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Abstract: Data for complex plasma–wall interactions require long-running and expensive computer
simulations. Furthermore, the number of input parameters is large, which results in low coverage
of the (physical) parameter space. Unpredictable occasions of outliers create a need to conduct the
exploration of this multi-dimensional space using robust analysis tools. We restate the Gaussian
process (GP) method as a Bayesian adaptive exploration method for establishing surrogate surfaces
in the variables of interest. On this basis, we expand the analysis by the Student-t process (TP)
method in order to improve the robustness of the result with respect to outliers. The most obvious
difference between both methods shows up in the marginal likelihood for the hyperparameters of the
covariance function, where the TP method features a broader marginal probability distribution in
the presence of outliers. Eventually, we provide first investigations, with a mixture likelihood of two
Gaussians within a Gaussian process ansatz for describing either outlier or non-outlier behavior. The
parameters of the two Gaussians are set such that the mixture likelihood resembles the shape of a
Student-t likelihood.

Keywords: Gaussian process; Student-t process; Bayesian optimization; plasma–wall interaction
simulation; mixture likelihood

1. Introduction

Simulations of particles from fusion plasma escaping confinement and interacting
with the vessel wall are extremely costly in terms of computer power and time. Conse-
quently, results from ion–solid interaction simulations, e.g., sputter rates from the software
EIRENE/FZ Jülich [1], lack real-time ability and fail to provide the fast numerical access
needed, e.g., by gradient-based methods traveling through multi-dimensional parameter
space while searching for extremal structures. With already-acquired data as a starting
basis, the method of surrogate modeling provides fast and easy access for numerical opti-
mization methods. In the present case, the shape of utility functions used for the selection
of the next optimal point [2] is relatively benign. In situations where this is not the case,
the detrimental effect of spurious peaks in the utility function can partly be avoided using
modified acquisition strategies [3]. The EIRENE program employs at its heart a Monte
Carlo method, by which it may be assumed to produce results with uncertainty margins
that follow a Gaussian distribution. However, the code itself involves tables of source rates
for particles, energies and momentum, which may introduce some nonlinear behavior, at
least to the variance of the results.

It has been known for a long time that a Student-t distribution offers the possibility
of making the analysis more robust with respect to outliers [4,5]. In this paper, we follow
this trail and investigate the Student-t process method as a surrogate surface emulator
in competition with the Gaussian process method [6]. Introduced by Rasmussen et al. in
Chapter 9.9 of his landmark publication “Gaussian Processes for Machine Learning” [6],
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the derivation and application of a Student-t process as a surrogate emulator was examined
many times. Already, Yu et al. in 2007 [7] placed the TP method on a solid foundation
with correct data error handling, while Shah et al. [8] approached the same marginal
likelihood by integrating an inverse Wishart process prior over the covariance kernel of the
Gaussian process.

In order to investigate the differences between the GP and TP method, we set up
artificial test cases in one and two dimensions. The problem we want to tackle for the
sputter rates caused by fusion plasma takes place in a four-dimensional physics parameter
set, so we have to transfer the results of the test cases derived with artificial data to analysis
of real-world data. As a side effect, the changes to the program for adaptation to the
TP method are validated by our well-established algorithm emulating surrogate surfaces.
To complete these investigations, we present results for fusion plasma sputter rates in a
two-dimensional subspace of a four-dimensional parameter space.

Coming to real data, the situation we face in the experiment is that outliers emerge
from sensor errors or instabilities in the measurement conditions, while the major part
of the data is of Gaussian nature. Therefore, we want to complete this paper by a study
considering a mixture likelihood of two Gaussians within the realm of the Gaussian process
method [9,10]. While one Gaussian of the mixture likelihood shall cover the normally
distributed data, the other Gaussian equipped with larger standard deviation is aimed
at the description of the outliers. Unfortunately, the numerical analysis becomes very
costly for already decent numbers of data, which is obviously the reason that studies in the
literature invoked approximation methods. This should be easily understood, considering
that the number of terms explodes by a factor of two to the power of the data number.
From a naive point of view, this quickly seems to become intractable, entering data pools of
much more than a handful of data. However, we found an intuitive approach reducing the
numerical efforts to a minimum by employing Gray code, while still taking into account
all terms in the evidence integral for an analytically exact result. Gray code generates a
sequence of binary representations, which differs from one to the next only by one bit. This
is not the case when counting bit-wise because the binary representation for, e.g., three
is 011 and four is 100, so by moving from one representation to the next, three positions
have to change their digit. On the contrary, with Gray code, it is possible to cover all 2N

possibilities for N digits, changing only a single digit between neighboring representations
of the sequence (see chapter 20.2 of [11]). Applied to changes in a matrix, this enables
fast computable rank-one updates, especially if, otherwise, one has to perform a complete
matrix inversion. We present, first, the results stating proof of principle for this new
approach and compare it to the GP/TP methods shown in the first section of this paper.

