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Abstract: The Boltzmann–Gibbs–von Neumann–Shannon additive entropy SBG = −k ∑i pi ln pi as
well as its continuous and quantum counterparts, constitute the grounding concept on which the BG
statistical mechanics is constructed. This magnificent theory has produced, and will most probably
keep producing in the future, successes in vast classes of classical and quantum systems. However,
recent decades have seen a proliferation of natural, artificial and social complex systems which
defy its bases and make it inapplicable. This paradigmatic theory has been generalized in 1988
into the nonextensive statistical mechanics—as currently referred to—grounded on the nonadditive

entropy Sq = k 1−∑i pq
i

q−1 as well as its corresponding continuous and quantum counterparts. In the
literature, there exist nowadays over fifty mathematically well defined entropic functionals. Sq

plays a special role among them. Indeed, it constitutes the pillar of a great variety of theoretical,
experimental, observational and computational validations in the area of complexity—plectics, as
Murray Gell-Mann used to call it. Then, a question emerges naturally, namely In what senses is entropy
Sq unique? The present effort is dedicated to a—surely non exhaustive—mathematical answer to this
basic question.

Keywords: Boltzmann–Gibbs statistical mechanics; nonadditive entropies; nonextensive statistical
mechanics; entropic uniqueness theorems

1. Introduction

Boltzmann–Gibbs (BG) statistical mechanics can arguably be considered as one of
the pillars of contemporary theoretical physics, together with Maxwell electromagnetism,
Newtonian and quantum mechanics, and Einstein’s special and general relativity. Consis-
tently, the concepts of entropy and energy provide the basis of classical thermodynamics [1].
The BG theory is grounded on the well known BG entropy [2–6], which is additive. The
1988 proposal [7] of nonadditive entropies as a basis to generalize the traditional BG theory
led to what is currently referred to as nonextensive statistical mechanics. Let us briefly review
here the basic issues.

BG statistical mechanics is constructed upon the following Boltzmann–Gibbs–von
Neumann–Shannon entropic functional:

SBG = −k
W

∑
i=1

pi ln pi

( W

∑
i=1

pi = 1
)

, (1)

where k is a conventional positive constant chosen once for ever (typically k = kB in physics,
and k = 1 in computational sciences). Its maximal value occurs for equal probabilities,
i.e., pi = 1/W , ∀i, and is given by

SBG = k ln W , (2)
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carved on the tombstone of Ludwig Boltzmann in Vienna. This relation constitutes a genius
connection between the macroscopic and the microscopic descriptions of real systems.
The entropy (1) is additive [8]. Indeed, if A and B are two probabilistically independent systems
[i.e., pA+B

ij = pA
i pB

j , ∀(i, j)], we straightforwardly verify that

SBG(A + B) = SBG(A) + SBG(B) . (3)

Further, for a system in thermodynamical equilibrium with a thermostat at temperature T,
the distribution which optimizes SBG is given by the celebrated BG weight

pi =
e−βEi

∑W
j=1 e−βEj

, (4)

where β = 1/kT and {Ei} are the possible energies of the system.
A generalization of this theory was proposed in 1988 [7] on the basis of the en-

tropic functional

Sq = k
1−∑W

i=1 pq
i

q− 1
(q ∈ R; S1 = SBG) . (5)

This functional can also be written as

Sq = k
W

∑
i=1

pi lnq
1
pi

= −k
W

∑
i=1

pq
i lnq pi = −k

W

∑
i=1

pi ln2−q pi , (6)

where the q-logarithmic function is defined as

lnq z ≡ z1−q − 1
1− q

(ln1 z = ln z) . (7)

The extremal value of Sq is given by the generalization of Equation (2), namely

SBG = k
W1−q − 1

1− q
≡ k lnq W . (8)

This value corresponds to a maximum for q > 0, to a minimum for q < 0, and to the
constant k(W − 1) for q = 0.

Equation (3) is generalized as follows:

Sq(A + B)
k

=
Sq(A)

k
+

Sq(B)
k

+ (1− q)
Sq(A)

k
Sq(B)

k
, (9)

hence
Sq(A + B) = Sq(A) + Sq(B) +

1− q
k

Sq(A)Sq(B) , (10)

which recovers Equation (3) in the (q− 1)/k→ 0 limit.
Equation (4) is generalized into

pi =
e
−βq(Ei−µq)
q

∑W
j=1 e

−βq(Ej−µq)
q

, (11)

where µq plays the role of a chemical potential, and eq(x) is the inverse function of lnq x, i.e.,

ex
q ≡ [1 + (1− q)x]

1
1−q
+ , (12)

[. . . ]+ being equal to [. . . ] if [. . . ] > 0 and zero otherwise; it satisfies ex
q e−x

2−q = 1.
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Details related to this q-generalized statistical mechanics, currently referred to as
nonextensive statistical mechanics, are available at [9–12], and strong experimental validations
are presented in [13–15], to cite but a few; full bibliography is available at [16]. In connection
with Equation (11), see also [17], where it is shown that, through a Moebius group, one
can find a Casimir invariant, which allows to define an observable inverse temperature βq.
Let us also mention at this point that exponential and logarithmic deformed functions
that extend the q-exponential and the q-logarithmic ones [18] are already available in the
literature [19–21].

