aligned CAD models. To design a framework that allows many people
to collect and annotate large, a capture pipeline to make it easier for beginners to get
semantically-labeled 3D models of scenes is constructed. RGB-D video is acquired and the
data is processed offline. A complete semantically-labeled 3D reconstruction of the scene is
returned. 3D deep networks can be trained with the data provided by ScanNet and their
efficiency on many scene understanding tasks, including 3D object classification, semantic
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voxel labeling, and CAD model retrieval can be evaluated. There are several different types
of locations in ScanNet, such as offices, housing, and restrooms. ScanNet provides a flexible
framework for RGB-D acquisition and semantic annotations. ScanNet’s fully annotated scan
data is helpful in achieving cutting-edge performance on a variety of 3D scene interpretation
tasks. Finally, for reconstruction, instance-level object category annotations and 3D CAD
model alignments are obtained from crowdsourcing using semantic annotation tasks. The
following methods discussed in this survey have validated their performances on this
dataset: GRA [28].

2.7. ScanObjectNN

ScanObjectNN [20] a point cloud object generated dataset using scene mesh data
obtained from SceneNN [35] and ScanNet [19]. 700 distinct scenes are chosen from a
total of more than 1600 scenes from SceneNN and ScanNet. To create a category for
training data, each object is carefully reviewed, its inconsistent labels are rectified, and any
confusing, poorly reconstructed, unlabeled, sparse, or small-instance objects are removed.
Around 15,000 objects for 15 common categories are selected by design and the dataset
is further enhanced by taking other object perturbations into account. Real-world objects
were used to construct this dataset, which has greater benefits than utilizing artificial or
synthetic datasets for learning. Classification models apply well to data from the actual
world, such as point clouds created from RGB-D scans. In-context and comprehensive
observations of actual objects are included in this collection. Models developed using
this dataset are capable of handling background well when it coexists with objects due
to clutter in real-world scenarios. This dataset provides additional real-world difficulties,
such as background occurrence, object partiality, and many deformation variants. The
following methods discussed in this survey have validated their performances on this
dataset: GLR [31] and GDANet [33]. Table 7 shows the comparison of the accuracy of
GLR [31] and GDANet [33] evaluated on this dataset.

Table 7. Accuracy comparison of different 3D object recognition algorithms on ScanObjectNN dataset.

Models Dataset Accuracy

GLR [31] ScanObjectNN [20] 87.2

GDANet [33] ScanObjectNN [20] 88.5

3. Segmentation

3D object segmentation has applications in the fields of robotics, augmented reality,
and medical picture analysis. It has received a lot of attention from the communities
of computer vision, graphics, and machine learning. In this literature, numerous deep
learning techniques for 3D semantic segmentation have been put forth which can be
categorized into five groups based on: RGB-D images, projected images, voxels, points, and
other representations. Point-based techniques can be further divided into multiple-layer
perceptron (MLP), point convolution, and graph convolution techniques depending on
the network design. Table 8 lists out the methods and Table 9 lists out their advantages
and limitations that will be discussed in this section. SemanticKITTI [11] is one of the most
common benchmarking datasets that many 3D segmentation methods use for evaluating
their performances.
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Table 8. 3D Segmentation Methods included in this survey.

Models Technology Datasets Used BackBone

3D-CNN [25] Bird’s Eye View (BEV)
projection SemanticKITTI [11] 2DCNN

RPNet [28] Group Relation
Aggregator (GRA)

ModelNet40 [17],
ScanNet [19],

S3DIS [12]
PointNet++ [36]

HiLo [21] Semantic
Segmentation 3D-CT CNN, O-Net

Swin UNETR [37] Semantic
Segmentation

Multi-modal Brain
Tumor Segmentation

Challenge (BraTS) [38]
Swin Transformer

Meta-RangeSeg [15] Range Residual
Image SemanticKITTI [11] U-Net

SLiDR [7]
Image-to-LiDAR
Self-supervised

Distillation

nuScenes [18],
SemanticKITTI [11] U-Net

Table 9. Advantages and Limitations of 3D Segmentation Methods included in this survey.

Models Technology Advantages Limitations

3D-CNN [25]
Bird’s Eye

View (BEV)
projection

Addressed the issue
of Occlusion by using
deep learning to fill
in the occluded parts

This approach depends
heavily on voxel-wise
completion labels and
perform poorly on little,
distant objects and
cluttered scenes

RPNet [28]

Group
Relation

Aggregator
(GRA)

Uses relations to learn
from local structural
information essential
for learning point cloud
information

Non-convolutional as the
input of it’s MLPs
contains the absolute
location of the points

HiLo [21]
Semantic

Segmentation
Can successfully separate
firearms within baggage

None of the evaluated
super-resolution O-Net
topologies can attain
the necessary results

Swin UNETR [37]
Semantic

Segmentation

Computes self-attention
via an efficient shifting
window partitioning
algorithm and ranks
first on the BraTs 2021
validation set [38]

Requires a swin
transformer to extract
and down-sample feature
maps before feeding
them into a transformer

Meta-RangeSeg [15]
Range

Residual
Image

This technique can
handle the problem
of hazy segmentation
borders

Requires boundary loss
function to handle the
problem of hazy
segmentation borders

SLiDR [7]
Image-to-LiDAR
Self-supervised

Distillation

Pre-training process
does not require any
annotation of the images
nor of the point clouds

Heavily reliant on a
huge collection of
annotated point clouds

3.1. Bird’s Eye View (BEV) Projection Segmentation

By conducting a point-level analysis for urban-size point clouds and presenting a multi-
modal fusion segmentation model with a special Bird’s Eye View (BEV) [39] projection
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algorithm, the problem of 3D segmentation at the urban scale is effectively handled. A point
level analysis is performed prior to model construction by projecting 3D points onto
the BEV map and calculating the overlap ratio. To take advantage of both the 2D and
3D convolutional neural network, a combination of semantic segmentation and scene
completion [25] is introduced. A 2D completion branch and an assisted 3D segmentation
branch are two of the network’s components. Since 3D dense convolution uses too many
resources and 3D sparse convolution makes it challenging to create unique voxels, the
scene is completed using a 2D network using BEV. Additionally, distributing features with
2D convolution is effective and simple. In order to combine the benefits of 2D and 3D
networks from multi-view fusion, the attributes of the semantic segmentation branch are
included as an auxiliary. These features can continually provide semantic features to the
completion branch. The foundation of the system is a 2D encoder-decoder architecture
since 2D networks are lighter and more practical for distributing features. Instead of the
conventional spherical projection, Cartesian voxelization is implemented in segmentation.
To create a BEV feature map, a top-down approach is used. The authors evaluated the
performance of this model on SemanticKITTI [11] dataset. This model was able to achieve
a mean IoU of 58.8 and performed comparatively better. Figure 2 shows the network
architecture of this 3D CNN model where the lower part of the figure is an auxiliary 3D
semantic segmentation branch, and the upper part is a 2D completion branch that follows
the UNet structure and performs four downsamplings.

Figure 2. Network Architecture of 3D CNN model combining semantic segmentation and scene
completion [25].

This method demonstrates that point cloud completion and semantic segmentation
may be performed concurrently by exchanging semantic and geometrical information. This
work uses extra semantic-related input to accomplish more realistic scene completion by
accepting semantics as inputs and demonstrates that 3D partial observations and semantic
information are complimentary to one other by displaying amazing results [40]. This work
used BEV semantic map as a scene completion task to inpaint sparse semantic LiDAR
points into semantic map [41]. Occlusion is considered to be one of the key challenges when
implementing change detection on 3D point clouds. During Occlusion, point clouds appear
incomplete, that is, the point clouds will appear on one scan but not in the other. This
paper has addressed this issue of Occlusion by using deep learning to fill in the occluded
parts [42]. This approach depends heavily on voxel-wise completion labels and performs
poorly on little, distant objects and cluttered scenes [43].

