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Abstract: In this paper, we study the finite element method of the Navier–Stokes equations with the
initial data belonging to the L2 space for all time t > 0. Due to the poor smoothness of the initial
data, the solution of the problem is singular, although in the H1-norm, when t ∈ [0, 1). Under the
uniqueness condition, by applying the integral technique and the estimates in the negative norm, we
deduce the uniform-in-time optimal error bounds for the velocity in H1-norm and the pressure in
L2-norm.
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1. Introduction

In this paper, we consider the error estimates of the mixed finite element approximation
to the time-dependent Navier–Stokes equations with nonsmooth initial data as follows:

ut − ν∆u + (u · ∇)u +∇p = f , div u = 0, (x, t) ∈ Ω× R+; (1)

u(x, 0) = u0(x), x ∈ Ω; u(x, t)|∂Ω = 0, t ≥ 0, (2)

where Ω is a bounded domain in R2 that has a Lipschitz continuous boundary ∂Ω and sat-
isfies the additional condition (A1) (see below), ν > 0 is the viscosity, u = u(x, t) =
(u1(x1, x2, t), u2(x1, x2, t))T is the velocity, p = p(x, t) is the pressure, f = f (x, t) =
( f1(x1, x2, t), f2(x1, x2, t))T is the prescribed body force, and u0(x) is the initial velocity.

Many works are devoted to the finite element approximation of the Navier–Stokes Equa-
tions (1) and (2). The reader is referred to [1–8], for instance. In these classical works, they
usually considered the problem under the smooth initial data condition (u0(x) ∈ H1

0(Ω)
or u0(x) ∈ H2(Ω) ∩ H1

0(Ω)). There are few papers on the problem with the rough ini-
tial data. When u0(x) only belongs to the L2(Ω) space, the solution of the system (1)
and (2) is singular, although in the H1-norm. Therefore, the classical error analysis tech-
nique is not feasible in this case. However, various issues are considered in other ref-
erences, e.g., see [9,10] for the finite element method of the linear parabolic equations
and [11–14] for the Navier–Stokes equations. In [11], the stability of the finite element
method for the Navier–Stokes equations with the nonsmooth initial data was obtained on
the finite time interval. Due to the special character of the spectral operator and using the
high-dimensional spectral space when t ∈ [0, 1) and the low-dimensional spectral space
when t ∈ [1, ∞), they gave L2 error estimates for the velocity of the spectral method [12].
In fact, they applied the two-grid method in analysis. Recently, the H2-stability of the
first- and second-order fully discrete schemes were investigated in [13,14], respectively,
and these analysis techniques were extended to other nonlinear problems, such as the Ol-
droyd model [15], the natural convection equations [16], and the Boussinesq equations [17].
On the other hand, the long-time analysis for the numerical method is also very significant.
The reader is referred to [7,18,19] for more details. However, according to the authors’ best
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knowledge, error estimates for the Navier–Stokes equation with initial data belonging to
L2(Ω) are not available.

In this paper, first, we divide the error of the finite element method into two parts: one
part is generated by the approximate linearization problem, and the other part is generated
by the approximate nonlinear term. Then, based on the stability of the solution of the
problems (1) and (2) with u0(x) ∈ L2(Ω) given in [12], assuming the given data satisfying
the uniqueness condition, and using the integral technique and the estimates in the negative
norm to overcome the singularity of the solution on t ∈ [0, 1), we derive the finite element
error estimates for the linearized problem, and the error resulting from the approximation
of the nonlinear term can also be obtained from the trigonometric inequality.

The paper is organized as follows. In the next section, we will recall some functional
settings for the problem. Then, we will introduce the finite element approximation and the
stability of finite element solutions in Section 3, and derive the uniform error estimates for
the velocity and pressure in Section 4. In Section 5, we show some numerical examples to
verify the theoretical predictions. Finally, conclusions are made in Section 6.

2. Functional Settings

In this section, we introduce the notation used in what follows. We introduce the
Hilbert spaces:

X = (H1
0(Ω))2, Y = (L2(Ω))2, M = L2

0(Ω) =
{

q ∈ L2(Ω);
∫

Ω
qdx = 0

}
,

where || · ||i is the usual norm of the Sobolev space Hi(Ω) or (Hi(Ω))2 for i = 1,2, and
(·, ·) and | · | is the inner product and norm of L2(Ω) or (L2(Ω))2, respectively. The scalar
product and norm of the spaces H1

0(Ω) and X are given by

((u, v)) = (∇u,∇v), ||u|| = ((u, u))1/2.

We also define the closed smooth solenoidal vector fields V in the norm of X and the closed
smooth solenoidal vector fields H in the norm of Y as

V = {v ∈ X; divv = 0}, H = {v ∈ Y; divv = 0, v · n|∂Ω = 0},

where n is the unit outerward normal vector of the domain boundary and the Stokes
operator by A = −P∆, and the Laplace operator Ã = −∆, where P is the L2-orthogonal
projection of Y onto H.

To proceed, we need a further assumption concerning Ω:
(A1) Assume that Ω is regular in the sense that a unique solution (v, q) ∈ (X, M) of

the Stokes problem

−ν∆v +∇q = g, div v = 0 in Ω, v|∂Ω = 0,

for any prescribed g ∈ Y exists and satisfies

||v||2 + ||q||1 ≤ c0|g|,

where c0 > 0 is a positive constant. Hereafter, κ, c, ci > 0, i = 0, 1, 2, · · · are generic
positive constants independent of the mesh size h. They are subject to different values in
different cases.

(A1) implies

|v|2 ≤ λ−1
1 ||v||

2 ∀v ∈ X,

||v||2 ≤ λ−1
1 |Av|2, ||v||22 ≤ c|Av|2 ∀v ∈ D(A) = (H2(Ω))2 ∩V, (3)

where λ1 is the minimal eigenvalue of the Laplace operator −∆.
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Furthermore, we make the following assumptions on the prescribed data for the
problems (1) and (2):

(A2) The initial velocity u0 ∈ H and the body force f (x, t) satisfy

f , ft ∈ L∞(R+; Y)with |u0|+ sup t≥0(| f (t)|+ τ(t)| ft(t)|) ≤ κ,

where τ(t) = min{1, t}.
The continuous bilinear forms a(·, ·) on X× X and d(·, ·) on X×M are, respectively,

defined by

a(u, v) = ν((u, v)) ∀u, v ∈ X, d(v, q) = (q, div v) ∀v ∈ X, q ∈ M.