2. On Uniqueness

Since the introduction of SBG in the XIX-th century, very many (nearly fifty) entropic
functionals have emerged in the literature for a variety of informational, cybernetic, physi-
cal, mathematical reasons: see, for instance, Figure 1. For a meticulous listing of existing
entropic functionals discussed from a chronological and logical perspective, see [22]; for
further historical remarks, see [12] in Section 3.2.1.

ENTROPIC	FUNCTIONALS

ENTROPIC	FUNCTIONALS

TRACE-FORM COMPOSABLE

INCLUDES	SBG

Sq,q'BR

SqAb

SκK

Sκ ,rKLS

SηAP

Sc,dHT

Sq,δ
Sq,q'ST

Sα ,β ,qT

Sq,rSM

SqLVRA

SqTMP

SqAr

Sa,b,rCTT

SbC

ScE

SλC

SBGSq
SqR

Sγ ,αJPPT

Group	
entropies

Sa,b,αT

Figure 1. It has been proven [23] that Sq is the unique entropic form which simultaneously is trace-
form, composable, and recovers SBG as a particular instance. Sq (hence SBG), the Renyi entropy
SR

q [24], the Tempesta (a, b, α)-entropy ST
a,b,α (Equation (9.1) in [25]), the Jensen–Pazuki–Pruessner–

Tempesta entropy SJPPT
γ,α [26] and many others belong to the class of group entropies and are therefore

composable. To facilitate the identification, we are here using the following notations: Sharma–
Mittal entropy SSM

q,r [27], Landsberg-Vedral-Rajagopal-Abe entropy SLVRA
q [28–30], Tsallis–Mendes–

Plastino entropy STMP
q , Arimoto entropy SAr

q [31], Curado–Tempesta–Tsallis entropy SCTT
a,b,r [32],

Borges–Roditi entropy SBR
q,q′ [33], Abe entropy SAb

q [34], Kaniadakis entropy SK
κ [35], Kaniadakis–

Lissia–Scarfone entropy SKLS
κ,r [36], Anteneodo–Plastino entropy SAP

η [37], Hanel–Thurner entropy
SHT

c,d [38,39], Sq,δ [40], Schwammle–Tsallis entropy SST
q,q′ [41], the Tempesta (α, β, q)-entropy ST

α,β,q [42],

the Curado b-entropy SC
b [43,44], the Curado λ-entropy SC

λ [45] (see [12]), and the exponential c-
entropy SE

c (see [10,46]). The entropic form SC
λ is one among the rare cases which do not include SBG

and is neither trace-form nor composable. From [1,12].
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Sq and, naturally, its particular case SBG reveal some sort of special role within this ever
increasingly long list, in the sense that they repeatedly appear, either directly or indirectly
through their consequences, in a plethora of natural, artificial and social systems, especially
those within which nonlinear dynamics is involved. The present effort is dedicated to
review in what senses Sq is nowadays known to be unique.

Before focusing on this task, let us mention that, among the many existing extensions
of SBG, only one is presently known to be additive, all the others being nonadditive. This
exception is the Renyi entropic functional [24], defined as follows:

SR
q = k

ln ∑W
i=1 pq

i
1− q

(q ∈ R; SR
1 = SBG) . (13)

The nonadditive Sq and the additive SR
q are related through the following monotonically

increasing function [7]:

SR
q = k

ln[1 + (1− q)Sq/k]
1− q

(∀q). (14)

It immediately follows that the extremization of SR
q and Sq for the same set of constraints

yields the same optimizing distribution. For instance, if a value for q < 1 exists for a
specific class of systems, such that Sq(N) is extensive, i.e., Sq(N) ∝ N (N → ∞), then
SR

q ∝ ln N. Such a nonlinear asymptotic behavior makes SR
q to violate thermodynamical

entropic extensivity, which violates in turn the mathematical Legendre structure upon
which classical thermodynamics is based. For different purposes, however, the Renyi en-
tropic functional exhibits some interesting mathematical properties (see [47] and references
therein). Let us finally mention that the functional relationship (14) plays a central role in
recently q-generalized mathematical objects [48].

2.1. Santos 1997 Theorem

Shannon formulated in 1948 a definitively relevant theorem [49,50], which we summa-
rize here.

Let us assume that an entropic form S({pi}) satisfies the following properties:

(i) S({pi}) is a continuous f unction o f {pi}; (15)

(ii) S(pi = 1/W, ∀i)monotonically increases with the total

number o f possibilities W; (16)

(iii) S(A + B) = S(A) + S(B) i f pA+B
ij = pA

i pB
j ∀(i, j) , (17)

where S(A + B) ≡ S({pA+B
ij }), S(A) ≡ S({pA

i }) (pA
i ≡

WB

∑
j=1

pA+B
ij ) ,

and S(B) ≡ S({pB
j }) (pB

j ≡
WA

∑
i=1

pA+B
ij ) ;

(iv) S({pi}) = S(pL, pM) + pLS({pi/pL}) + pMS({pi/pM}) (18)

with pL ≡ ∑
L terms

pi , pM ≡ ∑
M terms

pi ,

L + M = W , and pL + pM = 1 .