2. Gaussian Process Method

The problem of predicting function values in a multi-dimensional space supported by
given data is a regression problem for a non-trivial function of an unknown shape. The
matrix X = (x1, x2, . . . , xN) consisting of N input data vectors xi of dimension Ndim is given.
The target data y = (y1, . . . , yN)

T is blurred by Gaussian noise of variance ∆ij = σd
2
i δij.

The quantity of interest is the target value f∗ at test input vector x∗ and is generated by
a function f (x), which shall satisfy y = f (x) + ε, with 〈ε〉 = 0 and 〈ε2〉 = σ2

d i, where the
brackets 〈. . .〉 indicate an expectation value. As a statistical process, it is fully defined by
its covariance function, which is the place where we incorporate all the properties that we
would like our (hidden) problem-describing function to have. For the functional form of
the covariance, we chose a Gaussian-type exponent with the negative squared value of the
distance between two input data vectors xp and xq.

k(xp, xq) = σ2
f exp

{
−1

2

∣∣∣∣ xp − xq

λ

∣∣∣∣2
}

. (1)

The neighborhood of the two data vectors should be of relevance for the smoothness
of the result, which is mimicked by a length scale λ in the denominator to represent the
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long-range dependence of the two vectors. Moreover, since the Gaussian process method
defines a distribution over functions, the width of this distribution will have some influence
on our result as well. This shall be comprised by the signal variance σ2

f . An element of the
covariance matrix of the input data is abbreviated as Kij(λ, σf ) = k(xi, xj), and the vector
of covariances between the test input vector and a single input data is (k∗)i = k(x∗, xi).
Finally, in addition to the above estimation of the variance of a distinct data point with σ2

di
,

provided, e.g., by the EIRENE MC-simulations, we consider an overall noise in the data by
a variance σ2

n . Starting with no further information about the hyperparameters, we assume
Gaussian priors with N (1, 1).

Summing up the analysis from previous papers [6,12], the probability distribution for
a single function value f∗ at test input x∗ is

p( f∗|X, y, x∗) ∝ N
(

f̄∗, varGP ( f∗)
)

, (2)

with mean
f̄∗ = kT

∗

(
K(λ, σf ) + σ2

n∆
)−1

y, (3)

and variance
varGP ( f∗) = k(x∗, x∗)− kT

∗

(
K(λ, σf ) + σ2

n∆
)−1

k∗. (4)

The hyperparameters θT = (λ, σf , σn) determine the result of the Gaussian process
method. Since we do not know a priori which setting is useful, we marginalize over them
numerically by employing the marginal likelihood

log pGP (y|θ) = const− 1
2

yT
[
K(λ, σf ) + σ2

n∆
]−1

y− 1
2

log
∣∣∣K(λ, σf ) + σ2

n∆
∣∣∣. (5)

3. Student-t Process Method

With the formulae from the above section at hand, it is easy to reformulate the analysis
for the Student-t Process method, where we strictly follow the papers of Yu [7] and Shah [8].
The marginal likelihood reads

log pT P (y|ν, θ) ∼ − ν+N
2 log

{
1 +

yT[K(λ,σf )+σ2
n∆]

−1y
ν−2

}
− 1

2 log
∣∣∣K(λ, σf ) + σ2

n∆
∣∣∣. (6)

In the following, we choose ν = 3 to resemble Cauchy distributions.
While the mean of a test function value remains the same as in Equation (3), the

variance becomes

varT P ( f∗) =
1 + yT

[
K(λ, σf ) + σ2

n∆
]−1

y

1 + N
· varGP ( f∗). (7)

Here, the most important difference to the Gaussian process shows up, i.e., the depen-
dence of the variance on the target data. It may be regarded as a crucial disadvantage of
the GP method that its results are based on the input mesh only, so the outcome depends
on the experimentalist’s setup of the input parameters, e.g., at which locations in space the
measurements will be taken. On the other hand, the Student-t process also involves the
measurement results, which ultimately provide the capability of this data analysis method
to ignore outliers.