3.2. Group Relation Aggregator (GRA)

When compared to self-attention and set-abstraction techniques, the Group Relation
Aggregator (GRA) [28], which is proposed to learn from both low-level and high-level rela-
tions, and is efficient in terms of computation and the number of parameters. The structural
and semantic correlations between points are encoded by this scalable local aggregator
for point clouds. Point-based network RPNet is built by utilizing bottleneck GRA. The
bottleneck is constructed by taking the performance of GRA into account. RPNet with refer-
ence to width (RPNet-W) and depth (RPNet-D) are developed based on this recommended
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module. RPNet is a flexible and highly productive hierarchy. This expansive RPNet greatly
boosts efficiency when configured with the bottleneck version of the aggregator. Only
GRA is utilized by RPNet-W, which is used for categorization. For segmentation tasks,
however, RPNet-D with skip block (GRA with down-sampling) and residual block (GRA
with a residual link) are implemented. The model is evaluated on the classification dataset
ModelNet40 [17] and segmentation datasets, ScanNet [19] and S3DIS [12]. The performance
of the model is compared to FPConv [30]. The model outperformed FPConv [30]. The
model was able to achieve an accuracy of 94.1 on ModelNet40 [17], 70.8 on S3DIS [12], and
68.4 on ScanNet [19]. Whereas FPConv [30] was able to achieve an accuracy of 92.5 on
ModelNet40 [17], 68.7 on S3DIS [12] and 63.9 on ScanNet [19]. An overview of GRA can be
observed in Figure 3.

Figure 3. An overview of Group Relation Aggregator (GRA) [28].

This approach is theoretically simpler and provides results comparable to, if not better
than, several cutting-edge methods [44]. Local shapes are essential for learning point
clouds. This approach uses relations to learn from local structural information [45]. RPNet
is not convolutional as the input of its MLPs contains the absolute location of the points,
unlike other point-convolutional layers which incorporate the relative position of the points
with respect to the output [46]. This method employs a technique borrowed from "learn
from relation" by first encoding local coordinate information to mitigate the sparsity and
multi-scale issues of large-scale point cloud images [47].

3.3. HiLo-Network

HiLo-Network [21] a 3D semantic segmentation method is introduced as HiLoNet-
works can be applied to a broader range of 3D datasets. The main goal of this model is
to reduce memory consumption while retaining a fast training process. Multiple forward
passes are traded-off at inference time to obtain a scalable approach that can run on most
consumer-level GPUs. This method is specifically developed to be used for commercial de-
tection purposes by limiting their production costs. HiLo-Network overcomes the challenge
of a super-resolution deep neural network in retrieving high-resolution information from
low-resolution representations. A divide-and-conquer procedure to semantic segmentation
is applied to improve the GPU acceleration of gradient-based optimization. Due to this,
during gradient descent, only small chunks (a window) of each instance within each batch
will be loaded into Video RAM instead of passing a complete volume into a network. To
overcome the problem of global relations between different windows not being taken into
consideration, a second window (centered around the first window) is constructed and
down-sampled using average pooling. The performance of this model is evaluated by the
3D-CT dataset, artificially created with a limited number of objects. The model was able to
acquire an IoU of 0.6838.

Two innovative designs for 3D semantic segmentation of voxelized volumes are
suggested in this paper. For weapon detection in baggage, the approaches are evaluated
using a 3D CT scan dataset. The introduction of a high-resolution Occupancy Network.
Sadly, none of the evaluated super-resolution O-Net topologies can attain the necessary
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results. HiLo-Network, a new scaleable neural network architecture for 3D semantic
segmentation, is suggested. HiLo-Networks can successfully separate firearms within
baggage, according to this article. They are memory efficient and scalable in terms of input
resolution. HiLo-Networks, in particular, may be trained on consumer-level GPUs.

3.4. Swin UNETR

Swin UNETR [37] utilizing a U-shaped network with a Swin transformer as the encoder
and connecting it to a CNN-based decoder at different resolutions via skip connections is
introduced for semantic segmentation of brain tumors using multi-modal MRI images. Swin
transformers are suitable for various downstream tasks wherein the multi-scale features
extracted can be leveraged for processing. The model takes 3D multi-modal MRI images
with 4 channels as input. The Swin UNETR creates non-overlapping patches of the input
data by using a patch partition layer to create windows with a desired size for computing
the self-attention. The encoded feature representations in the Swin transformer are then fed
to the CNN-decoder via skip connection at multiple resolutions. Final segmentation output
containing 3 output channels corresponding to Whole Tumor (WT), Tumor Core (TC) and
Enhancing Tumor (ET) sub-regions are used. The superior performance of the Swin UNETR
model for brain tumor segmentation is mainly due to its capability of learning multi-scale
contextual information in its hierarchical encoder through the self-attention modules and
effective modeling of the long-range dependencies. This model is trained and evaluated on
the BraTs 2021 [38] which contains 1251 participants, each with four 3D MRI modalities.
The annotations of this dataset were divided into three sub-regions: Whole Tumor (WT),
Tumor Core (TC) and Enhancing Tumor (ET). The performance of this model is evaluated
in the form of a Dice Score and the model was able to achieve a Dice Score of 0.927. Figure 4
shows the overview of Swin UNETR architecture.

Figure 4. Overview of the Swin UNETR architecture is observed [37].

Swin UNETR computes self-attention via an efficient shifting window partitioning
algorithm and ranks first on the BraTs 2021 [38] validation set [48]. This approach, which
is commonly used in medical imaging applications, is built on top of a SWin Transformer
to extract and down-sample feature maps before feeding them into a Transformer [49].
This model performs segmentation of tumor pixels with 0.92 dice similarity coefficient [50].
While transformers have been used successfully in computer vision applications, this
technique investigated the use of transformers in medical image processing by replacing
the convolutional encoding and decoding procedures in U-Net with a Swin Transformer
module and establishing Swin-UNet [51].

3.5. Meta-RangeSeg

Meta-RangeSeg [15], an approach to semantic segmentation for LiDAR sequences is
proposed, where a range residual image representation is introduced to capture the spatial-
temporal information by employing Meta-Kernel to extract the meta-features and reduce
the inconsistency between the 2D range image coordinates input and Cartesian coordinates
output. This channel takes advantage of the range residual image with nine channels
built from scans. Meta features are extracted by the Meta-Kernel block, and multi-scale
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features are obtained via the U-Net network. Final labels for raw data are obtained by
post-processing the aggregated features. Feature Aggregation Module (FAM) aggregating
the meta-features and multi-scale features to strengthen the role of the range channel at
various scaled for object segmentation is also introduced. Range image representation is
introduced into the task of semantic segmentation on LiDAR sequences to capture the
temporal information as it has the advantage of effective 2D operations for fast training
and inference. Performance of the model is evaluated with SemanticKITTI [11] dataset.
The model was able to get a mean IoU of 0.537. Figure 5 shows the overview of the Meta-
RangeSeg framework where the range residual images are generated, and meta-features
are extracted and aggregated to produce semantic labels in 3D space.

Figure 5. An overview of Meta-RangeSeg framework [15].

This technology is developed to assist individuals in creating after-effects creation,
background music production, video dubbing, and other postproduction as deep learning
continues to improve in the video and audio domains [52]. The boundary loss function is
employed in this technique for LiDAR semantic segmentation to account for the problem
of hazy segmentation borders [53].

3.6. SLidR

SLidR [7] is a self-supervised method for tasks such as semantic segmentation or
object detection in Lidar point clouds, and is designed to be tailored to autonomous driving
data. Autonomous driving vehicles equipped with an array of cameras and Lidar sensors,
offer rich surround-view information which is leveraged to distill self-supervised pre-
trained image representations into a 3D network. This pre-training process does not require
any annotation of the images or of the point clouds. This method has also shown that
self-supervised pre-training on images for learning generic representations can also be
used to pre-train 3D networks for autonomous driving. This self-supervised 2D-to-3D
representation distillation approach is based on a superpixel-to-superpoint contrastive
loss and a carefully designed image feature upsampling architecture which allows high-
resolution image features to be distilled without suffering from degenerate solutions. This
method also provides the study on the self-supervised image-to-Lidar representation
distillation problem for autonomous driving data. As shown in Figure 6, SLidR distillates
the knowledge of a pre-trained and fixed 2D network into a 3D network using superpixels
to pool features of visually similar regions together, both on the images and on the point
clouds through superpixels back-projection. The model is evaluated on nuScenes [18] and
KITTI 3D object dataset [16]. SLiDR was able to achieve a mean average precision (mAP)
of 74.6 on nuScenes [18] and 62.4 on KITTI 3D object dataset [16].
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Figure 6. Superpixels used in SLidR can be observed [7].