Then and only then [49,50] S({pi}) is given by Equation (1).
It is therefore very clear in what sense the functional (1) is unique, namely that the

axiomatic set (i)–(iv) is mathematically equivalent to the functional (1). This neatly differs
from the definitively wrong, and yet not rare, statement that form (1) is the unique physically
admissible entropic functional. Axiom (iv) is sometimes referred to as the grouping property.
Let us also mention that some authors prefer the notation S(A× B) instead of S(A + B) in
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order to emphasize the fact that the phase-space of the total system is the tensor product of
the space-phases of the subsystems A and B.

In 1997, Santos theorem [51] generalized that of Shannon as follows:
Let us assume that an entropic form S({pi}) satisfies the following properties:

(i) S({pi}) is a continuous f unction o f {pi}; (19)

(ii) S(pi = 1/W, ∀i)monotonically increases with the total

number o f possibilities W; (20)

(iii)
S(A + B)

k
=

S(A)

k
+

S(B)
k

+ (1− q)
S(A)

k
S(B)

k
(21)

i f pA+B
ij = pA

i pB
j ∀(i, j), with k > 0;

(iv) S({pi}) = S(pL, pM) + pq
LS({pi/pL}) + pq

MS({pi/pM}) (22)

with pL ≡ ∑
L terms

pi , pL ≡ ∑
M terms

pi ,

L + M = W, and pL + pM = 1 .

Then and only then [51] S({pi}) is given by Equation (5).

2.2. The 1997 Connection to Weak Chaos in the Logistic Map

The first connection between the entropy Sq and nonlinear dynamical systems, namely
the logistic map, was established in 1997 [52]. This connection was analytically com-
plemented one year later [53]. Since then, a vast literature has been dedicated to this
connection, which we summarize in what follows.

The logistic map is a paradigmatic one-dimensional dissipative nonlinear dynamical
system. It is defined as follows:

xt+1 = 1− ax2
t (t = 0, 1, 2, . . . ; a ∈ [0, 2]; xt ∈ [−1, 1]). (23)

For a = 2, the system is strongly chaotic, the sensitivity to the initial conditions is given
by ξ ≡ lim∆x0→0

∆xt
∆x0

= eλ1 t, the Lyapunov exponent λ1 being equal to ln 2 = 0.69 . . . ,
and its entropy production per unit time is given by the Pesin identity (see details in [54] and
references therein)

KBG ≡ lim
t→∞

SBG(t)

t
= λ1 , (24)

where the subindex 1 will become clear here below.
At the Feigenbaum point ac = 1.40115518909205 . . . , the system is weakly chaotic,

the Lyapunov exponent λ1 vanishes, the sensitivity to the initial conditions is given by

ξ = e
λq t
q , the q-generalized Lyapunov coefficient λq being described in [55], and its q-

generalized entropy production per unit time is given by the Pesin-like identity (see details
in [54] and references therein)

Kq ≡ lim
t→∞

Sq(t)
t

= λq , (25)

where q = 0.24448770134128 . . .
These remarkable results by no means prove, on rigorous mathematical grounds, the

uniqueness of Sq in what concerns such connections with say generic dissipative nonlinear
one-dimensional dynamical systems. For example, the Kaniadakis entropy also implies
a finite slope limt→∞[SK

κ (t)/t]; this is in fact not surprising since the Kaniadakis entropy
is a linear combination of Sq’s. However, to the best of our knowledge, no other entropic
functional but Sq has been shown to lead to a basic relation such as (25).
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2.3. Connection with Jackson Derivative

We follow here along the lines of [12]. One century ago, the mathematician Jackson
generalized [56,57] the concept of derivative of a generic function f (x). He introduced his
differential operator Dq as follows:

Dq f (x) ≡ f (qx)− f (x)
qx− x

. (26)

We immediately verify that D1 f (x) = d f (x)/dx. For q 6= 1, this operator replaces the usual
(infinitesimal) translation operation on the abscissa x of the function f (x) by a dilatation operation.

Abe noticed in 1997 a remarkable property [34] which uniquely yields Sq. In the same
way that we can easily verify that

SBG = − d
dx

W

∑
i=1

p x
i |x=1 , (27)

we can verify that, ∀q,

Sq = −Dq

W

∑
i=1

p x
i |x=1 . (28)

This is an interesting property, where the usual infinitesimal translational operation is
replaced by a finite operation, namely, in this case, by the one which is basic for scale-
invariance. This fact is in some sense consistent with the definition of the entropy Sq, which
was inspired [7] by multifractal geometry.

2.4. Abe 2000 Theorem

In 1953, Khinchin uniqueness theorem [58] further reformulated that of Shannon in a
very elegant manner:

Let us assume that an entropic form S({pi}) satisfies the following properties:

(i) S({pi}) is a continuous f unction o f {pi}; (29)

(ii) S(pi = 1/W, ∀i)monotonically increases with the total

number o f possibilities W; (30)

(iii) S(p1, p2, . . . , pW , 0) = S(p1, p2, . . . , pW); (31)

(iv) S(A + B) = S(A) + S(B|A) , (32)

where S(A + B) ≡ S({pA+B
ij }), S(A) ≡ S({pA

i }) (pA
i ≡

WB

∑
j=1

pA+B
ij ) ,

and the conditional entropy S(B|A) ≡
WA

∑
i=1

pA
i S({pA+B

ij /pA
i }) .