Obviously, the bilinear form a(·, ·) is continuous and coercive, and the bilinear form d(·, ·)
is continuous and satisfies the inf-sup condition known as the Ladyzhenskaya–Babuška–
Brezzi (LBB) condition [1]: there exists a positive constant β0 such that

sup
v∈X,v 6=0

d(v, q)
‖v‖ ≥ β0|q|, ∀q ∈ M. (4)

with

B(u, v) = (u · ∇)v +
1
2
(div u)v,

the trilinear form b(·, ·, ·) is, for all ∀u, v, w ∈ X,

b(u, v, w) = (B(u, v), w) = ((u · ∇)v, w) +
1
2
((div u)v, w)

=
1
2
((u · ∇)v, w)− 1

2
((u · ∇)w, v).

It holds true that (see [4,20])

b(u, v, w) = −b(u, w, v) ∀u, v, w ∈ X, (5)

|b(v, u, w)|+ |b(u, v, w)| ≤ c1(|u|1/2||u||1/2||v||
+ ||u|| |v|/1/2||v||1/2)|w|1/2||w||1/2 ∀u, v, w ∈ X, (6)

|b(u, v, w)|+ |b(v, u, w)| ≤ c1(||u|| |v|1/2|Av|1/2

+ |u|1/2||u||1/2||v||1/2|Av|1/2)|w| ∀u, w ∈ X, v ∈ D(A), (7)

|b(u, v, w)| ≤ N||u|| ||v|| ||w|| ∀u, v, w ∈ X, (8)

|b(u, v, w)|+ |b(u, w, v)|+ |b(w, u, v)|

≤ 1
3

c1(|u|1/2|Au|1/2|Av|+ |v|1/2|Av|1/2|Au|)||w||−1

+
1
3

c1||u||1/2|Au|1/2|Av|1/2||v||1/2||w||−1 u, v, w ∈ V, (9)

where c1 is only dependent on the domain Ω. In this notation, the weak formulation of the
problems (1) and (2) is as follows: Find (u, p) ∈ (X, M), such that for all t > 0, (v, q) ∈ (X, M),

(ut, v) + a(u, v)− d(v, p) + d(u, q) + b(u, u, v) = ( f , v), (10)

u(x, 0) = u0. (11)
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Theorem 1. Under the assumptions (A1) and (A2), the problems (1) and (2) admits a unique
solution, which satisfies the following bounds for all t > 0 :

|u(t)|2 + e−2δ0t
∫ t

0
e2δ0 t̃||u||2dt̃ ≤ κ, (12)

τ(t)||u(t)||2 + e−2δ0t
∫ t

0
e2δ0 t̃τ(t̃)(|Au|2 + |ut̃|2)dt̃ ≤ κ, (13)

τ2(t)(|Au(t)|2 + |ut(t)|2) + e−2δ0t
∫ t

0
e2δ0 t̃τ2(t̃)||ut̃||2dt̃ ≤ κ, (14)

τ3(t)||ut(t)||2 + e−2δ0t
∫ t

0
e2δ0 t̃τ3(t̃)(|Aut̃|2 + |ut̃t̃|2)dt̃ ≤ κ, (15)

lim
t→∞

sup ||u(t)|| ≤ ν−1|| f∞||−1, (16)

τ(t)(|p(t)|2 + ||ut(t)||2−1) + e−2δ0t
∫ t

0
e2δ0 t̃(||ut̃||2−1 + |p|2)dt̃ ≤ κ, (17)

τ2(t)||p(t)||21 + e−2δ0t
∫ t

0
e2δ0 t̃(τ(t̃)||p||21 + τ2(t̃)|pt̃|2 + τ3(t̃)||pt̃||21)dt̃ ≤ κ, (18)

where 0 < δ0 < 1
2 νλ1, f∞(x) = lim

t→∞
f (x, t) and || f∞||−1 = sup

v∈X,v 6=0

( f∞ ,v)
||v|| .

Proof. The existence and uniqueness of the solution are provided in, e.g., Section 3 of
Chapter II in [20,21]. For (12)–(15), the reader is referred to Theorem 2.1 in [12]. We only
need to prove the other inequalities.

Taking (v, q) = e2δ0t(u, p) in (10) and using (5), we have

1
2

d
dt

(e2δ0t|u(t)|2) + νe2δ0t||u||2 = e2δ0t( f , u) + δ0e2δ0t|u|2. (19)

Integrating (19) with respect to the time from 0 to t and multiplying by e−2δ0t, we arrive at

|u(t)|2 + 2νe−2δ0t
∫ t

0
e2δ0 t̃||u||2dt̃

=2δ0e−2δ0t
∫ t

0
e2δ0 t̃|u|2dt̃ + 2e−2δ0t

∫ t

0
e2δ0 t̃( f , u)dt̃. (20)

Letting t→ ∞ and using the L’Hospital rule, we find that

ν lim
t→∞

sup ||u(t)||2 ≤ lim
t→∞

sup( f (t), u(t)) ≤ || f∞||−1 lim
t→∞

sup ||u(t)||,

which implies (16).
Applying the Stokes operator A to the first equation in (1), we have

||ut||−1 = sup
v∈V,v 6=0

(ut, v)
||v|| ≤

|( f , v)− a(u, v)− b(u, u, v)|
||v|| ,

which, combining with (12) and (13), implies

τ(t)||ut(t)||2−1 + e−2δ0t
∫ t

0
e2δ0 t̃||ut̃||2−1dt̃ ≤ κ. (21)

From (10) and the LBB condition, there holds

|p| ≤ β−1
0 sup

v∈X,v 6=0

d(v, p)
||v|| ≤ c(||ut||−1 + ν||u||+ c1|u| ||u||+ λ−1/2

1 | f |), (22)



Entropy 2023, 25, 726 5 of 20

which implies

τ(t)|p(t)|2 + e−2δ0t
∫ t

0
e2δ0 t̃|p|2dt̃ ≤ κ. (23)

Then, (17) follows from (21) and (23).
Using a similar process as above, we can obtain (18), which is omitted here. The proof

is completed.

We will use the Gronwall lemma.

Lemma 1 ([2,8]). Let g, h, y be three locally integrable nonnegative functions on the time internal
[t0,+∞) that, for all t ≥ t0, satisfy

y(t) + G(t) ≤ C +
∫ t

t0

h(t̃)dt̃ +
∫ t

t0

g(t̃)y(t̃)dt̃,

where G(t) is a nonnegative function on [0,+∞), and C ≥ 0 is constant. Then,

y(t) + G(t) ≤
(

C +
∫ t

t0

h(t̃)dt̃
)

exp
( ∫ t

t0

g(t̃)dt̃
)

.