This approach for using knowledge distillation for 3D detection has been proposed.
This approach used matched real-world 2D-3D data of outdoor settings and contrastive
learning to transmit information [54]. Nevertheless, in a multi-modal situation, this technique
concentrates on the selection of student-teacher, such as educating point clouds-based student
detectors with an images-based instructor or vice versa, while ignoring the distinctive quali-
ties of point clouds. Also, the construction of specific knowledge distillation optimisation
algorithms for point cloud-based pure 3D detection has not been thoroughly investigated [55].
This method is heavily reliant on a huge collection of annotated point clouds, which is
especially important when high-quality 3D annotations are expensive to get [56].

4. Object Detection

Object Detection is actively researched as many practical applications utilise these to
locate the relevant objects in the given scene. Point clouds pose some additional complexity
over image object detection models and this requires a further need for optimisation. Some
of the object detection methods include discretization-based methods, point-based methods,
and multi-view methods. Discretization-based detection techniques are based on applying
random sampling to the points within each of the voxels and passing them through feature
encoding layers. These methods invariably lose spatial information and are unable to fully
utilize 3D point cloud structural information, which reduces the accuracy of their localization.
Point-based methods often try to minimise the spatial information loss while extracting
the features and therefore mostly outperform the other downscaling-based and multi-view
methods. Multi-view methods often fuse proposal-wise features from different view maps
and their computation cost is higher than the other methods. Table 10 lists out the methods
and Table 11 lists out their advantages and limitations that will be discussed in this section.

Table 10. 3D Detection Methods included in this survey.

Models Technology Datasets Used BackBone

VoxelNet [1] Voxel Feature Encoding KITTI 3D Object Detection [16] PointNet [57], Regional Proposal
Network (RPN)

SECOND [2] Sparse Convolution KITTI 3D Object Detection [16] Sparse Convolution, Regional
Proposal Network (RPN)

PointPillars [5] Pointcloud to Pseudo-Image
Conversion KITTI 3D Object Detection [16] 2DCNN

SA-SSD [6] Feature Map Warping KITTI 3D Object Detection [16] Auxiliary Network (CNN)

STD [4] Proposal Feature Generation KITTI 3D Object Detection [16] PointNet++ [36]

PointRCNN [3] Bottom-Up 3D Proposal Generation KITTI 3D Object Detection [16] PointNet++ [36]

3DSSD [23] Fusion of D-FPS and F-FPS KITTI 3D Object Detection [16],
nuScenes [18] Multi-Layer Perceptron (MLP)

IMVoteNet [13] Reformulated Hough Voting SUN RBG-D PointNet++ [36]

AVOD [9] Multimodal Feature Fusion KITTI 3D Object Detection [16] Feature Fusion Regional Proposal
Network (RPN)

FuDNN [24] Attention-based Fusion KITTI 3D Object Detection [16] 2DCNN, Region Proposal
Network (RPN)
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Table 11. Advantages and Limitations of 3D Detection Methods included in this survey.

Models Technology Advantages Limitations

VoxelNet [1]
Voxel

Feature
Encoding

Demonstrates that switching
from a box representation to
a center-based representation

results in a 3-4 mAP boost

Requires a 3D encoder to
quantize the point-cloud

into regular bins

SECOND [2] Sparse
Convolution

Streamlines the VoxelNet
and accelerates sparse

3D convolutions

Similar to VoxelNet [1],
a 3D encoder is used

that adds needless costs
when selecting

thresholds for different
classes or datasets

PointPillars [5]
Pointcloud to
Pseudo-Image

Conversion

Demonstrated a lidar-only
solution that outperformed

many previous fusion-based
algorithms. Quickest recorded

method in terms of
inference time

More effort is
required to integrate

multimodal measures
in a principled way

SA-SSD [6]
Feature

Map
Warping

This work enhances
feature representation by
utilising auxiliary tasks

without incurring additional
computing burden
during inference

Similar to VoxelNet [1] and
SECOND [2], a 3D

encoder is required to
quantize the point-cloud

into regular bins

STD [4]
Proposal
Feature

Generation

Uses a refinement network
that is completely independent
of the previous pipeline step,

which provides more
alternatives in terms of

training and testing
methodologies, resulting

in better results

Increases inference time

PointRCNN [3]
Bottom-Up
3D Proposal
Generation

Extracts discriminative
features directly from

raw point clouds
for 3D detection

Suffers from the sparse
and non-uniform point
distribution, as well as

the time-consuming
process of sampling

and searching for
nearby points

3DSSD [23]

Fusion of
D-FPS

and
F-FPS

Achieves a good combination
of accuracy and efficiency

Suffers from the sparse
and non-uniform point
distribution, as well as

the time-consuming
process of sampling

and searching for
nearby points

IMVoteNet [13]
Reformulated

Hough
Voting

Primarily based on the set
abstraction operation, which
permits adjustable receptive

fields for learning point
cloud features

Depends on Non-Maximal
Suppression (NMS) as a
post-processing step to

eliminate the loss

AVOD [9]
Multimodal

Feature
Fusion

Converts irregular point
clouds to 2D bird-view
maps, which may then
be effectively processed

by 3D or 2D CNN
to train point features

for 3D detection

Hard-coded feature extraction
method may not extend to

new setups without
substantial engineering

work

FuDNN [24] Attention-based
Fusion

Creates 3D region proposals
based on a bird’s-eye

view and conducts 3D
bounding box regression

Texture information in the
picture data may not be

properly exploited.
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4.1. VoxelNet

As CNN demonstrated promising results in image object detection, this often inspired
the application of 3D CNNs on the projected point clouds. VoxelNet [1] is one of the
recent approaches which applies random sampling to the points within each of the voxels
and passes them through feature encoding layers. The extracted features are later on
used by a region proposal network (RPN) to produce object detection results. The RPN
is a highly optimised object detecting system. This strategy, however, necessitates dense
data arranged in a tensor form (e.g., picture, video), which is not the case for ordinary
LiDAR point clouds. As expected from 3D representations, VoxelNet is relatively slow
due to the sparsity of the input data and 3D convolutions. Figure 7 shows the overview
of VoxelNet Architecture, where the feature learning network takes a raw point cloud as
input, partitions the space into voxels, and transforms points within each voxel to a vector
representation characterizing the shape information. VoxelNet is evaluated on KITTI 3D
object dataset [16] and was able to achieve an average precision of 81.97.

Figure 7. An overview of VoxelNet Architecture [1].

VoxelNet uses a PointNet [57] within each voxel to provide a uniform feature rep-
resentation from which a head employing 3D sparse convolutions and 2D convolutions
generates detections. A 3D encoder is used in this approach to quantizing the point cloud
into regular bins [58]. This grid-based technique often converts irregular point clouds to
regular representations such as 3D voxels, which may then be processed effectively by 3D or
2D Convolutional Neural Networks (CNN) to learn point characteristics for 3D detection.
It separates point clouds into 3D voxels for 3D CNN processing, and it introduces 3D
sparse convolution for efficient 3D voxel processing [59]. This approach demonstrates that
switching from a box representation to a center-based representation results in a 3–4 mAP
boost in 3D detection [58]. Because of the computational expense, the input 3D grid is
limited to low resolution, resulting in structural information loss [28].

4.2. Sparsely Embedded CONvolutional Detection (SECOND)

The computational expense of VoxelNet [1] is one of its main drawbacks, making
it challenging to apply for real-time applications. A successor network called SECOND
(Sparsely Embedded CONvolutional Detection) [2], which makes the most of the rich 3D
information inherent in point cloud data, has been presented as a solution to this problem.
The convolutional network design is enhanced by this technology in numerous ways. In
order to obtain information from the z-axis before the 3D data are downscaled to resemble
2D picture data, spatially sparse convolutional networks are introduced for LiDAR-based
detection. A rule generation technique for sparse convolution to increase speed which is
GPU (Graphical Processing Unit) based is introduced. Applying direct transformations
to specific points on an object using point cloud data makes it incredibly simple to scale,
rotate and move the object. Based on this feature, SECOND incorporates a unique type of
data augmentation. The properties of objects and the related point cloud data are created
in a ground-truth database. During training, objects extracted from this database are
subsequently added to the point clouds. This strategy has the potential to significantly
improve our network’s ultimate performance and convergence speed. In order to address
the issue of the significant loss created when the difference in orientation between the
ground truth and the prediction is equal to π, a unique angle loss regression technique is
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developed. This strategy produces a bounding box that is similar to the actual bounding
box. SECOND is evaluated on KITTI 3D object dataset [16] and the performance of the
model is compared with AVOD [9]. SECOND was able to achieve an average precision of
83.13 and AVOD scored 73.59. SECOND outperformed AVOD. Figure 8 shows the structure
of the SECOND detector.