Then and only then [59] S({pi}) is given by Equation (1).
It follows then that the Shannon and the Khinchin sets of axioms are mathemati-

cally equivalent.
In 2000, the Abe theorem [60] generalized that of Khinchin as follows:
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Let us assume that an entropic form S({pi}) satisfies the following properties:

(i) S({pi}) is a continuous f unction o f {pi}; (33)

(ii) S(pi = 1/W, ∀i)monotonically increases with the total

number o f possibilities W; (34)

(iii) S(p1, p2, . . . , pW , 0) = S(p1, p2, . . . , pW); (35)

(iv)
S(A + B)

k
=

S(A)

k
+

S(B|A)

k
+ (1− q)

S(A)

k
S(B|A)

k
(36)

where S(A + B) ≡ S({pA+B
ij }), S(A) ≡ S({

WB

∑
j=1

pA+B
ij }), and the

conditional entropy S(B|A) ≡
∑WA

i=1(pA
i )

qS({pA+B
ij /pA

i })

∑WA
i=1(pA

i )
q

(k > 0)

Then and only then [60] S({pi}) is given by Equation (5).
The possibility of existence of such a theorem through the appropriate generalization of

Khinchin’ s fourth axiom had already been considered by Plastino and Plastino [61,62]. Abe
established [60] the precise form of this generalized fourth axiom, and proved the theorem.

Notice that, interestingly enough, what enters in the definition of the conditional
entropy is the escort distribution, and not the original one. Notice also that Equation (35)
only holds for q > 0. Therefore the expression (5) for q < 0 can only be defined for strictly
positive values of {pi}, and it is to be understood as an analytical extension of the q > 0 case.

Let us finally emphasize that both Santos axioms and Abe axioms are necessary and
sufficient conditions for the emergence of Sq. Consequently, those two sets of axioms are
mathematically equivalent.

The axiomatic justification of diverse entropic functionals has in fact deserved great
attention in both recent and not so recent literature. Let us summarize here, along lines
close to those presented by Jizba and Korbel [63], the present status of this interesting path
of research. Three main consistent lines of analysis exist, namely generalized Shannon–
Khinchine axioms of the type of [51,60], the Shore and Johnson axioms [64–66], and the
Uffink class of entropies [67]. All three lead to the same set of admissible entropies, which
includes Sq (and also, in some formulations, monotonic functions of Sq). The particular line
related to the Shore–Johnson axioms deserves a special attention because it has been the
object of a neat controversy, which is focused on in Section 2.10 hereafter.

2.5. Beck-Cohen 2003 Superstatistics

An interesting physical interpretation of nonextensive statistics was preliminary ad-
vanced in the early 2000s by Wilk and Wlodarczyk [68] and by Beck [69]. This interpretation
was beautifully generalized and formalized, in 2003, in what is currently known nowadays
as the Beck–Cohen superstatistics [70]. This phenomenological theory generalizes nonex-
tensive statistics in the sense that its generic state distribution contains the q-exponential
one as a particular case.

Beck and Cohen [70–73] start from the standard BG exponential factor but with β
being itself a random variable (whence the name “superstatistics”) due to possible spatial
and/or temporal fluctuations. They define

P(E) =
∫ ∞

0
dβ′ f (β′) e−β′E , (37)

where f (β′) is a normalized distribution, such that P(E) also is normalizable under the
same conditions as the Boltzmann factor e−β′E itself is. They also define

qBC ≡
〈(β′)2〉
〈β′〉2 =

∫ ∞
0 dβ′ (β′)2 f (β′)[∫ ∞

0 dβ′ β′ f (β′)
]2 , (38)
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where we have introduced BC standing for Beck-Cohen. Unless f (β′) is deduced from first
principles, this theory is a phenomenological one.

If f (β′) = δ(β′ − β) we recover the BG weight

P(E) = e−βE , (39)

and qBC = 1.
If f (β′) is the χ2-distribution with n degrees of freedom (particular case of the Gamma

distribution), i.e.,

f (β′) =
n

2βΓ
( n

2
)(nβ′

2β

)n/2−1
exp

{
−nβ′

2β

}
(n = 1, 2, 3, . . .) , (40)

we obtain
P(E) = e−βE

q , (41)

with qBC = q = n+2
n ≥ 1 .

In addition to the so-called χ2-superstatistics described above, we have the so-called
inverse χ2-superstatistics, where it is 1/β′, instead of β′, that follows the χ2 distribution.
Finally, a third class is sometimes focused on in the literature. It is referred to as the log-
normal superstatistics, and corresponds to the case where β′ is distributed along a log-normal
distribution. These three classes are sometimes referred to as universality ones because they
are all connected to Gaussians, which, in the Central Limit Theorem sense, are attractors in
the space of distributions.