4. One- and Two-Dimensional Test Cases

We start with a one-dimensional test case by mapping the first N = 20 Sobol data
as the input to a range [−1, 1] on the x-axis and use a sin-model with two full periods
for this range to generate the respective target data. The input was chosen to be drawn
from Sobol data [13,14] in order to provide a quasi-random sample, which is space-filling
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on a given region of interest. Uncertainty is introduced by adding Gaussian noise, with
standard deviation σd = 0.2. In order to guarantee comparability of the results, especially
with those of the Section 6, all calculations were performed for the same data set. Therefore,
minor differences may show up in comparison with our previous paper published in the
Proceedings of the 41st International Workshop on Bayesian Inference and Maximum
Entropy Methods in Science and Engineering, Paris, France, 18–22 July 2022 [15].

Figure 1 shows the results with the GP method and the TP method on the left and
right panels, respectively. In the absence of outliers, both methods give the same answer
in Figure 1a,b—only the uncertainty ranges (outer green or black lines) show differences,
i.e., the GP method is trying to cover all data within a broader range. However, with two
outliers at hand (two data points were raised by just multiplying with a factor of three), the
surrogate from the GP method (see Figure 1c) tries to follow each target value slavishly,
which results in a smaller hyperparameter λ, equivalent to a bumpier behavior. For the
TP method (see Figure 1d), the bumps become less pronounced for the expectation values
of the surrogate surface 〈 f (θ)〉 (black line) and disappear completely by just asking for
the surrogate surface, obtained by inserting the expectation values of the hyperparameters
f (〈θ〉) (green line), which clearly follow a sin-function. It is informative to have a look at
the marginal likelihood for the hyperparameters θ. Since there are three hyperparameters,
we employ two two-dimensional plots for (λ, σn) in Figure 1e,f and (λ, σf ) in Figure 1g,h,
where the respectively lacking third hyperparameter σf /σn for the first/second plot is kept
constant in terms of its expectation value from integration over the marginal likelihood
Equations (5) and (6), respectively. The most important differences are seen for (λ, σf ),
i.e., Figure 1g,h. In comparison with the GP case, for λ values around 0.05, the Student-t
result shows a broader structure in σf , and for σf around 0.5, an additional structure that
comprises λ-values between [0.10, 0.25]. The contributions in the marginal likelihood for
this broad bump attributed to the larger λ-values between [0.10, 0.25] are responsible for
the smooth functional behavior.
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Figure 1. Cont.
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Figure 1. N = 20 data points. Left panel (a,c,e,g) Gaussian process (GP). Right panel (b,d,f,h) Student-
t process (TP). (a,b) Normally distributed data following a sin-model. (c,d) Normally distributed
data following a sin-model, but the fifth and fifteenth data point were multiplied by a factor of
three to simulate outliers. (e,g) GP hyperparameter surfaces for data with outliers, 〈λ〉 = 0.1 ± 0.2,
〈σf 〉 = 1.2 ± 0.3, 〈σn〉 = 2.1 ± 1.2; (f,h) TP hyperparameter surfaces for data with outliers,
〈λ〉 = 0.3 ± 0.6, 〈σf 〉 = 1.2 ± 0.7, 〈σn〉 = 1.9 ± 1.0.
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Figure 2. Surrogate model from Student-t process for N = 20 data points, with two outliers for
two settings of the hyperparameters in the extremal structures of Figure 1h. (a) λ = 0.05, σf = 1.5,
σn = 1 with respective hyperparameter surfaces (c,e). (b) λ = 0.18, σf = 0.7, σn = 2.6 with respective
hyperparameter surfaces (d,f).