Figure 8. The Structure of SECOND detector [2].

This approach, similar to VoxelNet [1], demonstrates that switching from a box rep-
resentation to a center-based representation results in a 3-4 mAP boost in 3D detection.
SECOND streamlines the VoxelNet and accelerates sparse 3D convolutions. Similar to
VoxelNet [1], a 3D encoder is used in this approach to quantizing the point cloud into
regular bins. This anchor-based 3D detector relies on 2D Box IoU for target assignment
during training, which adds needless costs when selecting positive/negative thresholds
for different classes or datasets [58]. Like VoxelNet [1], This grid-based technique often
converts irregular point clouds to regular representations such as 3D voxels, which may
then be processed effectively by 3D or 2D Convolutional Neural Networks (CNN) to learn
point characteristics for 3D detection. It separates point clouds into 3D voxels for 3D
CNN processing, and it introduces 3D sparse convolution for efficient 3D voxel process-
ing [59]. SECOND increased VoxelNet [1] inference performance, but 3D convolutions
remain a problem.

4.3. PointPillars

A 3D object identification technique called PointPillars [5] allows for end-to-end
learning with only 2D convolutional layers. In order to predict 3D-oriented boxes for
objects, PointPillars use a new encoder that learns features on the pillars (vertical columns)
of the point cloud. This technique has a variety of advantages. First, PointPillars will
make use of the complete information provided by the point cloud by learning features
rather than depending on fixed encoders. Secondly, as pillars are used instead of voxels,
manual vertical direction binning optimization is not required. Finally, pillars are fast and
accurate due to the fact that all critical operations can be expressed as 2D convolutions,
which are highly efficient to compute on a GPU. PointPillars does not require manual
adjustment to employ various point cloud configurations, including multiple LiDAR
scans or even radar point clouds, which is another advantage of learning features. This
model is evaluated on KITTI 3D object dataset [16] and the performance is compared
with VoxelNet [1] and SECOND [2]. PointPillars was able to obtain the mean average
precision of 66.19. Whereas VoxelNet [1] and SECOND [2] got the mean average precision
of 58.25 and 60.56, respectively. Figure 9 shows the main components of the PointPillar
network which includes Pillar Feature Network, Backbone, and Single-Shot Detector (SSD)
Detection Head.

PointPillars model is created to construct a 3D Item Detection baseline, which employs
a single layer PointNet [57] to voxelize the point cloud into the Birds Eye View, followed by
a CNN area proposal network [60]. Given the success of 2D CNNs, this method employs
multi-view projection, in which 3D point clouds are projected into several picture planes.
Next, in these picture planes, 2D CNNs are utilised to extract feature representations,
which are then fused with multi-view feature representations to generate the final output
representations [61]. Lidar point clouds provide less semantic information but provide
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very accurate 3D localisation as the reflectance of lidar is an essential feature. PointPillars
demonstrated a lidar-only solution that outperformed previous fusion-based algorithms.
This implies that further effort is needed to integrate multimodal measures in a principled
way. This approach is thought to be the quickest recorded method in terms of inference
time [18].

Figure 9. The Network Overview of PointPillars [5].

4.4. Structure-Aware Single Stage 3D Object Detector (SA-SSD)

A single-stage 3D object detector [6] that is aware of structure is created to make use of
fine-grained structure information to increase localization accuracy while maintaining the
high efficiency of single-stage techniques. In the detector, which is depicted in Figure 10,
there is a backbone network that produces downscaled features for bounding box pre-
diction and an auxiliary network that directs the backbone network to learn additional
discriminative features using point-level supervisions. In order to make the features more
sensitive to object boundaries and aware of intra-object relationships, the auxiliary network
first converts the features from the backbone network back to point-wise representations.
It then performs two auxiliary tasks: foreground segmentation and point-wise center es-
timation. By performing a spatial transformation on the classification feature maps, an
effective part-sensitive warping method can be used to align the classification confidences
with the predicted bounding boxes, improving the model’s capability of producing reli-
able confidence maps. Figure 10 shows the overview of the network architecture of the
structure aware single-stage 3D object detector. This model is evaluated on KITTI 3D
object dataset [16] and the performance is compared with VoxelNet [1], SECOND [2] and
PointPillars [5]. SA-SSD was able to obtain the mean average precision of 88.75. Whereas
VoxelNet [1], SECOND [2], and PointPillars [5] got the mean average precision as 77.82,
83.34 and 82.58, respectively. Compared to SECOND [2], using a voxel-free encoding
pre-process can help to save up to 6.6 ms.

Figure 10. The Network Overview of structure aware single-stage 3D object detector [6].

Similar to VoxelNet [1] and SECOND [2], a 3D encoder is used in this approach to
quantizing the point cloud into regular bins. This approach aggregates grid point features
from three nearby non-empty 3D feature volumes using a radial basis function [58]. To
maintain structural information, this method presents an auxiliary network and losses
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based on SECOND [2,62]. This work tries to enhance feature representation by utilising
auxiliary tasks or extra constraints without incurring additional computing burdens during
inference. To augment the features, this approach uses an auxiliary network in parallel
with the backbone to regress box centres and semantic classes. This method employs
a lightweight BEV network for robust spatial-semantic feature extraction, together with
IoU-aware confidence correction for improved post-processing [63].

4.5. Sparse-to-Dense 3D Object Detector (STD)

A two-stage STD architecture [4] for 3D object detection is developed. To preserve
precise position information, each point in the point cloud is treated as an element in the
first stage and seeded with the necessary spherical anchors. Then, using a PointNet++ [36]
backbone, semantic context features are extracted for each point and an object class score is
generated to filter anchors. In order to produce features for each proposal, a PointsPool
layer is proposed by compiling the canonical coordinates and semantic characteristics of the
inner points while maintaining precise localization and context data. The use of effective
CNNs and end-to-end training is made possible by this layer, which converts sparse and
unordered point-wise expressions into more compact features. In order to prevent incorrect
removal during post-processing, a 3D IoU branch is added to the prediction of 3D IoU
between predictions and ground-truth bounding boxes. This model is evaluated on KITTI
3D object dataset [16] and the performance is compared with AVOD [9], VoxelNet [1],
SECOND [2] and PointPillars [5]. SA-SSD was able to obtain the mean average precision
of 86.61. Whereas AVOD [9], VoxelNet [1], SECOND [2] and PointPillars [5] got the mean
average precision as 73.59, 77.47, 83.13 and 79.05, respectively. Figure 11 shows the overview
of the STD framework which contains a Proposal Generation Module (PGM), PointsPool
layer, and a box prediction network.

Figure 11. The Network Overview of STD Framework [4].

This segment-based network employs point-wise feature extraction recursively. To
enhance inference time, a single classifier is learned on the Encoding-Decoding Feature
Pyramid in this technique. STD is a hybrid detector that relies on both anchors and point
masks to generate region proposals. STD naturally takes RoI characteristics from RPNs and
then optimises the imperfect bounding box proposals from earlier stages by predicting and
fixing residual size and placement (centre and orientation) relative to the input bounding
box predictions. STD is a Prediction Refinement Subnetwork that promotes prediction
refinement independence. STD introduces a refinement network that is completely inde-
pendent of the previous pipeline step, which increases inference time but provides more
alternatives in terms of training and testing methodologies, resulting in better results. STD
uses a Point-based data structure with a Mask-level detection option, which implies that
bounding box suggestions are created directly from the segmented foreground points [64].
Without upsampling, and simply detecting on remaining downsampled points in STD,
performance lowers by around 9 percent [23].