Several other examples of f (β′) are discussed in [70], and it is eventually established an
important result, namely that all narrowly peaked distributions f (β′) yield, as its first nontrivial
leading order, q-statistics with q = qBC. As we know, the q-exponential distribution emerges
naturally from extremizing the entropic functional Sq. Let us however emphasize that this
argument does not prove a uniqueness sense for Sq. It nevertheless points towards some
special role being played by this entropic functional. Further issues along this line have
been studied in [74–78].

2.6. Lattice-Boltzmann Models for Fluids

In the present Subsection we closely follow [12]. The incompressible Navier-Stokes
equation has been considered, by Boghosian et al. in 2003 [79], on a discretized D-dimensional
Bravais lattice of coordination number b. It is further assumed that there is a single value
for the particle mass, and also for speed. The basic requirement for the lattice-Boltzmann
model is to be Galilean-invariant (i.e., invariant under change of inertial reference frame),
like the Navier–Stokes equation itself. It has been proved [79] that an H-theorem is satisfied
for a trace-form entropy (i.e., of the form S({pi}) = ∑W

i f (pi)) only if it has the form of
Sq with

q = 1− 2
D

. (42)

Therefore q < 1 in all cases (q > 0 if D > 2, q < 0 if D < 2, and q = 0 for D = 2),
and approaches unity from below in the D → ∞ limit. This interesting result has been
generalized by allowing multiple masses and multiple speeds. Galilean invariance once
again mandates [80] an entropy of the form of Sq, with a unique value of q determined
by a transcendental equation involving the dimension and symmetry properties of the
Bravais lattice as well as the multiple values of the masses and of the speeds. Of course,
Equation (42) is recovered for the particular case of single mass and single speed. Summa-
rizing, under quite general mathematical hypotheses (including the entropic functional to
be of the trace-form), the natural imposition of the Galilean invariance for lattice-Boltzmann
models for fluids mandates the use of Sq.
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2.7. Topsoe 2005 Factorizability in Game Theory

Topsoe proposed [81,82] an abstract zero-sum game theory between two players,
namely “Nature”, aiming at high complexity, and “the physicist”, aiming at low complexity.
We describe here a simple illustration of the game ingredients; full mathematical details
are available in [81,82]. For simplicity, the set of possibilities (alphabet) is here assumed
discrete and finite, W being the number of possibilities. The probability set associated
with “Nature” is P ≡ {pi} (with ∑W

i=1 pi = 1), and that associated with “the physicist”
is Q ≡ {qi} (with ∑W

i=1 qi = 1). The focus is then put on the triple (Φ, S, D), where the
complexity Φ, the entropy S, and the divergence D are respectively given by

Φ(P||Q) =
W

∑
i=1

[
qi f
( pi

qi

)
− f (pi)

]
, (43)

S(P) = −
W

∑
i=1

f (pi) , (44)

and

D = (P||Q) =
W

∑
i=1

qi f
( pi

qi

)
, (45)

where the generator f (x) is a real-valued analytic and strictly convex function on [0, 1] such
that f (0) = f (1) = 0 and f ′(1) = 1 (normalization condition).

The Topsoe 2005 theorem [82] states: A complexity function of the form (43) factorizes if
and only if it is related to the Tsallis entropic function.

2.8. Amari-Ohara-Matsuzoe 2012 Conformally Invariant Geometry

A information-geometrical approach [83] leads to an abstract uniqueness property
that we briefly summarize here. The generalized logarithm defined in Equation (7) is
nowadays placed within a more general frame [19–21], referred to as χ-logarithm and
defined as follows:

lnχ z ≡
∫ z

1

dt
χ(t)

, (46)

where χ(t) is a generic function which satisfies simple properties such as being a concave
monotonically increasing one; we define consistently the inverse function ez

χ ≡ ln−1
χ (z).

We straightforwardly verify that χ(t) = tq yields lnχ z = lnq z and ez
χ = ez

q. For χ(t) = t
we refer to the exponential family and for generic χ(t) we refer to the deformed exponential
family; naturally, the deformed exponential family includes the exponential one as a partic-
ular instance. Many useful concepts such as generalized entropy, divergence and escort
probability distribution are associated with each admissible choice of χ(t). In the space of
the probability distributions of a vector random variable x = (x1, . . . , xn), two different
different types of geometrical structures can be defined from an information-geometrical
perspective, namely the invariant and the flat ones (see details in [83]). The q-exponential
family is the unique class in the extended class of positive measures, which simultaneously
has the invariant and flat geometries. Furthermore, the q-family is the unique class of flat
geometry that is connected conformally to the invariant geometry.