Entropy 2023, 25, 685 6 of 11

In order to examine these findings more thoroughly, in Figure 2, we focus on two
settings of the hyperparameters deduced from the extremal structures in Figure 1h of the
Student-t process. In the left panel, starting with Figure 2a for λ = 0.05, σf = 1.5, σn = 1,
a strong obedience to the target data is enforced. Therefore, the surfaces of the marginal
likelihood, computed with either σf = 1.5 (Figure 2c) or σn = 1 (Figure 2e), become pinned
down to a relatively small λ-variation. The situation changes in the right panel with λ = 0.18,
σf = 0.7, σn = 2.6, where we obtain broad structures for λs around 0.2, in connection with a
somewhat more relaxed functional behavior in Figure 2b.
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Figure 3. Two-dimensional sin-model data. Surrogate model from Student-t process for first N = 40
Sobol data points with added noise of σd = 0.2. (a,b) GP, no outliers, 〈λ〉 = 0.3 ± 0.04, 〈σf 〉 = 1.3 ± 0.3,
〈σn〉 = 0.7 ± 0.4; (c,d) GP, four outliers, 〈λ〉 = 0.06 ± 0.04, 〈σf 〉 = 1.5 ± 0.2, 〈σn〉 = 1.4 ± 0.9; (e,f) TP,
four outliers, 〈λ〉 = 0.06 ± 0.04, 〈σf 〉 = 1.5 ± 0.2, 〈σn〉 = 1.4 ± 0.9. Blue dots and their footprints
(open squares) in the base are the input data, while the red dots/squares in (c,e) represent the four
outliers. The surrogate surfaces in (a,c,e) are obtained for inserting above expectation values of the
hyperparameters into function Equation (3).

From the above, it is clear that a MAP solution would fail completely in the presence
of outliers because such an approach would focus on the maximum of the probability
distribution at max λ = 0.051 and max σf = 1.61, thereby disregarding all contributions
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from the PDF for larger λ, along with smoother surrogates. Consequently, only the full
exploitation of the marginal likelihood Equation (6) empowers the result to resemble the
sin-function.

Next, we compare GP vs. TP in two dimensions (see Figure 3). A total of N = 40
target data are generated by the above double period sin-function just by expanding the
x-dependence to x = (x1, x2)

T . Without outliers, the resulting surrogate surface (Figure 3a)
is the same for GP and TP, revealing a unimodal structure in hyperparameter space
(Figure 3b), along with well-defined expectation values with more or less concise vari-
ances, 〈λ〉 = 0.3± 0.04, 〈σf 〉 = 1.3± 0.3, 〈σn〉 = 0.7± 0.4. It is certain that the MAP approach
would come to the same result for the surrogate surface.

The situation changes with outliers (Noutlier = 4). The GP surrogate (Figure 3c) fails
completely and features a bump in the marginal likelihood (Figure 3c), which is confined
around small λ-values below 0.1 and σf ∼ 1.4. Compared with this, the TP surrogate in
Figure 3e resembles the sin-model function, where the unimodal structure in the marginal
likelihood widens (see Figure 3f), as already seen in the one-dimensional case.

5. Results for Ion–Solid Interaction Simulations

Finally, we employ the data-analyzing tools characterized above to sputter rates gener-
ated by the ion–solid interaction simulations in a fusion plasma with EIRENE software [1].
To simulate these data, a total of 14 physics parameters are to be set on input. The most
important parameters are those regarding electron density n and electron temperature T,
both at two locations within the plasma, i.e., plasma center {n0,T0} and at the so-called
pedestal {nped,Tped} located at the plasma edge next to the separatix (last magnetic field line
closed within the vessel). To begin with, we set up a test case with N = 3 × 3 × 3 × 3 = 81
EIRENE sputter rate data as a function of these four parameters {T0, Tped, n0, nped} (results
shown in Figure 4a).
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Figure 4. (a) EIRENE sputter rate results with errorbars shown in a two-dimensional subspace
of parameters {n0 T0} for max[Tped] = 8 keV and min[nped] = 0.56× 1014/cm3. (b) Blue mesh:
surrogate surface based on initial N = 81 EIRENE data. Red mesh: surrogate surface based on a total
of N = 151 EIRENE data. The surrogate surfaces are obtained for inserting expectation values of the
hyperparameters into function Equation (3). Hyperparameter surfaces of {λ, σf } for the results with
N = 151 data: (c) GP; (d) TP.
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In order to improve this apparently not very informative result on only a 34 grid,
we calculate the GP surrogate on a 54-grid and take the 34 data, being the worst in terms
of variance, feed them back to EIRENE and take the resulting second N2 = 81 data set
(containing 11 doublets from initial one). This results in the initial one adding up to a
total of Ntot = 151 data points. One can think of this as an iterative step, keeping the
computation effort of the costly EIRENE runs low. The surrogate surfaces for the initial
data set with N = 81 EIRENE data (blue mesh) and the full data set with Ntot = 151
(red mesh) are shown in Figure 4b, with the errorbars for the same nine data points as
in Figure 4a. As can be seen, the iterative step reduces the uncertainty in the target by a
factor of 3.6 (and misfit by factor of three). Moreover, while the surrogate surface (blue
mesh) based on initial N = 81 EIRENE data shows only a maximal structure at T0 = 3 keV
smeared out around n0 = 1.26× 1014/cm3, the TP surrogate surface (red mesh) has a
clear maximum at T0 = 3 keV and n0 = 1.20× 1014/cm3. The lower panel of Figure 4
shows the marginal likelihood surfaces for the hyperparameters λ, σf for the results with
N = 151 data. Since the TP method (Figure 4d) shows a broader shape compared to the GP
method (Figure 4c), it may be inferred from the chapters above that the four-dimensional
parameter space contains the results for the sputter rates, which do not fully obey a normally
distributed uncertainty.