3. Finite Element Approximation

Suppose that Th is the partitioning of Ω, hK and ρK are the diameter of the element K
and the supremum of the diameter of a ball contained in K, respectively, and the mesh size
h = max

K∈Th
hK, satisfying 0 < h < 1. In addition, assume that the partitioning is uniformly

regular, that is, as h tends to zero, if there exists positive constants v, σ > 0 such that
vh ≤ hK ≤ σρK for any K ∈ Th (e.g., see Chapter 2–3 in [22] and Appendix A in [1] for
more details).

We also introduce finite-dimensional subspaces (Xh, Mh) ⊂ (X, M) which are charac-
terized by Th. Two frequently used examples of the finite element spaces (Xh, Mh) are as
follows [1]. Let Pl(K) denote the space of polynomials of degree less than or equal to l on the
element K.

Example 1. (Girault–Raviart element).

Xh = {vh ∈ C0(Ω)2 ∩ X; vh|K ∈ P2(K)2, ∀K ∈ Th},
Mh = {qh ∈ C0(Ω) ∩M; qh|K ∈ P0(K), ∀K ∈ Th}.

Example 2. (Mini-element). We introduce b̂ ∈ H1
0(K), taking the value 1 at the barycenter of

the element K in the partition Th and such that 0 ≤ b̂(x) ≤ 1, which is called a “bubble function”.
We then define the space

Pb
1,h = {vh ∈ C0(Ω); vh|K ∈ P1(K)⊕ span{b̂}, ∀K ∈ Th}.

Then, we define

Xh = (Pb
1,h)

2 ∩ X, Mh = {qh ∈ C0(Ω) ∩M; qh|K ∈ P1(K), ∀K ∈ Th}.

Moreover, we define the subspace Vh of Xh by

Vh = {vh ∈ Xh; d(vh, qh) = 0, ∀qh ∈ Mh}.

Let Ph : Y → Vh be the L2-orthogonal projection operators given by

(Phv, vh) = (v, vh) ∀v ∈ Y, vh ∈ Vh,
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the discrete analogue Ah = −Ph∆h of the Stokes operator A The restriction of Ah to
Vh is invertible [4]. Using the inverse function A−1

h , which is self-adjoint and positive
definite, we may define “discrete” Sobolev norms on Vh for any order r ∈ R, by setting
||vh||r = |Ar/2

h vh| ∀vh ∈ Vh.
(A3) For the finite element spaces (Xh, Mh), we assume that the following approxima-

tion properties hold: for all v ∈ D(A), q ∈ H1(Ω) ∩M, there exist operators Ihv ∈ Xh and
Jhq ∈ Mh such that

|v− Ihv|+ h||v− Ihv|| ≤ ch2||v||2, (24)

|q− Jhq| ≤ ch||q||1, (25)

together with the inverse inequality

||vh|| ≤ c2h−1|vh| ∀vh ∈ Xh, (26)

and the discrete LBB condition (see, e.g., Theorem 1.1 of Chapter II in [1]): for each qh ∈ Mh,
there exists a positive constant β∗0 and vh ∈ Xh, vh 6= 0 such that

sup
vh∈Xh ,vh 6=0

d(vh, qh)

‖vk‖
≥ β∗0|qh|. (27)

The following properties are classical (see [1,3]):

||Phv|| ≤ c||v|| ∀v ∈ X, (28)

|v− Phv|+ h||v− Phv|| ≤ ch2||v||2 ∀v ∈ D(A), (29)

|v− Phv| ≤ ch||v− Phv||1 ∀v ∈ X. (30)

With the above notations, the finite element semi-discrete approximation of the prob-
lems (10) and (11) reads: Find (uh, ph) ∈ (Xh, Mh) such that for all t > 0, (v, q) ∈ (Xh, Mh),

(uht, v) + a(uh, v)− d(v, ph) + d(uh, q) + b(uh, uh, v) = ( f , v), (31)

uh(0) = u0h = Phu0. (32)

For the finite element approximation problems (31) and (32), applying the same
manner as that in Theorem 1 above and Proposition 3.2 of [4], we obtain that

Theorem 2. Under the assumptions of (A1)–(A3), the solution of the problems (31) and (32)
satisfies the following bounds for all time t > 0

|uh(t)|2 + e−2δ0t
∫ t

0
e2δ0 t̃(||uh||2 + |ph|2)dt̃ ≤ κ, (33)

lim
t→∞

sup ||uh(t)|| ≤ ν−1|| f∞||−1, (34)

τ(t)(||uh(t)||2 + |ph(t)|2) + e−2δ0t
∫ t

0
e2δ0 t̃τ(t̃)(|Ahuh|2 + |uht̃|2 + ||ph||21)dt̃ ≤ κ, (35)

τ2(t)(|Ahuh(t)|2 + |uht(t)|2 + ||ph(t)||21)

+e−2δ0t
∫ t

0
e2δ0 t̃τ2(t̃)(||uht̃||2 + |pht̃|2)dt̃ ≤ κ, (36)

τ3(t)||uht(t)||2 + e−2δ0t
∫ t

0
e2δ0 t̃τ3(t̃)(|Ahuht̃|2 + |uht̃t̃|2 + ||pht̃||21)dt̃ ≤ κ. (37)

4. Uniform Error Estimates

In this section, we discuss error estimates for the finite element approximation.
Because of the singularity of the solution on t ∈ [0, 1), we first need to introduce an
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intermediate step which is defined by a finite element Galerkin approximation to the
linearized Navier–Stokes equations: Find (ũ, p̃) ∈ (Xh, Mh) such that for all t > 0

(ũht, v) + a(ũh, v) + d(v, p̃h)− d(ũh, q) = ( f , v)− b(u, u, v), ∀(v, q) ∈ (Xh, Mh) (38)

ũ0h = Phu0. (39)

Setting the finite approximation error eh = u− uh, it follows that

eh = u− ũh + ũh − uh := ξh + ηh, (40)

where ξh is the error generated by the finite element approximation of the linearized
system (38) and (39), and ηh represents the error coming from the nonlinear term.