2.9. Enciso–Tempesta 2017 Theorem

In this Section we follow along the lines of [12].
A dimensionless entropic form S({pi}) (i.e., whenever expressed in appropriate con-

ventional units, e.g., in units of k) is said composable [84,85] (see also [1,10,86,87]) if the
entropy S(A + B)/k corresponding to a system composed of two probabilistically indepen-
dent subsystems A and B can be expressed in the form

S(A + B)
k

= F
(S(A)

k
,

S(B)
k

; {η}
)

, (47)
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where F(x, y; {η}) is a smooth function of (x, y) which depends on a (typically small)
set of universal indices {η} defined in such a way that F(x, y; {0}) = x + y (additivity),
and which satisfies F(x, 0; {η}) = x (null-composability), F(x, y; {η}) = F(y, x; {η}) (sym-
metry), F(x, F(y, z; {η}); {η}) = F(F(x, y; {η}), z; {η}) (associativity). For thermodynamical
systems, this associativity appears to be consistent with the 0th Principle of Thermodynamics.

In other words, the whole concept of composability is constructed upon the require-
ment that the entropy of (A + B) does not depend on the microscopic configurations of
A and of B. Equivalently, we are able to macroscopically calculate the entropy of the
composed system without any need of entering into the knowledge of the microscopic
states of the subsystems. This property appears to be a natural one for an entropic form
if we desire to use it as a basis for a statistical mechanics which would naturally connect
to thermodynamics.

The entropy SBG is composable since it satisfies Equation (3). In other words, we have
FBG(x, y) = x + y. Being SBG nonparametric, no index exists in FBG. Further, the Renyi
entropy SR

q is composable as it satisfies F(x, y) = x + y for all values of q. The entropy Sq
also is composable since it satisfies (9).

Let us also mention that a linear combination of composable entropies is not necessarily
composable. Such is the case of the Kaniadakis entropy SK

κ [35,88,89]. Indeed, it is not
composable for all values of κ in spite of being a linear combination of entropies Sq.

Let us now focus on another relevant property, namely whether an entropic functional
is trace-form. By definition, an entropy S({pi}) is said trace-form if it can be written as
S({pi}) = ∑W

i f (pi), where f (z) is a generic analytic function in the interval z ∈ (0, 1).
Entropies Sq, SK

κ and many others are trace-form, in contrast with SR
q , which is not.

In 2017, Enciso and Tempesta proved [23] that Sq is the unique entropic functional
being simultaneously composable and trace-form. See Figure 1.

2.10. The Shore–Johnson–Axioms Controversy (2005–2019)

To the best of our knowledge, the analysis of Sq and its associated thermostatistics
was initiated in 2005 [90,91] in connection with the Shore–Johnson axioms for statistical
inference [64–66].

In 2013, Pressé et al. [92–94] started to lengthily insist that the Shore-Johnson axioms
exclude entropies such as Sq. Their arguments were boldly rebutted in [95] (The actual title
Conceptual inadequacy of the Shore and Johnson axioms for wide classes of complex systems of [95]
constitutes a sort of ambiguous shortcut. It should have rather been Conceptual inadequacy of
the Presse et al. interpretation of the Shore and Johnson axioms for wide classes of complex systems.)
where, among other points, it was explicitly written that generic probabilities {ui} and {vj}
satisfy, for q 6= 1,

Sq({ui ⊗2−q vj})
k

= −∑
ij
(ui ⊗2−q vj) ln2−q(ui ⊗2−q vj) = −∑

ij
(ui ⊗2−q vj)(ln2−q ui + ln2−q vj)

6= −∑
ij

uivj(ln2−q ui + ln2−q vj) = −
W

∑
i=1

ui ln2−q ui −
W

∑
j=1

vj ln2−q vj

=
Sq({ui})

k
+

Sq({vj})
k

. (48)

Along their arguments, Presse et al. [92–94] definitively violate the imperative inequality
present in the middle line of this mathematical chain. They ignore it not only in [92–94]
but also in their reply [96] to [95]. In fact, the chain (48) is an interesting and nontrivial
consequence of this class of correlations (strangely enough, referred in [92] to as “spurious
correlations”) between probabilistic events. The fallacies contained in [92–94,96] have been
meticulously discussed and rebutted in [63,97]. This fact seemingly closes that longstanding
controversy, and we are allowed to believe that it is now irreversibly established that Sq is
admissible within the Shore-Johnson axioms. However, it remains nowadays somewhat
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unclear whether entropic functionals differing from Sq (for instance, Sq,δ or SK
κ ) are, as well,

admissible within those important axioms. Therefore, with respect to the uniqueness
issue, the problem presently appears to be open. For example, it is unknown whether non-
trace-form and/or non-composable entropies can satisfy those axioms (or other possible
statistical consistency axioms) as well.

2.11. Plastino-Tsallis-Wedemann-Haubold 2022

One more sense along which Sq is unique has been advanced recently [98].
The BG entropy is defined as the mean value of ln 1

pi
. Moreover, under the usual

linear constraints for the normalization and the energy mean value, it is optimized by the
BG exponential factor, which precisely is the inverse function of the logarithmic function.
Similarly, the Sq entropy is defined as the mean value of lnq

1
pi

. Moreover, under the usual
linear constraints for the normalization and the energy mean value, it is optimized by a
q̃-exponential factor, which precisely is the inverse function of the q̃-logarithmic function
with the dual index q̃ = 2− q. One may ask how general is such a structure for trace-form
entropic functionals. This is the question that was analyzed in [98].