6. Gaussian Process Method with Mixture of Two Gaussians

The GP method as well as the TP method above try to describe all data with a unique
density function. For the majority of experimental data originating from the deterministic
(though sometimes unknown) physics under observation, this works out fine, with the TP
method beneficially showing some robustness against outliers. In this final section, we want
to follow a different approach, stating that all data are normally distributed but split into
two sets with respective standard deviations. While the data in the first set are considered
to originate from measurement observations with a first standard deviation σdi

residing
on the measurement uncertainty provided by the experimentalist (e.g., by knowing the
uncertainty of the sensors), the second set is assigned to outliers. We assume the outliers
to be still but poorly connected to the physics the measurement observation is targeted
on. This removed relationship with the proper first data set shall be described by a second
much larger standard deviation σoutlieri

. Consequently, it is allowed to employ the same
(Gaussian) likelihood function, i.e., same mean, for both data sets and keep records for
which standard deviation is applied for which data point. Since an analytic solution very
quickly becomes very costly (the integral terms are the power of two, where the exponent
is the number of data), most—not to say all—approaches in the literature [9,10,16–18]
invoke in one way or another some approximation. On the contrary, we proceed with the
full integral and manage calculations of data sets of order N=20 with a standard PC by
employing Gray code (see, e.g., [11]).

Revisiting the integral for the marginal likelihood

p(y|θ, X) =
∫

d f p(y| f , σn)p( f |λ, σf , X), (8)

we assign a mixture of two Gaussians to the likelihood term

p(y| f , σn) =
N

∏
i=1

p(yi| fi, σn)

=
N

∏
i=1

(
Cdata√
2πσnσdi

exp

{
−1

2

[
yi − fi
σnσdi

]2
}

+
Coutlier√

2πσnσoutlieri

exp

{
−1

2

[
yi − fi

σnσoutlieri

]2
})

, (9)
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while the Gaussian process is (still) defined by

p( f |λ, σf , X) =
1

(2π)
N
2
√

det K
exp

{
−1

2
f TK−1 f

}
. (10)

In light of the robustness skills of the Student-t process in the previous section, the nor-
malization constants Cdata and Coutlier shall be determined by requiring each mixture to
resemble a Cauchy distribution,

pCauchy(yi| fi, σn) =
1

πσnσdi

{
1 +

[
yi − fi
σnσdi

]2
}−1

. (11)

The resemblance shall show up for the amplitude at yi = fi in both Equations (9) and (11),

1
πσnσdi

=
Cdata√
2πσnσdi

+
Coutlier√

2πσnσoutlieri

. (12)

while the slower decay with distance to fi shall be reflected by requiring the same functional
values of Equations (9) and (11) at | yi − fi |= 10σnσdi

,

1
πσnσdi

{
1 + [10]2

}−1
=

Coutlier√
2πσnσoutlieri

exp

{
−1

2

[
10σnσdi

σnσoutlieri

]2
}

, (13)

where we drop the term with Cdata of Equation (9) for being negligible against the other
terms. We cross out the hyperparameter σn, employ the normalization condition in
Equation (9) to obtain Cdata+Coutlier = 1 and obtain an iterative to-be-solved equation for
the dependence of σoutlieri

on σdi
. It turns out that for our one-dimensional N = 20 toy

data set with a standard deviation of σd = 0.2, the outlier standard deviation would be
σoutlieri

= 4.7, i.e., the artificially chosen two outliers (see Figure 1c) are well within scope.
Accordingly, the normalization constants are Cdata = 0.79 and Coutlier = 0.21.