To give the optimal error estimate for ξh, we also need to recall the Stokes projection.
For u ∈ V and p ∈ M, define Shu ∈ Vh by

a(u− Shu, v) = (p,∇ · v), ∀v ∈ Vh, (41)

with Shu0 = Phu0.
We have the following lemma for the Stokes projection:

Lemma 2. Supposing Shu is defined by (41), then, there hold, for k = 1, 2,

|u− Shu|2 + h2||u− Shu||2 ≤ch2k(||u||2k + ||p||
2
k−1), (42)

|ut − Shut|2 + h2||ut − Shut||2 ≤ch2k(|ut|2k + ||pt||2k−1), (43)

||u− Shu||2−1 ≤ch2(k+1)(||u||2k + ||p||
2
k), (44)

||ut − Shut||2−1 ≤ch2(k+1)(||ut||2k + ||pt||2k). (45)

Proof. The results in (42) and (43) are classical, which can be found in [3]. To derive (44)
and (45), we consider the following dual problem: Find (w, z) ∈ (X, M) such that

−∆w +∇z = u− Shu, in Ω, (46)

∇ · w = 0, (47)

which follows that, after simple calculation,

||w||2 + ||z||1 ≤ c|u− Shu|. (48)

Therefore, it holds that

||u− Shu||2−1 = (w, u− Shu)

= (w− Ihw, u− Shu)

≤ c||u− Shu||−1||w− Ihw||1.

That is,

||u− Shu||−1 ≤ ch||w||2 ≤ ch||u− Shu|| ≤ chk+1(||u||k+1 + ||p||k),

which implies (44). Applying a similar process, we can obtain the inequality (45). This
completes the proof.

In line with the notation introduced in (40), we thus find

ξh = u− ũh = u− Shu + Shu− ũh := wh + θh,
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with θh(0) = 0, which means that we split ξh into two parts, wh and θh. Since bounds for
the first part wh were given in Lemma 2 , we only need to analyze the second part θh in the
following. Then, the estimates for ξh follow directly.

Due to (10), (38) and (41), we have

(θht, v) + a(θh, v) = −(wht, v), ∀v ∈ Vh. (49)

Note that for estimates of |wht| in (49), the introduction of the τ(t) term is necessary
so that we can avoid nonlocal compatibility conditions [2–4]. Firstly, we introduce the
following symbol:

θ̂h(t) =
∫ t

0
θh(t̃)dt̃.

The above equation implies that

d
dt

θ̂h(t) = θh(t) and θ̂h(0) = 0.

Integrating (49) from 0 to t and noting that (u0 − Phu0, v) = 0, ∀v ∈ Vh, we obtain

(θh, v) + a(θ̂h, v) = −(wh, v), ∀v ∈ Vh. (50)

Lemma 3. Under the assumptions of Theorem 2, we have, for all t > 0,

|θ̂h(t)|2 + e−2δ0t
∫ t

0
e2δ0 t̃(||θ̂h||2 + ||θh||2−1)dt̃ ≤ch4, (51)

τ(t)(||θ̂h(t)||2 + ||θh(t)||2−1) + e−2δ0t
∫ t

0
e2δ0 t̃τ(t̃)|θh|2dt̃ ≤ch4, (52)

τ2(t)|θh(t)|2 + e−2δ0t
∫ t

0
e2δ0 t̃τ2(t̃)||θh||2dt̃ ≤ch4, (53)

τ3(t)||θh(t)||2 + e−2δ0t
∫ t

0
e2δ0 t̃τ3(t̃)|θht̃|2dt̃ ≤ch4. (54)

Proof. Setting v = e2δ0t θ̂h in (50) and noting that

ν

2
||θ̂h||2 ≥

νλ1

2
|θ̂h|2 ≥ δ0|θ̂h|2,

we obtain

1
2

d
dt

(e2δ0t|θ̂h|2) +
ν

2
e2δ0t||θ̂h||2 ≤ −e2δ0t(wh, θ̂h). (55)

By the Young inequality and (3), we have

| − (wh, θ̂h)| ≤
ν

4
||θ̂h||2 +

1
ν
||wh||2−1.

Taking this estimate into (55), then integrating it from 0 to t and using (44) with k = 1, (12)
and (17), one finds

|θ̂h(t)|2 + e−2δ0t
∫ t

0
e2δ0 t̃||θ̂h||2dt̃ ≤ch4, (56)

after a final multiplying by e−2δ0t. Taking v = e2δ0t A−1
h θh in (50) yields

e2δ0t||θ||2−1 +
ν

2
d
dt

e2δ0t|θ̂|2 = δ0ν|θ̂|2 − e2δ0t(wh, A−1θh).
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Applying

| − e2δ0t(wh, A−1θh)| ≤
1
2

e2δ0t||wh||2−1 +
1
2

e2δ0t||θ||2−1

in the above equation, using (44) with k = 1 and Theorem 1, then multiplying the resulting
inequality by e−2δ0t and considering (56), we obtain (51).

Choosing v = e2δ0tθh in (50), we find

e2δ0tτ(t)|θh|2 +
ν

2
d
dt

e2δ0tτ(t)||θ̂h||2 ≤ −e2δ0tτ(t)(wh, θh) + (
ν

2
+ νδ0)e2δ0t||θ̂h||2. (57)

There holds

| − (wh, θh)| ≤
1
2
|θh|2 +

1
2
|wh|2.

Combining this inequality with (57), integrating it concerning the time from 0 to t, then
multiplying it by e−2δ0t and using (42), (13), (18) and (51), we obtain

τ(t)||θ̂h(t)||2 + e−2δ0t
∫ t

0
e2δ0 t̃τ(t̃)|θh|2dt̃ ≤ ch4. (58)

Setting v = e2δ0t A−1
h θh in (49), it holds that

1
2

d
dt

e2δ0tτ(t)|θh|2 + νe2δ0tτ(t)|θh|2 = −e2δ0tτ(t)(wht, A−1θh) + (
1
2
+ δ0)e2δ0t||θ̂h||2.

Applying

| − e2δ0tτ(t)(wht, A−1
h θh)| ≤ −

1
2

e2δ0tτ(t)(||wht||2−1 + ||θh||2−1),

in the above equation, using (45) and Theorem 1, we have (52) by considering (58).
Moreover, taking v = e2δ0tτ(t)θh in (49) and noting that d

dt τ2(t) ≤ 2τ(t), one finds
that

1
2

d
dt

(e2δ0tτ2(t)|θh|2)+νe2δ0tτ2(t)||θh||2 ≤ −e2δ0t(wht, τ2(t)θh) + (
ν

2
+ δ0)e2δ0tτ(t)|θh|2. (59)

Since

| − (wht, τ2(t)θh)| ≤ τ2(t)|wht| |θh| ≤ τ3(t)|wht|2 +
1
4

τ(t)|θh|2,

integrating (59) from 0 to t, using (52), (43), (15) and (18), we have (53) by a final multiplying
by e−2δ0t.