The most general trace-form entropy SG can always be written as follows:

SG({pi}) = k
W

∑
i=1

pi lnG
1
pi

, (49)

where the generalized logarithm lnG(z) (z being a real positive number) must be a monoton-
ically increasing concave function for z > 0, and also satisfy lnG(1) = 0, among some other
simple requirements [98]. The optimization of SG({pi}) under the usual linear constraints
yields a distribution given by the generalized ln−1

G̃ (z) ≡ eG̃(z), where G̃ denotes dual
functions, duality being possibly defined in various manners. The simplest such manner is
as follows:

lnG̃(z) = − lnG

(1
z

)
. (50)

It is proved in [98] that the most general entropic functional (49) with duality given by (50)
is precisely Sq.

2.12. Plastino-Plastino 2023 Connection with the Micro-Canonical Ensemble

Among trace form entropic measures, the Sq non-additive entropies exhibit a special
link with the micro-canonical ensemble [99,100]. Systems described by the micro-canonical
ensemble usually have parts described by q-exponentials. That is, parts described by
probability distributions optimizing the Sq entropies. This happens when the number of
micro-states of the rest of the system having energy less or equal to a given energy E0 grows
as a power of E0. Here “the rest of the system” does not necessarily refer to a subsystem: it
can refer, in the case of classical Hamiltonian systems, to a subset of the system’s canonical
variables. For example, in classical non-relativistic scenarios, the kinetic energy of a system
of N particles (interacting or not) is an homogeneous quadratic function of the momenta,
implying that the volume in momentum-space grows in the above mentioned power-law
fashion, the exponent depending on the number N of particles. Because of this power-law
behavior, the marginal probability density for the configuration variables is a q-exponential
of the total potential energy. The link between the micro-canonical ensemble and the Sq-
canonical distributions is, in a sense, unique. Up to now, the Sq entropy appears to be the
only trace-form entropy exhibiting entropy-optimizing distributions that have been related
to the micro-canonical treatment of concrete and physically relevant families of systems.

The unique character of this connection is particularly transparent in the classical
non-relativistic regime: within that regime we can say that, to the extent that Nature prefers
quadratic kinetic energies, it also prefers q-exponentials. In this regard, it is significative
that q-exponentials are clearly discernible in a paper by Maxwell from 1879 [101,102]
(see Equation (41) of [102]), which is one of the first papers ever discussing the micro-
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canonical ensemble, as we call it nowadays. Let us emphasize that Maxwell arrived to the
q-exponentials without explicitly optimizing any entropic functional at all, just by assuming
equal probabilities in the occupancy of the phase-space corresponding to a given total
energy. To the best of our knowledge, probability distributions optimizing other of the
non-logarithmic trace-form entropies discussed in the current research literature are not
present in those pioneering works.

Before concluding this Subsection, let us mention that the above uniqueness might
be not unrelated to the concept of thermostat universal independence introduced by Biro,
Barnafoldi and Van in 2015 [103].

3. Closely Related Issues
3.1. The Values of the Entropic Indices Might Depend on the Class of States of the System

To illustrate the claim in the title of the present Subsection, let us focus on a specific
example. The (1 + 1)-dimensional first-neighbor-interacting Ising ferromagnet in the pres-
ence of an external transverse field has, at its thermodynamical limit, a zero-temperature
second-order critical point, i.e., a quantum critical point. At this point, the total entropy of
this system vanishes since it is a pure state. Consider now a L-sized block (with L� 1) of
this infinitely-sized system: it is in a mixed state and its nonvanishing BG entropy SBG(L) is
given by [104,105]

SBG(L)
k

∼ c
3

ln L , (51)

where c > 0 is the central charge within the corresponding conformal field theory; for
example, c = 1/2 for the Ising ferromagnet, and c = 1 for the XY ferromagnet. We are
unaware of a rigorous proof determining the subdominant term, but strong indications [106]
suggest the following behavior:

SBG(L)
k

∼ c
3

ln L + ln b = ln(bLc/3) , (52)

where b > 1 is a constant. With the definition We f f ≡ bLc/3 (e f f stands for effective),
we have SBG(L)

k ∼ ln We f f (L). Consequently, if the system was in an equal-probability state,
we could interpret We f f as the total number of possibilities. Then, we would have that,
for L� 1,

Sq(L)
k
∼ lnq We f f (L) ∼ lnq

(
bLc/3

)
=

[bLc/3]1−q − 1
1− q

∝ Lc(1−q)/3 (q < 1) . (53)

Thermodynamic extensivity of the entropy (generically required by the Legendre structure

of thermodynamics [40]) would then imply Sqent (L)
k ∝ L with

qent = 1− 3
c

(c ≥ 0) . (54)

Let us emphasize that this result was obtained under the assumption of equal probabilities.
It happens though that this assumption is wrong at the quantum critical point that we are
focusing on! [106]. The correct result for this system is instead given by [105]

qent =

√
9 + c2 − 3

c
, (55)

which definitively differs from 1− c
3 . Interestingly enough, however, the correct expres-

sion (55) asymptotically reproduces, in the c→ ∞ limit, the wrong expression (54), i.e., re-
lation (55) implies qent ∼ 1− c

3 (c→ ∞).
It is allowed to think that, perhaps quite generically, not only for Sq but for other

entropic functionals as well (Sq,δ [40] among others), the a priori assumption of equal prob-
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abilities for specific systems yields, at the relevant stationary state, the correct asymptotic
behavior when approaching the BG limit (i.e., (q, δ)→ (1, 1) for Sq,δ, for instance).