4.6. PointRCNN

PointRCNN [3], a two-stage framework for 3D object identification, is created. It
works directly with 3D point clouds to produce reliable and precise 3D detection results.
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The proposed framework is divided into two stages, the first of which tries to provide a
bottom-up proposal for a 3D bounding box. The first stage divides the foreground points
and produces a limited number of bounding box suggestions to construct the ground-
truth segmentation mask. This technique eliminates the need for a huge number of 3D
anchor boxes throughout the whole 3D space, such as VoxelNet [1] does and saves a
significant amount of processing. Canonical 3D box refining is carried out by PointRCNN’s
second step. A point cloud region pooling procedure is employed to pool stage-1 learnt
point representations once the 3D proposals have been created. For learning relative
coordinate refinement, the pooled 3D points are translated to canonical coordinates and
coupled with the pooled point features and the stage-1 segmentation mask. VoxelNet [1]
can also be adopted as a backbone for this network instead of PointNet++ [36]. This
model is evaluated on KITTI 3D object dataset [16] and the performance is compared with
VoxelNet [1] and SECOND [2]. PointRCNN was able to obtain the mean average precision
of 88.88. Whereas VoxelNet [1] and SECOND [2] got the mean average precision of 81.98
and 87.43, respectively. As shown in Figure 12, the network consists of parts for generating
3D proposals from the raw point cloud in a bottom-up manner and for refining the 3D
proposals in canonical coordinates.

Figure 12. The Network Architecture of PointRCNN [3].

For 3D detection, this point-based technique extracts discriminative features directly
from raw point clouds. In general, grid-based algorithms are more computationally efficient,
but the unavoidable information loss reduces the accuracy of fine-grained localisation. The
point-based approaches, on the other hand, have a greater computing cost but can easily
obtain a bigger receptive field due to the point-set abstraction. For 3D detection using
point clouds alone, PointRCNN creates 3D suggestions straight from the entire point cloud
instead of 2D pictures [59]. AB3D [65] developed over this model combines a Kalman filter
with precise 3D detections to deliver cutting-edge performance [66]. PointRCNN generates
proposals using the entire point cloud rather than 2D pictures. It immediately employs
the proposal’s focal point segmentation score for categorization while taking proposal
location information into account. Other characteristics, such as size and direction, are
overlooked [4].

4.7. 3DSSD

A box prediction network called 3DSSD [23] is designed to more effectively use the
representative points preserved after Set Abstraction (SA) layers. This makes use of a
3D center-ness assignment approach, an anchor-free regression head, and a candidate
generation layer (CG). To create candidate points in the CG layer, a representative sampling
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strategy based on feature distance (F-FPS) points are shifted. The distances between the
representative points and the centers of their respective instances serve as the regulators of
this shifting process. Multi-layer perceptron (MLP) networks are used to extract the features
of these candidate points’ surrounding points, which are retrieved from the whole set of
representative points from both the F-FPS and the furthest-point-sampling based on 3D
Euclidean distance (D-FPS). These candidate points are then considered centers. In order
to predict 3D bounding boxes, these characteristics are eventually loaded into an anchor-
free regression head. In order to obtain accurate localization prediction, a 3D center-ness
assignment technique is designed that gives better classification scores to candidate points
that are closer to instance centers. Performance of this model is evaluated on KITTI 3D
object dataset [16] and is compared with VoxelNet [1] and SECOND [2]. 3DSSD was able to
obtain the mean average precision of 89.71. Whereas VoxelNet [1] and SECOND [2] got the
mean average precision of 81.98 and 87.43, respectively. Similarly, the performance of this
model is evaluated on nuScenes [18] and is compared with SECOND [2] and PointPillars [5].
3DSSD was able to obtain the mean average precision of 81.20. Whereas SECOND [2] and
PointPillars [5] got the mean average precision of 75.53 and 70.5, respectively. Figure 13
shows the overview of this framework which consists of a backbone network, a Candidate
Generation (CG) layer, and an anchor-free prediction head.

Figure 13. An Overview of 3DSSD Framework [23].

This point-based 3D single-stage object detector, which includes a fusion sampling
approach in the downsampling process, a candidate generation layer, and an anchor-free
regression head with a 3D center-ness assignment technique, achieves a good combination
of accuracy and efficiency [67]. This technique is a point-based strategy that acts directly on
point clouds and creates 3D bounding boxes. These methods, which mainly use point oper-
ators to extract features directly from point clouds, suffer from the sparse and non-uniform
point distribution, as well as the time-consuming process of sampling and searching for
nearby points [68].

4.8. IMVoteNet

VoteNet [69] is a point cloud-focused 3D detection framework that analyzes raw data
directly and doesn’t rely on any 2D detectors, either in terms of design or object proposal.
This network draws its inspiration from the extended Hough voting method for object
recognition and is based on recent developments in 3D deep learning models for point
clouds [70]. To reduce the requirement of converting point clouds to normal structures,
PointNet++ [36], a hierarchical deep network, is used. A voting method is built into point
cloud deep networks to create new points at the centers of objects, which may then be
combined and aggregated to produce box suggestions. A hybrid 2D-3D voting technique
for 3D object recognition called IMVoteNet [13] is created based on the VoteNet architecture
and design to make use of geometric and semantic/texture signals in 2D pictures. Instead
of depending entirely on 2D detection, "pseudo" 3D votes are created by lifting 2D votes
from the picture space and converting them to 3D using geometric transformations based
on camera intrinsics and pixel depth. These pseudo-3D votes are added as additional
features to the 3D seed points for object proposals. These features are concatenated with
the 3D point features from a point cloud backbone network after lifting and converting
all the features from the pictures to 3D. The information from the two modalities can be
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properly balanced by combining 2D and 3D sources. To make the most of both the 2D and
3D characteristics, a multi-towered network structure with gradient mixing is employed.
This model is evaluated on SUN RGB-D [71] dataset which is a single-view RGB-D dataset
for 3D scene understanding. It comprises around 10K RGB-D photos, with approximately
5K for training. Each image is labelled with 3D modal bounding boxes. A total of 37 item
categories have been annotated. The model was able to acquire a mean average precision
(mAP) of 58.6. As shown in Figure 14, the model initially has two separate branches for
2D object detection and point cloud feature extraction, which are then lifted and fused to
generate votes towards 3D object centers and propose 3D bounding boxes with its features
in the joint tower.

Figure 14. An Overview of the 3D object detection pipeline for IMVoteNet [13].

Instead of immediately regressing to 3D bounding boxes using features at the centre
point, this technique identifies objects by vote clustering utilising point feature sampling
and grouping [58]. This point-based technique is primarily based on the PointNet series,
particularly the set abstraction operation, which permits adjustable receptive fields for
learning point cloud features [59]. This method serves as a foundation for many subsequent
projects. While effective, this approach took years to perfect by hand-encoding inductive
biases, radii, and constructing specific 3D operators and loss functions. Because the loss
employed in VoteNet does not prevent numerous predictions of the same item, it depends
on Non-Maximal Suppression as a post-processing step to eliminate them [72].

4.9. Aggregate View Object Detection (AVOD)

A feature fusion region proposal network (RPN) and a distinctive 3D bounding
box encoding form the Aggregate View Object Detection (AVOD) [9] architecture for
autonomous driving. The localisation of smaller classes in the scene is made possible by
the feature extractor, which creates high-resolution feature maps from LIDAR point clouds
and RGB pictures. For small classes, the feature fusion RPN generates high recall region
recommendations by combining different modalities. Higher 3D localization accuracy
is achieved by the 3D bounding box encoding’s adherence to box geometric restrictions.
The neural network architecture takes advantage of 11 convolutions at the RPN stage
to preserve detection performance while enabling fast computational speed and a small
memory footprint. This network is made a viable contender for deployment on autonomous
cars by being incorporated into the autonomous driving stack. Performance of this model
is evaluated on KITTI 3D object dataset [16] and is compared with VoxelNet [1]. AVOD
was able to obtain the mean average precision of 81.94. Whereas VoxelNet [1] got the mean
average precision of 77.47. In Figure 15, the feature extractors are shown in pink, RPN in
blue, and the second stage detection network in green.