Finally, setting v = e2δ0tτ3(t)θht in (49), it follows that

e2δ0tτ3(t)|θht|2 +
ν

2
d
dt

(e2δ0tτ3(t)||θh||2)

≤− (wht, e2δ0tτ3(t)θht) + ν(δ0 + 1)e2δ0tτ2(t)||θh||2. (60)

Due to

|(wht, τ3(t)θht)| ≤
1
2

τ3(t)|θht|2 +
1
2

τ3(t)|wht|2,
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introducing this inequality into (60), integrating the resulting inequality from 0 to t then
multiplying by e−2δ0t, we deduce that

ντ3(t)||θh||2 + e−2δ0t
∫ t

0
e2δ0 t̃τ3(t̃)|θht̃|2dt̃

≤2e−2δ0t
∫ t

0
e2δ0 t̃ν(δ0 + 1)τ2(t̃)||θh||2dt̃ + e−2δ0t

∫ t

0
e2δ0 t̃τ3(t̃)|wht̃|2dt̃.

using (53), (43), (15) and (18), then the proof is completed.

Theorem 2 and Lemmas 2 and 3 imply the following.

Lemma 4. Under the assumptions of Theorem 2, we have, for all t > 0, that

e−2δ0t
∫ t

0
e2δ0 t̃||ξh||2−1dt̃ ≤ch4, (61)

τ(t)||ξh(t)||2−1 + e−2δ0t
∫ t

0
e2δ0 t̃τ(t̃)|ξh|2dt̃ ≤ch4, (62)

τ2(t)|ξh(t)|2 + e−2δ0t
∫ t

0
e2δ0 t̃τ2(t̃)||ξh||2dt̃ ≤ch4, (63)

τ3(t)||ξh(t)||2 + e−2δ0t
∫ t

0
e2δ0 t̃τ3(t̃)|ξht̃|2dt̃ ≤ch4. (64)

Lemma 4 provides the error bounds generated by the finite element approximation
to the linearized Navier–Stokes when the initial data belong to the L2(Ω) space. Next, we
consider the errors from the nonlinear terms. The long-term behavior of the finite element
error is discussed below.

Lemma 5. Under the assumptions of Theorem 2, if

Nν−2|| f∞||−1 < 1, (65)

there holds

lim
t→∞

sup ||ηh(t)|| ≤ ch. (66)

Proof. Subtracting (31) from (38), we arrive at

(ηht, v) + a(ηh, v) + b(eh, uh, v) + b(u, eh, v) = 0, (67)

with ηh(0) = 0.
Taking v = e2δ0tηh in (67) and using (5), we have

1
2

d
dt

(e2δ0t|ηh|2) + νe2δ0t||ηh||2 = δ0e2δ0t|ηh|2 − e2δ0t[b(eh, uh, ηh) + b(u, ξh, ηh)]. (68)

By (10), it holds true that

|b(eh, u,ηh)| ≤ N||eh|| ||uh|| ||ηh|| ≤ N(||ξh||+ ||ηh||)||uh|| ||ηh||,
|b(u, ξh, ηh)| ≤ N||u|| ||ξh|| ||ηh||.
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Combining these estimates with (78), integrating it from 0 to t, and multiplying by e−2δ0t,
one finds that

|ηh(t)|2 + 2e−2δ0t
∫ t

0
e2δ0 t̃(ν− N||uh||)||ηh||2dt̃

≤2δ0e−2δ0t
∫ t

0
e2δ0 t̃|ηh|2dt̃ + 2Ne−2δ0t

∫ t

0
e2δ0 t̃(||u||+ ||uh||)||ηh|| ||ξh||dt̃. (69)

Letting t→ ∞ and using the L’Hospital rule, it follows that

lim
t→∞

2e−2δ0t
∫ t

0
e2δ0 t̃(ν− N||uh||)||ηh||2dt̃ =2 lim

t→∞

∫ t
0 e2δ0 t̃(ν− N||uh||)||ηh||2dt̃

e2δ0t

=2 lim
t→∞

e2δ0t(ν− N||uh(t)||)||ηh(t)||2
2δ0e2δ0t

=δ−1
0 (ν− N lim

t→∞
||uh(t)||) lim

t→∞
||ηh(t)||2,

lim
t→∞

2δ0e−2δ0t
∫ t

0
e2δ0 t̃|ηh|2dt̃ = lim

t→∞
2δ0

∫ t
0 e2δ0 t̃|ηh|2dt̃

e2δ0t = lim
t→∞
|ηh(t)|2,

lim
t→∞

2Ne−2δ0t
∫ t

0
e2δ0 t̃(||u||+ ||uh||)||ηh|| ||ξh||dt̃ =δ−1

0 N lim
t→∞

(||u(t)||+ ||uh(t)||)||ηh(t)|| ||ξh(t)||.

Inputting the above equations into (69), taking the limitation concerning the time, using
Theorems 1 and 2 and Lemma 4, and noting that lim

t→∞
τ(t) = 1, we obtain

lim
t→∞

sup ||ηh(t)||2 ≤ ch2. (70)

The proof is completed.

Lemma 6. Under the assumption of Lemma 5, we have, for all t ≥ 0,

|η̂h|2 + e−2δ0t
∫ t

0
e2δ0 t̃||ηh(t̃)||2−1dt̃ ≤ch2, (71)

τ(t)||η̂h||2 + e−2δ0t
∫ t

0
e2δ0 t̃τ(t̃)|ηh(t̃)|2dt̃ ≤ch2. (72)

Proof. We first consider the case when t ∈ [0, 1]. Integrating (67) from 0 to t and noting that∫ t

0
(eh · ∇)uhdt̃ =

∫ t

0
∇uhdêh = (êh · ∇)uh

∣∣∣t
0
−
∫ t

0
(êh · ∇)uht̃dt̃,

we obtain

(ηh, v) + a(η̂h, v) + b(êh, uh, v)− b(êh(0), uh(0), v) + b(u, êh, v)− b(uh(0), êh(0), v)