With the product over the mixture, the integral in Equation (8) contains 2N terms,
which have to be summed up for obtaining the marginal likelihood. Each term is a product
of the two Gaussians of the mixture (only different in their standard deviations), with the
prior function Equation (10) being itself a Gaussian. Since a product of Gaussians gives
again a Gaussian, this can be integrated to obtain (see Equation (A.7) in [6])

pGP2G(y|θ, X) = ∑r(Cdata)
Ndata(r)(Coutlier)

Noutlier(r) exp
{
− 1

2 yT[K(λ,σf )+σ2
n∆(r)]−1y

}
(2π)

N
2
√

det[K(λ,σf )+σ2
n∆(r)]

. (14)

with r as the 2N terms of the mixture products. Each term implies a certain number Ndata(r)
for “normal” data and Noutlier(r) for the outliers. Apart from that, the only difference
between the terms is implanted in the matrix ∆(r) with either σdi

or σoutlierj
as entries on

the diagonal. While the calculation of Equation (14) involves matrix inversion as the most
time consuming part, by invoking Gray code, it is possible to establish a sequence of the
2N terms in such a way that term by term, only a single element in the matrix changes,
and therefore, successive rank-one updates on an initially calculated matrix inverse are
sufficient for completing the summation.

In Figure 5a—like for the previous methods above— the mixture approach reproduces
the model sin-function for the N = 20 data very well in the absence of outliers. However,
most impressive is the result for the expectation values of the surrogate in Figure 5b in the
presence of two outliers, which follows nearly exactly the course of the undistracted data.
Only the respective broadening of the uncertainty range gives reference to the outliers.
Drawn in green is the surrogate model obtained for just inserting the expectation values
of the hyperparameters to the mean of Equation (3). While in the previous case for the
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TP process above this policy was the most promising one to obtain the best result for the
time being, now it is revealed that only the full calculation of the surrogate expectation
values can unveil all peculiarities in the probability distribution function of Equation (8).
The better description of the mixture approach for data containing outliers shows up in
the plainly unimodal hyperparameter surfaces in Figure 5c,d as well, which is assisted by
showing only a linear relationship between the hyperparameters (some weak nonlinearity
for λ/σf ). Eventually, it can be stated with ease that the applied MCMC procedure will
work out fine for such type of sampling distributions and therefore needs fewer sampling
steps compared to the GP/TP methods.
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Figure 5. Surrogate model from the Gaussian process with a mixture likelihood for N = 20 data points
with and without two outliers. (a) Normally distributed data following a sin-model. (b) Normally dis-
tributed data following a sin-model, but the fifth and fifteenth data point were multiplied by a factor
of three to simulate outliers. (c,d) Hyperparameter surfaces for data with outliers, 〈λ〉 = 0.25 ± 0.08,
〈σf 〉 = 1.1 ± 0.5, 〈σn〉 = 0.85 ± 0.29.

7. Conclusions

Exploring surrogate surfaces in multi-dimensional spaces has been proven to be
employed advantageously by the Gaussian process (GP) method. For experimental data
suffering from outliers, it is also known that the marginal posterior distribution can be
made robust by acquiring, e.g., the Cauchy function instead of deferring to the Gaussian
form. As shown in this paper, utilizing the Student-t process (TP) method can be performed
by only a few and simple changes to an already well-established implementation of a GP
algorithm. The most important difference between both methods shows up in the marginal
likelihood for the hyperparameters of the covariance function, which, in the presence of
outliers, becomes broader in the TP case compared to GP. The Bayesian method is to explore
hyperparameter space by marginalization and let the data decide regarding the posterior
probability distribution. However, with the basic assumption of normally distributed data,
the GP method slavishly follows each data point within its variance, thereby generating a
surrogate surface that irredeemably deteriorates in the presence of outliers. In a real-world
situation with occasionally faulty measurements, the TP method offers the possibility of
ignoring heavily distorted data by featuring a broader marginal probability distribution.
Moreover, the TP method improves the overall result for surrogate surfaces in comparison
with Gaussian processes and adds robustness with respect to outliers. However, the best
results for the surrogate surfaces are obtained by a mixture Gaussian likelihood within the
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Gaussian process method. Although there is seemingly enormous numerical effort that one
has to take for calculating 2N terms—each involving a matrix inversion—we could present
a manageable procedure by featuring Gray code to condense the inversion expenditure
down to rank-one updates on the matrix under consideration. The speed up with the Gray
code allows one to tackle data sets of order O(20) already on standard PCs. This certainly
can be pushed further up to set numbers of ∼O(30) by applying parallelization techniques
on modern HPC systems. Coming from the other end, one can think of elaborated methods
(e.g., by splitting [19]), which lend a hand in downsizing larger data pools to a size within
range of our mixture approach.
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