This grid-based technique converts irregular point clouds to regular representations
such as 2D bird-view maps, which may then be effectively processed by 3D or 2D Con-
volutional Neural Networks (CNN) to train point features for 3D detection [59]. When
performing object detection from point clouds, there are two fundamental differences: (1) A
point cloud is a sparse representation, whereas an image is dense; and (2) A point cloud is
3D, whereas an image is 2D. As a result, object recognition from point clouds is not easily
accomplished using traditional image convolutional processes. This approach provides
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a birds-eye perspective of the lidar point cloud (BEV). Nevertheless, because the bird’s
eye view is so sparse, the direct use of convolutional neural networks is impracticable
and wasteful. To address this issue, this approach divides the ground plane into regular
grid cells, such as 10 × 10 cm, and then applies a hand-crafted feature encoding algorithm
to the points in each grid cell. Such solutions, however, may be suboptimal since the
hard-coded feature extraction method may not extend to new setups without substantial
engineering work [5]. AVOD combines lidar and image data to generate a multi-modal
detector, necessitating the usage of two-stage detection pipelines [5]. AVOD still has a
limitation when detecting small objects, such as pedestrians and cyclists as it does not deal
with cases with multiple objects in depth direction [4].

Figure 15. Network Architecture of AVOD [9].

4.10. FuDNN

For LiDAR-camera fusion 3D object identification, a novel deep neural network called
FuDNN [24] based on PointRCNN [3] is created. In order to learn 2D features from
camera images, a 2D backbone is proposed. In order to improve results, an attention-based
fusion sub-network is created to fuse the 2D (image features) and 3D (point cloud features)
data collected from 3D LiDAR point clouds. Compared to other 2D backbones, the one
presented in this network has a more compact structure yet performs better. The RPN
and 3D box refinement network of PointRCNN [3] are used, respectively, to produce 3D
proposals and improve the 3D box placements. Performance of this model is evaluated
on KITTI 3D object dataset [16] and is compared with PointPillars [5], SECOND [2] and
PointRCNN [3]. FuDNN was able to obtain the mean average precision of 92.48. Whereas
PointPillars [5], SECOND [2] and PointRCNN [3] got the mean average precision as 87.75,
90.97 and 92.54, respectively. The architecture of FuDNN is shown in Figure 16, including a
2D backbone, a 3D backbone, an attention-based fusion sub-network, an RPN, and a 3D
box refinement network.

Figure 16. Network Architecture of FuDNN [24].

FuDNN is an attention module-guided feature fusion model for LiDAR and camera
data. This is a multi-view-based fusion model, a feature-level fusion model that creates
3D region proposals based on a bird’s-eye view and conducts 3D bounding box regression.
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The drawback with this technique is that when the point cloud data is sparse, the texture
information in the picture data may not be properly exploited [73]. The RPNs utilised
in this approach to build bounding boxes for object categorization and regression, are
constrained by their significant latency.

5. Deep Learning Based 3D Object Classification

Predicting the class of a 3D object using its point cloud is known as 3D object classi-
fication. Each voxel is categorized into a category in this voxel-level prediction. In this
literature, numerous deep learning techniques for 3D object classification have been put
forth which can be categorized into different groups based on RGB-D images, projected
images, voxels, points, graphs, and other representations. Table 12 lists out the methods
and Table 13 lists out their advantages and limitations that will be discussed in this section.

Table 12. 3D Classification Methods included in this survey.

Models Technology Datasets
Used BackBone

OctNet [10] Hybrid Grid-OctTree
Data Structure ModelNet10 [17] U-shaped

Network

RotationNet [22] Pose Estimation from Multi-View
Images of an Object

ModelNet10 [17],
ModelNet40 [17],

MIRO
CNN

PointGCN [8] Graph Convolutions and
Graph Downsampling Operations

ModelNet10 [17],
ModelNet40 [17] GCN

MeshCNN [14] Convolution, Poling and
Unpooling of Mesh

SHREC,
COSEG CNN

InSphereNet [29] Signed Distance Field
(SDF) Computation ModelNet40 [17] MLP

FPConv [30] Flattening Projection Convolution ModelNet40 [17],
S3DIS [12] 2DCNN

GLR [31] Unsupervised Feature Learning
ModelNet10 [17],
ModelNet40 [17],

ScanObjectNN [20]

PointNet++ [36],
Relation-Shape CNN

(RSCNN)

RSMix [32] Shape-preserving
Data Augmentation

ModelNet10 [17],
ModelNet40 [17]

Pointnet++ [36],
DGCNN

GDANet [33] Geometry Disentanglement ModelNet40 [17],
ScanObjectNN [20]

GDM,
SGCAM

Point Transformer [34] Local-Global
Attention Mechanism ModelNet40 [17] SortNet

Table 13. Advantages and Limitations of 3D Classification Methods included in this survey.

Models Technology Advantages Limitations

OctNet [10] Hybrid Grid-OctTree Data
Structure

Employs octrees that allows for wider
grids and improved speed

Octrees are imbalanced and have hierarchical
divisions. This network lacks flexibility
because its kernels are limited to 27 or
125 voxels

RotationNet [22]
Pose Estimation from

Multi-View Images of an
Object

Employs AlexNet [74] as the backbone
network, which is smaller than the
VGG-M [75] network design and can
achieve competitive performance for 3D
object retrieval and categorization

Needs each image to be viewed from one of
the predetermined views, which is quite
limiting when there are fewer predefined
viewpoints. Evaluating all perspectives
necessitates a significant amount of computing,
and not every view is useful for recognition.

PointGCN [8] Graph Convolutions and
Graph Downsampling

Creates a graph CNN architecture to
capture local structure and categorise
point clouds, demonstrating the enormous
potential of geometric deep learning for
unordered point cloud research

K-NN is utilised which is incapable of
integrating long-distance geometric
correlations in a constrained environment,
restricting the geometric representation of
local points and assisting the point network in
capturing more local information

MeshCNN [14] Convolution, Pooling and
Unpooling of Mesh

Works on meshes that are increasingly
being used for learnt geometry and form
processing

Mesh-based simulations have not found
considerable usage in machine learning for
physics prediction. Too expensive to run.
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Table 13. Cont.

Models Technology Advantages Limitations

InSphereNet [29] Signed Distance Field (SDF)
Computation

Outperforms PointNet [57] especially
when the number of DNN layers and
parameters are reduced significantly, the
results are still good

Infilling spheres remain unstructured

FPConv [30] Flattening Projection
Convolution

Uses soft weights to flatten local patches
onto conventional 2D grids

Strongly relies on tangent plane estimate, and
the projection procedure will unavoidably
compromise 3D geometry information

GLR [31] Unsupervised Feature
Learning

Effectively captures the underlying
high-level semantic information and
achieves improved performance on
classification tests

Based on hierarchical local features and is not
ideal for networks such as PointNet

RSMix [32] Shape-preserving Data
Augmentation

Point cloud augmentation techniques can
improve point cloud classification and can
be extended to shape segmentation

Uses rigid transformation to combine two
point clouds making classifiers become more
susceptible to scaling effects

GDANet [33] Geometry Disentanglement
Creates sophisticated grouping strategies
like Frequency Grouping to include
structural prior into architecture design

Frequency grouping takes more time during
both training and assessment

Point
Transformer [34]

Local-Global Attention
Mechanism

SortNet is used to generate point cloud
local features making the output of
local-global attention ordered and
permutation invariant. This makes it
useful for visual tasks such as form
classification and part-segmentation.

Inclusion of delicate extractors significantly
increases computing complexity, resulting in
prohibitive inference delay. With the
introduction of local feature extractors, the
performance increase on prominent
benchmarks has begun to saturate.

5.1. OctNet

OctNet Octnet [10] is a 3D-convolutional network that divides the 3D space into imbal-
anced octrees in a hierarchy, with each octree dividing the space based on the density of the
data. Depending on the 3D structure of the input, this network recursively separates octree
nodes that contain data points in its domain and dynamically concentrate on computa-
tional and memory resources. As a result, the computational and memory requirements are
significantly reduced, enabling deep learning at high resolutions. The maximum responses
across all feature maps at various network layers are represented using this technique. For
3D classification, 3D orientation estimation of instances of unknown objects, and semantic
segmentation of 3D point clouds, OctNet is recommended for use. Due to the low memory
usage, this enables higher input resolutions, which are ideal for orientation estimation and
semantic point cloud labeling. Performance of the model is evaluated on ModelNet10 [17]
dataset. The model was able to achieve an accuracy of 81.5.