+
( ∫ t

0
[B(êh, uht̃) + B(ut̃, êh)]dt̃, v

)
= 0. (73)

Taking v = A−1
h ηh and using∣∣∣− ( ∫ t

0
[B(êh, uht̃) + B(ut̃, êh)]dt̃, A−1

h ηh

)∣∣∣
≤cτ(t)|êh|1/2||êh||1/2(|uht|1/2||uht||1/2 + |ut||1/2||ut||1/2)||ηh||−1,

|b(êh, uh, v)| ≤c||uh||1/2|Ahuh|1/2|êh| ||êh||−1,
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in (73), then integrating from 0 to t and using Lemmas 1 and 4–6, and Theorems 1 and 2,
we deduce that

|η̂h(t)|2 +
∫ t

0
||ηh||2−1dt̃ ≤ ch2. (74)

Moreover, taking v = η̂h and v = τ(t)ηh in (73), respectively, and following a similar
process, we have

τ(t)||η̂h(t)||2 +
∫ t

0
τ(t̃)|ηh|2dt̃ ≤ ch2. (75)

When t ∈ (1,+∞), it is easily derived by according the classical process. The proof is
completed.

Lemma 7. Under the assumptions of Lemma 5, we have, for all t > 0,

τ2(t)|ηh(t)|2 + e−2δ0t
∫ t

0
e2δ0 t̃τ2(t̃)||ηh||2dt̃ ≤ch2, (76)

τ2(t)||ηh(t)||2 + e−2δ0t
∫ t

0
e2δ0 t̃τ2(t̃)|ηht̃|2dt̃ ≤ch2. (77)

Proof. Since there exists a sufficiently large enough T such that [0,+∞) = (0, T] ∪ (T,+∞)
with (T,+∞) being the neighborhood of +∞ in which the inequality (66) holds, first, we
consider the error on the domain t ∈ (0, T]. Taking v = τ2(t)ηh in (67), it follows that

1
2

d
dt

(τ2(t)|ηh|2) + ντ2(t)||ηh||2 = τ(t)|ηh|2 − τ2(t)[b(eh, uh, ηh) + b(u, ξh, ηh)]. (78)

Using (5) and (6), there hold that

τ2(t)|b(ξh, uh, ηh)| ≤τ2(t)c1(|ξh|1/2||ξh||1/2||uh||+ ||ξh|| |uh|1/2||uh||1/2)|ηh|1/2||ηh||1/2

≤τ2(t)
(

c2
1||uh||2|ξh| ||ξh||+

1
4
|ηh| ||ηh||+ c2

1||uh|| ||ξh||2 +
1
4
|uh| |ηh| ||ηh||

)
≤τ2(t)

(
c2

1||uh||2|ξh| ||ξh||+ c2
1||uh|| ||ξh||2

+
ν

8
||ηh||2 +

1
ν
(|ηh|2 + |uh|2|ηh|2)

)
τ2(t)|b(ηh, uh, ηh)| ≤τ2(t)c1(|ηh|1/2||ηh||1/2||uh||+ ||ηh|| |uh|1/2||uh||1/2)|ηh|1/2||ηh||1/2

≤ ν

16
τ2(t)||ηh||2 +

2
ν

c2
1τ2(t)||uh||2|ηh|2 + (

4
ν
)4c4

1τ2(t)|uh|2||uh||2|ηh|2,

τ2(t)|b(u, ξh, ηh)| ≤τ2(t)
(

c2
1||u||2|ξh| ||ξh||+ c2

1||u|| ||ξh||2

+
ν

8
||ηh||2 +

1
ν
(|ηh|2 + |u|2|ηh|2)

)
,

which implies, by using Lemma 6, that

τ2(t)|ηh(t)|2 +
∫ t

0
τ2(t̃)||ηh||2dt̃

≤c2
1

∫ t

0
τ2(t̃)

(
||uh||2|ξh| ||ξh||+ ||u||2|ξh|1/2||ξh||+ ||uh|| ||ξh||2 + ||u|| ||ξh||2

)
dt̃ (79)

+
∫ t

0

[2
ν
(1 + κ) +

(2
ν

c2
1 + (

4
ν
)4c4

1κ
)
||uh||2)

]
τ2(t̃)|ηh|2dt̃ + ch2.

Applying Theorems 1 and 2, Lemma 4, the Hölder inequality, and the inverse inequality (26),
it holds true that
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c2
1

∫ t

0
τ2(t̃)

(
||uh||2|ξh| ||ξh||+ ||u||2|ξh| ||ξh||

)
dt̃

≤κc2
1

∫ t

0
τ2(t̃)|ξh| ||ξh||dt̃

≤κc2
1

( ∫ t

0
τ2(t̃)|ξh|2dt̃

)1/2( ∫ t

0
τ2(t̃)||ξh||2dt̃

)1/2
(Cauchy−−Bunyakovsky−−Schwarz inequality)

≤ch4,

c2
1

∫ t

0
τ2(t̃)

(
||uh|| ||ξh||2 + ||u|| ||ξh||2

)
dt̃

≤κc2
1

∫ t

0
τ3/2(t̃)

√
c2h−1/2|ξh|1/2||ξh||3/2dt̃ (inverse inequality)

≤κc2
1
√

c2

∫ t

0
h1/2τ(t̃)||ξh||3/2dt̃

≤κc2
1
√

c2
4√T
( ∫ t

0
τ2(t̃)||ξh||2dt̃

)3/4
(Hölder inequality)

≤ch3.

Inputting the above estimates into (79) and using the Gronwall lemma yields

τ2(t)|ηh(t)|2 +
∫ t

0
τ2(t̃)||ηh||2dt̃ ≤ ceM1 h2, (80)

where

M1 =
∫ t

0

[2
ν
(1 + κ) +

(2
ν

c2
1 + (

4
ν
)4c4

1κ
)
||uh||2

]
dt̃.

Since

e
∫ t

0

[
2
ν (1+κ)+

(
2
ν c2

1+( 4
ν )

4c4
1κ
)
||uh ||2

]
dt̃

=e
2
ν (1+κ)t+

(
2
ν c2

1+( 4
ν )

4c4
1κ
)

e
∫ t

0 ||uh ||
2dt̃
≤ c,

when inputting the above inequality into (80), (76) is followed. On the other hand, noting
that τ(t) = 1 for t ≥ 1 and using Lemma 5, it is easy to check that (76) holds on (T,+∞).

Setting v = e2δ0tτ3(t)ηht in (67), we obtain

e2δ0tτ3(t)|ηht|2 +
ν

2
d
dt

(e2δ0tτ3(t)||ηh||2)

=ν(
3
2
+ δ0)e2δ0tτ2(t)||ηh||2 − e2δ0tτ3(t)[b(eh, uh, ηht) + b(u, eh, ηht)]. (81)

Due to (7), there hold that
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τ3(t)|b(ξh, uh, ηht)| ≤c1τ3(t)(|ξh|1/2||ξh||1/2||uh||1/2|Ahuh|1/2

+ ||ξh|| |uh|1/2|Ahuh|1/2)|ηht|

≤1
4

τ3(t)|ηht|2 + 2c2
1τ3(t)|ξh| ||ξh|| ||uh|| |Ahuh|

+ 2c2
1τ3(t)||ξh||2|uh| |Ahuh|,

τ3(t)|b(ηh, uh, ηht)| ≤
1
4

τ3(t)|ηht|2 + 2c2
1τ3(t)|ηh| ||ηh|| ||uh|| |Ahuh|

+ 2c2
1τ3(t)||ηh||2|uh| |Ahuh|,

τ3(t)|b(u, ξh, ηht)| ≤c1τ3(t)(|u|1/2|Au|1/2||ξh||+ ||u||1/2|Au|1/2|ξh|1/2||ξh||1/2)|ηht|

≤1
8

τ3(t)|ηht|2 + 4c2
1τ3(t)|u| |Au| ||ξh||2

+ 4c2
1τ3(t)||u|| |Au| |ξh| ||ξh||,

τ3(t)|b(u, ηh, ηht)| ≤
1
8

τ3(t)|ηht|2 + 4c2
1τ3(t)|u| |Au| ||ηh||2

+ 4c2
1τ3(t)||u|| |Au| |ηh| ||ηh||,

Combining these estimates with (81), integrating from 0 to t, using the Hölder inequality,
and multiplying by e−2δ0t, we arrive at

τ3(t)||ηh(t)||2 + e−2δ0t
∫ t

0
e2δ0 t̃τ3(t̃)|ηht̃|2dt̃ ≤ch2. (82)

The proof is completed.

Theorem 3. Under the assumptions of Lemma 5, we have, for all t > 0,

e−2δ0t
∫ t

0
e2δ0 t̃τ(t̃)|u− uh|2dt̃ ≤ch2, (83)

τ2(t)|u(t)− uh(t)|2 + e−2δ0 t̃
∫ t

0
e2δ0 t̃τ2(t̃)||u− uh||2dt̃ ≤ch2, (84)

τ3(t)||u(t)− uh(t)||2 + e−2δ0t
∫ t

0
e2δ0 t̃τ3(t̃)|ut̃ − uht̃|2dt̃ ≤ch2, (85)

τ4(t)|p(t)− ph(t)|2 ≤ch2. (86)

Proof. By using Lemmas 4 and 6, we have (83)–(85). To prove (86), subtracting (31)
from (10), we arrive at

(eht, v) + a(eh, v)− d(v, p) + b(eh, uh, v) + b(u, eh, v) = 0, ∀v ∈ Vh. (87)

From the definitionof Ph and (87), there holds that

(eht, v) =(eht, (v− Phv)) + (eht, Phv)

=(eht, (v− Phv))− a(eh, Phv) (88)

+ d(Phv, p)− b(eh, uh, Phv)− b(u, eh, Phv).
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By (6), (28) and (29), we have

|d(Phv, p)| =|(p,∇ · Phv)| = |(p− Jh p,∇ · Phv)| ≤ ch||p||1||v||,
|b(eh, uh, Phv)| ≤c1(|eh|1/2||eh||1/2||uh||+ ||eh|| |uh|1/2||uh||1/2)||v||,
|b(u, eh, Phv)| ≤c1(|u|1/2||u||1/2||eh||+ ||u|| |eh|1/2||eh||1/2)||v||,
|(eht, v− Phv)| ≤ch(|ut|+ |uht|)||v||,
|a(eh, Phv)| ≤c||eh|| ||v||.

Taking these estimates into (88), and using Theorems 1 and 2, (84) and (85), we obtain

τ2(t)||eht||−1 =τ2(t) sup
v∈Vh ,v 6=0

(eht, v)
||v||

≤ch + τ2(t)||eh||+ c2
1τ3/2(t)|eh|1/2||eh||1/2 + c2

1τ3/2(t)||eh|| (89)

≤ch.

Due to the discrete LBB condition and applying a similar process to that in (89),
there holds

τ4(t)|p− ph|2 ≤c(τ4(t)||eht||2−1 + τ4(t)||eh||2 + c2
1τ3(t)|eh| ||eh||+ c2

1τ3(t)|eh| ||eh||) (90)

≤ch2.

The proof is completed.

5. Numerical Examples

In this section, we show some numerical examples to verify the theoretical prediction.
Taking f (x, t) = (10 cos(1000πt), 10 cos(1000πt))T , ν = 10, Ω = (0, 1)× (0, 1) and the time
step ∆t = 1/20000 (the implicit Euler scheme is applied to the temporal discretization),
and using mini-element in the spatial approximation, we investigate the solutions (un

h , pn
h)

with different nonsmooth initial data.
Case I: Setting

u1(x1, x2, 0) =

{
10x2

1(x1 − 1)2x2(x2 − 1)(2x2 − 1), x1 ≥ 0.5,

0, x1 < 0.5,

u2(x1, x2, 0) =

{
− 10x1(x1 − 1)(2x1 − 1)x2

2(x2 − 1)2, x1 ≥ 0.5,

0, x1 < 0.5,

it is easily to check that u0(x) = (u1(x1, x2, 0), u2(x1, x2, 0))T , satisfying∇ · u0 = 0 and u0 ∈
L2(Ω). Under the computational environment set above, using the numerical solutions
obtained with h = 1/100 as the “reference solutions” (denoted by (ure f , pre f )), we first
study the convergence order of the spatial discretization in Tables 1–3. From the results,
we can find that, despite the existence of the singularity of the solutions near t = 0, the
predicted convergence orders are almost achieved for all tested cases. Moreover, as the
time tends to 0 (from the 10th step to the 2nd step), all corresponding errors uniformly
increase. Then, we study the developments of the solutions in Figure 1, which suggests
that the values of |un

h |, ||u
n
h ||, and |pn

h | all increase rapidly as the time decreases. As the
time develops, the pressure will arrive at a relative steady state and have the same period
with respect to the time as that of the body force | f (x, t)| (see Figure 1c); all of these are
consistent with the theoretical predictions.