OctNet employs octrees that are imbalanced and have hierarchical divisions [61]. Uti-
lizing sparse structures like octrees allows for wider grids and improved speed, however,
this network lacks flexibility because its kernels are limited to 33 = 27 or 53 = 125 vox-
els [76]. The problem of non-uniform sample density has not been clearly addressed in this
study [36]. An octree-based technique overcomes the computation and memory constraints
of dense voxel methods, allowing for the capacity to learn at up to 5123 resolution, yet
even this resolution is far from making visually appealing forms [77]. Because of the com-
putational expense, the input 3D grid is limited to low resolution, resulting in structural
information loss [28].

5.2. RotationNet

RotationNet [22] is a CNN model that predicts an object’s posture and object category
using Multiview images of the object. For each image input, RotationNet produces category
likelihoods that are view-point-specific and correspond to all preset discrete viewpoints.
The selected object posture optimizes the category of the integrated object. RotationNet
can be used to perform on-the-fly classification with a moving camera since it permits
consecutive input and updates of the category probability of the target object. A complete
collection of multi-view images of an object taken from each of the pre-defined views is



Entropy 2023, 25, 635 26 of 35

used for training, and just a portion of the complete set is used for testing or inference.
It does not require the images to be delivered all at once and permits sequential input
of multi-view images. Using an unaligned object dataset enables unsupervised learning
of object postures. The multi-view representation divides the three-dimensional volume
into two-dimensional picture slices. As a consequence, AlexNet is used, but only for 2D
convolution. Yet, some global context is lost as a result of the axis separation [21]. The
model is evaluated on ModelNet10, ModelNet40 [17], and MIRO datasets. The model
achieved an accuracy of 98.33 on ModelNet10, 89.31 on ModelNet40 [17], and 99.17 on
MIRO datasets.

Figure 17 shows the RotationNet training procedure. For view rotation, there are three
contenders: (1, 2, 3), (2, 3, 1), and (3, 1, 2). By multiplying the histograms for each contender,
their score for the ground-truth category is calculated and then the best option in each
case is selected. Finally, using the predicted viewpoint variables, the CNN parameters are
updated in a conventional back-propagation method.

Figure 17. An Overview of the Training Process of RotationNet [22].

RotationNet created the dataset Multi-view images of rotated objects (MIRO). The
dataset contains 120 object examples divided into 12 categories, with 10 object instances
in each. This dataset is solely utilised by RotationNet and has not become a widely used
dataset. RotationNet does, however, have the disadvantage of needing each image to be
viewed from one of the predetermined views, which is quite limiting when there are fewer
predefined viewpoints. RotationNet contains a few predefined viewpoints and demands
all views to be input into the network during the training step. Nevertheless, evaluating all
perspectives necessitates a significant amount of computing, and not every view is useful
for recognition. For feature extraction, RotationNet employs AlexNet [74] as the backbone
network, which is smaller than the VGG-M [75] network design. With fewer parameters, it
can achieve competitive performance for 3D object retrieval and categorization [78].

5.3. PointGCN

A graph-CNN architecture called PointGCN [8] has been designed to categorize 3D
point cloud data by examining the local structure that is stored in the created graph. In this
scenario, the signals and the graph structure vary depending on the input, and the point
cloud data is pooled using two different types of existing graph convolution operations.
At various receptive fields, it learns a latent signature that summarizes each point cloud.
Figure 18 shows the overall architecture of the PointGCN model. The bottom branch of
the image reflects the model architecture utilizing multi-resolution pooling, while the top
branch represents the model architecture using only the global pooling layer. It combines
the convolutional, pooling, and fully-connected layer types. Two fast localized graph
convolutional layers and a layer specifically built to pool point cloud data using global or
multi-resolution pooling are included in the model. PointGCN is evaluated on ModelNet10
and ModelNet40 [17] datasets and achieved an accuracy of 91.57 and 89.51, respectively.
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Figure 18. Overview architecture of PointGCN model [8].

PointGCN creates a graph CNN architecture to capture the local structure and cat-
egorise point clouds, demonstrating the enormous potential of geometric deep learning
for unordered point cloud research [79]. This approach builds a graph structure from the
whole 3D point cloud inputs and then filters the spectral graph with filters approximated by
Chebyshev polynomials. Nevertheless, because the graph signal is represented by raw 3D
coordinates, this technique is still subject to geometric alterations [80]. Unlike point-based
approaches, graph-based methods generate a graph-like local area for each point and then
feed the graph data into a planned network rather than directly using a discrete point as
input. Yet, properly extracting local information from point cloud data’s varied graph
topologies remains difficult. In PointGCN, K-NN is utilised to create the local graph by
searching for the k-nearest neighbourhood points around the centre point within a given
scope. It is incapable of integrating long-distance geometric correlations in a constrained
environment, restricting the geometric representation of local points and assisting the point
network in capturing more local information [81].

5.4. MeshCNN

Irregular triangular meshes are operated on directly by MeshCNN [14], a CNN model
created exclusively for meshes, which performs convolution and pooling operations in
line with the distinct mesh features. As a mesh’s edges are indented to precisely two faces
(triangles), generating a natural fixed-sized convolutional neighborhood of four edges,
they are made to resemble pixels in an image. Mesh pooling, which acts on irregular
structures and spatially adjusts to the job, is one of the important aspects. Mesh pooling
delegated the option of which edges to collapse to the network in a task-specific way, in
contrast to standard edge collapse, which eliminates edges that cause a minimal geometric
distortion in CNN. MeshCNN can handle different triangulations regardless of the input
mesh size and is capable of semantically interpreting both the final output and intermediate
computational pooling processes. After pooling, edge pooling is utilised to prevent gaps in
the mesh. MeshCNN is evaluated on datasets, like SHREC and COSEG.

Meshes are increasingly being used for learnt geometry and form processing. Despite
the fact that mesh-based simulations are the tool of choice in mechanical engineering
and related fields, adaptive mesh representations, with a few noteworthy exceptions,
have not found considerable usage in machine learning for physics prediction [82]. This
approach employs basic linear-mapping transformations and is not resistant to changes in
the input [83]. MeshCNN is too expensive to run [84].

5.5. InSphereNet

By extracting Infilling spheres, InSphereNet [29] develops a clear representation and
classification approach for 3D object categorization. Spheres with their associated 3D
coordinates are built and selected to represent the object as infilling spheres. Space-filling
spheres for 3D objects are more instructive and representational than isolated surface points.
This is due to the fact that at some points, a surface point is simply identical to a sphere
with a radius of zero (surface). A sphere, however, can be found everywhere and in any
size. Compared to other techniques of representation, the infilling spheres representa-
tion is simpler and more powerful. 3D objects are voxelized with a high resolution of
512 × 512 × 512 voxels and nomalized into a unit size. Four-dimensional vectors are used
to build a number of infilling spheres, which are then fed into a simple PointNet network
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design. InSphereNet is evaluated on ModelNet40 [17] dataset and achieved an accuracy of
90.6. Figure 19 shows the overall flowchart of the InSphereNet model.

Figure 19. The overall flowchart of InsphereNet model [29].

Unlike earlier techniques that use point clouds on the surface as DNN inputs, the
proposed method can represent 3D shapes from coarse to fine as the number of infilling
spheres grows. Experiment findings suggest that InSphereNet outperforms PointNet [57],
especially with fewer input features. Even when the number of DNN layers and parameters
is reduced significantly, the results are still good. This all suggests that infilling spheres
are more representational and relevant than point clouds. One current disadvantage of the
suggested strategy is that the infilling spheres remain unstructured.

5.6. FPConv

FPConv [30] is a newly created point cloud convolution procedure that operates
directly on the local surface of geometry without using an intermediary grid or graph
representation. It operates in a projection-interpolation way, but is more broad and implicit,
and the learning process for weight maps may be condensed into a single step. Each point’s
convolution weights along the local surface are diffused by FPConv. This significantly
enhances the performance of surface-style convolution and makes it more resilient to
different input data. By excelling in relatively flat regions, FPConv may be used for 3D
object classification and 3D scene semantic segmentation. Figure 20 shows the procedure
for performing FPConv on a nearby area centered on point p. N neighbor points that
were randomly selected within a radius range of p provide the input coordinates and
characteristics, Fout at p is the output. FPConv is evaluated on ModelNet40 [17] and
(S3DIS) [12] datasets and achieved an accuracy of 92.5 and 89.9, respectively.