To further confirm the theoretical deduction, we consider two other cases with nons-
mooth initial data.
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Table 1. Absolute errors and convergence orders at the 2nd time step (Case I).

h |pre f − pn
h| Rate |ure f − un

h| Rate ||ure f − un
h|| Rate

1/10 0.330028 − 0.001208 − 0.051935 −
1/20 0.158543 1.06 0.000349 1.79 0.029132 0.83
1/30 0.086556 1.49 0.000153 2.04 0.019055 1.05
1/40 0.051528 1.80 0.0000818 2.17 0.015250 0.77

Table 2. Absolute errors and convergence orders at the 5th time step (Case I).

h |pre f − pn
h| Rate |ure f − un

h| Rate ||ure f − un
h|| Rate

1/10 0.222297 − 0.001006 − 0.038672 −
1/20 0.064695 1.78 0.000256 1.98 0.020591 0.91
1/30 0.031808 1.75 0.000111 2.06 0.013587 1.03
1/40 0.020123 1.59 0.0000591 2.19 0.010815 0.79

Table 3. Absolute errors and convergence orders at the 10th time step (Case I).

h |pre f − pn
h| Rate |ure f − un

h| Rate ||ure f − un
h|| Rate

1/10 0.160356 − 0.000938 − 0.030927 −
1/20 0.050491 1.67 0.000233 2.01 0.016439 0.91
1/30 0.025932 1.64 0.000100 2.09 0.010826 1.03
1/40 0.016863 1.50 0.0000528 2.22 0.008629 0.79
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Figure 1. Development of the solution (Case I).

Case II:

u1(x1, x2, 0) =

{
2π(sin(πx1))

2 sin(πx2) cos(πx2), x1 ≥ 0.5,

0, x1 < 0.5,
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u2(x1, x2, 0) =

{
− 2π sin(πx2) cos(πx1)(sin(πx2))

2, x1 ≥ 0.5,

0, x1 < 0.5,

Case III [13]:

u1(x1, x2, 0) =1.5π(sin(πx1))
1.5(sin(πx2))

0.5 cos(πx2),

u2(x1, x2, 0) =− 1.5π(sin(πx1))
0.5 cos(πx1)(sin(πx2))

1.5.

These two initial data also belong to L2(Ω) and satisfy the incompressibility condition.
With the same computational parameters as above, we show the convergence orders in
Tables 4–9 and the developments of the solutions in Figures 2 and 3. Similar phenomena
can be observed. Again, the singularity of the solution is confirmed. Furthermore, we can
find that the times when the pressure periods begin are different in Figures 1–3; the reason
is that it also depends on the initial data. On the other hand, as the time developed becomes
large enough, the period for the velocity u will appear too, which is omitted here since we
are interested in the singularity near t = 0.

Table 4. Absolute errors and convergence orders at the 2nd time step (Case II).

h |pre f − pn
h| Rate |ure f − un

h| Rate ||ure f − un
h|| Rate

1/10 15.1954 − 0.0651914 − 2.75097 −
1/20 7.59238 1.00 0.018392 1.83 1.53808 0.84
1/30 4.12981 1.50 0.008021 2.05 1.00779 1.04
1/40 2.45499 1.81 0.004290 2.18 0.80603 0.78

Table 5. Absolute errors and convergence orders at the 5th time step (Case II).

h |pre f − pn
h| Rate |ure f − un

h| Rate ||ure f − un
h|| Rate

1/10 10.0955 − 0.053100 − 1.96004 −
1/20 2.84993 1.82 0.013678 1.96 1.05254 0.90
1/30 1.38272 1.78 0.005949 2.05 0.695929 1.02
1/40 0.866596 1.62 0.003160 2.20 0.554039 0.79

Table 6. Absolute errors and convergence orders at the 10th time step (Case II).

h |pre f − pn
h| Rate |ure f − un

h| Rate ||ure f − un
h|| Rate

1/10 7.32485 − 0.0473821 − 1.51272 −
1/20 2.24572 1.71 0.0120436 1.98 0.807485 0.91
1/30 1.14128 1.67 0.0051888 2.08 0.532222 1.03
1/40 0.73624 1.52 0.0027371 2.22 0.424337 0.79
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Figure 2. Cont.
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Figure 2. Development of the solution (Case II).

Table 7. Absolute errors and convergence orders at the 2nd time step (Case III).

h |pre f − pn
h| Rate |ure f − un

h| Rate ||ure f − un
h|| Rate

1/10 27.3182 − 0.106307 − 4.35144 −
1/20 8.21586 1.73 0.027245 1.96 2.23334 0.96
1/30 4.23649 1.63 0.011775 2.07 1.46822 1.03
1/40 2.79604 1.44 0.0062589 2.20 1.15596 0.83

Table 8. Absolute errors and convergence orders at the 5th time step (Case III).

h |pre f − pn
h| Rate |ure f − un

h| Rate ||ure f − un
h|| Rate

1/10 19.3230 − 0.0877984 − 3.34969 −
1/20 6.16618 1.65 0.0213474 2.04 1.73706 0.95
1/30 3.22885 1.60 0.0091224 2.10 1.14311 1.03
1/40 2.13412 1.44 0.0048206 2.22 0.90731 0.80

Table 9. Absolute errors and convergence orders at the 10th time step (Case III).

h |pre f − pn
h| Rate |ure f − un

h| Rate ||ure f − un
h|| Rate

1/10 14.7695 − 0.0801361 − 2.72252 −
1/20 4.87391 1.60 0.0192647 2.06 1.42985 0.92
1/30 2.56145 1.59 0.0081812 2.11 0.93953 1.04
1/40 1.69241 1.44 0.0043027 2.23 0.74845 0.79
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Figure 3. Development of the solution (Case III).

6. Conclusions

In this paper, we analyzed the finite element error estimate for the Navier–Stokes
equations with L2 initial data. By introducing an intermediate step and using the integral
techniques and dual-norm estimate, we derived the finite element bounds for the velocity
and pressure. However, due to the singularity of the solution on t ∈ [0, 1), we did not
obtain the optimal error estimate for the velocity in L2-norm. Moreover, only the error
estimates for the spatial semi-discrete finite element method were derived. How does the
technique in this paper extend to the fully discrete scheme, especially with a higher order
scheme (see, e.g., [23])? All of these will be considered in our further work.
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