Figure 20. The overall workflow of conducting FPConv on local region centered around point p [30].

While FPConv has made significant advances in 3D point cloud processing using deep
learning, the task remains challenging due to the sparse, irregular, and unordered nature
of point clouds. This point convolution approach employs intricate architecture and data
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augmentation specific to its operators for assessment, making it difficult to quantify the
convolutional operator’s progress. FPConv uses soft weights to flatten local patches onto
conventional 2D grids. Nevertheless, it strongly relies on a tangent plane estimate, and the
projection procedure will unavoidably compromise 3D geometry information [85].

5.7. Global-Local Bidirectional Reasoning (GLR)

GLR [31] is a method for unsupervised point cloud representation learning by using
bidirectional reasoning between local representations at various abstraction layers in a
network and the global representation of a 3D object. This approach is straightforward,
practical, and applicable to a variety of deep learning techniques for interpreting point
clouds. With this technique, the underlying semantic information that connects local
structures and overall shapes in 3D point clouds will be captured. Both local-to-global
and global-to-local reasoning are capabilities of GLR. This model used Relation Shape
CNN (RS-CNN), which is insensitive to coordinates and resilient to rigid transformation
since it is based on low-level relations rather than coordinates alone. RS-CNN learns the
relationships within a small region using geometric priors. For the predefined geometric
relation, relation-shape convolution is shape-aware. The relation-shape convolution collects
the key contents adaptively based on the weight from the preset function. It then applies
a channel-raising mapping after the weighted features for a more powerful shape-aware
representation. FPConv is evaluated on ModelNet10, ModelNet40 [17] and (S3DIS) [12]
datasets and achieved an accuracy of 95.53, 93.02 and 87.2, respectively [28].

For many reasons, such as different pretraining procedures and differences in feature
extractors, a true comparison of this method with other methods is impossible [86]. This
approach combined contrastive learning, normal estimation, and self-reconstruction into a
single framework, resulting in a multi-task learning system [87]. By bidirectional reasoning
between the local structures and the global shape, PointGLR effectively captures the under-
lying high-level semantic information and achieves improved performance on classification
tests. Nevertheless, PointGLR is based on hierarchical local features and is not ideal for
networks such as PointNet [57,88]. RS-CNN computes a point feature for early exploration
by aggregating information weighted by predetermined geometric relations (low-level
relation) between the point and its neighbours. Because of the lack of interaction between
features, RS-CNN is inadequate for learning semantic relations (high-level relations). The
low-level connection cannot completely capture the relationship between the two places.
Relation-shape convolution is useful for learning geometric relations on point clouds, but
semantic level relations may be avoided [28].

5.8. Rigid Subset Mix (RSMix)

Rigid Subset Mix (RSMix) [32] is a technique for adding data to point clouds that
keeps the structure of the original samples while partially mixing two samples. To extract
components from each sample, the mask region from the image analysis is redesigned and
converted to 3D space. In order to handle unordered structure and non-grid and exploit
the structural data of the original point cloud sample, a Rigid Subset (RS) is produced from
the redefined mask region. The training sample’s variety and the regularization effects
are improved by scaling the RS scale. Since RSMix only uses a portion of the provided
data, it may be utilized completely in combination with current data augmentation. By
employing RS, the generality of deep neural networks is increased, and emphasis is given
to recognizing individual sections of the object. PointGCN is evaluated on ModelNet10
and ModelNet40 [17] datasets and achieved an accuracy of 95.9 and 93.5, respectively.

Point cloud augmentation techniques, which randomly combine points of different
forms to produce more diverse shapes, can improve point cloud classification and can be
extended to shape segmentation. Random augmentation, on the other hand, does not take
form structure into account and can only result in minor improvements [89]. RSMix uses a
rigid transformation to combine two point clouds. Yet, as a result of the mixing technique,
classifiers become more susceptible to scaling effects [90].
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5.9. GDANet

By using Sharp-Gentle Complementary Attention Module (SGCAM) and Geometry-
Disentangle Module (GDM), GDANet [33] is able to collect and enhance the comprehensive
and complementary geometries of 3D objects to enhance nearby local information. The
SGCAM is made to focus on and fuse each original point feature with features from sharp
and gentle variation components using geometric correlation. The GDM factors the original
point cloud into the contour and flat sections of objects by analyzing graph signals on 3D
point clouds at various semantic levels. The GDANet’s network architecture deconstructs
the original point cloud and merges features into input point features. Figure 21 shows
the network architecture of GDANet. GDANet was evaluated on ModelNet40 [17] and
got an accuracy of 93.8 outperforming FPConv [30] which has an accuracy of 92.5. On
ScanObjectNN [20] dataset, the model was able to achieve an accuracy of 88.5.

Figure 21. The network architecture of GDANet for Classification and Segmentation [33].

To integrate local features, this technique employs hierarchical multi-scale or weighted
feature aggregation algorithms. Despite this, they all use the same MLPs to convert point
characteristics, limiting the model’s ability to capture spatial-variant information [85].
This method creates sophisticated grouping strategies like Frequency Grouping to include
structural prior into architecture design. Frequency grouping groups point characteristics in
the frequency domain using a graph high-pass filter. Still, it is worth noting that advanced
grouping takes more time during both training and assessment [90].

5.10. Point Transformer

By learning significant key points or top-k picks, SortNet [34], a permutation invariant
network module, learns ordered subsets of the input with latent properties of local geo-
metric and spatial interactions. The set pooling procedure is replaced by these top-k picks.
As the global features of the whole point cloud are coupled to the sorted local features via
local global attention, which attends both feature representations to capture the underlying
form, SortNet is used to create local features of the point cloud. Since the local features
are ordered, the output of local-global attention is also ordered and permutation invariant,
making it helpful for visual tasks like shape classification and part segmentation as shown
in Figure 22. Point Transformer was evaluated on ModelNet40 [17] and got an accuracy
of 92.8.

Figure 22. Overview of Point Transformer that outputs permutation invariant and sorted feature
set [34].
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While this approach may readily take use of rich local geometry information and
typically produce promising results, it is hampered by two limitations. First of all, the
inclusion of delicate extractors significantly increases computing complexity, resulting in
prohibitive inference delay. Consequently, with the introduction of local feature extrac-
tors, the performance increase on prominent benchmarks has begun to saturate. These
restrictions motivate users to devise innovative ways that avoid the need for complex local
extractors while producing satisfying results [44].

6. Conclusions

Due to their outstanding results in 2D computer vision, deep learning models have
quickly emerged as a prominent approach for 3D recognition problems. Many new deep-
learning models have been developed and evaluated against various benchmark datasets
in the field of object recognition. In order to provide the researchers with a better under-
standing of these domains, developments of recent 3D data-based object segmentation,
detection, and classification systems are discussed in this survey. Different techniques are
extensively reviewed, and the efficiency of these methods is calculated based on a selec-
tion of commonly used datasets. This survey has also briefly discussed the most popular
pipelines, examined their distinctive traits, and assessed how various object recognition
strategies differ from one another.

To further explore the potential of these networks, it would be beneficial for future
studies to investigate their performance on a wider range of 3D datasets. Additionally, it
is important to consider inference time as a key factor in optimizing these networks. This
research study [21] has shown that efficiently extracting bounding boxes before segmen-
tation can significantly reduce inference time. These findings can serve as a foundation
for future deep learning-based models for 3D object recognition. However, some current
models still require tuning and consume more RAM. To address these issues, it will be
crucial to develop an efficient model that is fully optimized for speed and memory usage.
Therefore, future studies should focus on improving detection and localization accuracy, as
well as exploring the fusion of LiDAR voxel features with image features. This includes
investigating joint camera-based detection and LiDAR-based detection methods.
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3D three-dimensional
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MLP Multiple Layer Perceptron
BEV Bird’s Eye View
CNN Convolutional Neural Network
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GPU Graphics Processing Unit
RAM Random Access Memory
MRI Magnetic Resonance Imaging
SECOND Sparsely Embedded CONvolutional Detection
IoU Intersection over Union
RPN Region Proposal Network
GLR Global-Local Bidirectional Reasoning
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