3.2. Entropic Functional vs. Entropy of a System

To be admissible, an entropic functional S({pi}) must be one and the same for all
possible states, i.e., for all possible sets of the probabilities {pi} of a generic system. Such is,
of course, the case of all entropic functionals that we have discussed up to now.

The Barrow proposal for entropy [107], noted SB
∆ here, is not an entropic functional,

but rather an expected value for black-holes or cosmological possibilities under the assump-
tion of a rough external surface. Indeed, it is usually written as follows:

SB
∆ ∼ A1+∆/2 , (56)

or, equivalently, SB
∆ ∼ L2+∆, where A ∼ L2, L being the characteristic linear dimension

of the system; for ∆ = 0, SB
0 ∼ L2 recovers the usual Bekenstein-Hawking black-hole

behavior; for ∆ = 1, SB
1 ∼ L3 recovers the thermodynamically admissible entropy for

a d = 3 system; for 0 < ∆ < 1 and also for ∆ > 1, the Barrow entropy SB
∆ hopefully

corresponds to a fractal-like black-hole surface. Summarizing, the Barrow entropy is
extensive, i.e., thermodynamically admissible only for ∆ = 1. Indeed, for ∆ < 1 (∆ > 1), SB

∆
is subextensive (superextensive), thus violating the Legendre structure of thermodynamics.

On the other hand, let us focus on the entropic functional Sq,δ [40], defined as follows:

Sq,δ = k
W

∑
i=1

pi

[
lnq

1
pi

]δ
(q ∈ R, δ ∈ R) , (57)

which recovers, as particular instances, Sq,1 = Sq and S1,δ = Sδ ≡ k ∑W
i=1 pi

[
ln 1

pi

]δ
.

For equal probabilities, Equation (57) yields

S1,δ

k
= (ln W)δ (58)

The Bekenstein-Hawking result SBG/k ∼ ln W ∝ A leads to

S1,δ

k
∝ Aδ . (59)

This expression can be identified with (56) through:

δ ≡ 1 +
∆
2

. (60)

This identity has produced in the literature some unfortunate confusion between the
entropic functional Sδ [10] and the so-called Barrow entropy [107]. Let us emphasize, at this
stage, that SB

∆ is by no means analogous to the entropic functional Sδ({pi}) [40]. Indeed,
the latter is an entropic functional applicable a priori to any system in any state, whereas,
in contrast, the former has been specifically proposed for black holes at their thermal
equilibrium state.

Recent observational data concerning dark energy physics have been interpreted [108]
as being consistent with Sδ with δ = 1.565. This value differs from δ = 3/2 advanced
in [40] under the three-fold hypothesis that (i) the system is a d = 3 one with its surface
being a d = 2 one, (ii) entropic extensivity of Sδ for a d-dimensional system, and (iii) equal
probabilities, which yields δ = d/(d− 1). If the value of δ slightly different from 3/2 is
taken as granted, then one or the other or even all three hypothesis could be inadequate.
If we remind that, for a somewhat similar quantum system, the correct value of q differs
from its value assuming equal probabilities (see Section 3.1), it cannot be excluded that
δ = 1.565 differing from δ = 3/2 is rather caused by the failure of hypothesis (iii) and not
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necessarily by the failure of the other two hypothesis, which assume that the thermody-
namically extensive entropy is based on the δ-entropic functional with the special value
δ = d/(d− 1).

An alternative explanation could of course be the failure of hypothesis (i), meaning

that the system is a fractal-like one with say δ =
dB

f

dS
f
, dB

f and dS
f being respectively the bulk

and surface dimensionalities, not necessarily being given by (dB
f , dS

f ) = (d, d − 1). For

example, if we impose
d f

d f−1 = 1.565 with (dB
f , dS

f ) = (d f , d f − 1) we obtain d f ' 2.77; if we

instead impose say 3/dS
f = 1.565 we obtain dS

f ' 1.92. Clearly, at this stage, the discrepancy
1.565 vs. 3/2 remains as an open, surely intriguing, question (Equation (57) yields, for equal

probabilities,
Sq,δ

k = (lnq W)δ =
[

W1−q−1
1−q

]δ
∼ W(1−q)δ

[1−q]δ ∝ W(1−q)δ (W → ∞) . If this

behavior is correct for a given system, then the value of the exponent (1− q)δ is to be
preserved. Therefore, if a given wrong hypothesis (such as say equal probabilities) makes
(1− qwrong) to be larger than (1− qcorrect) (as proved in Section 3.1), this implies, assuming
a fixed value for (1− qcorrect)δcorrect = (1− qwrong)δwrong, that δwrong smaller than δcorrect,
which is precisely the inequality sense of 3/2 as compared to 1.565 !).

4. Summary

A plethora of entropic functionals (close to fifty) and their associated optimizing
distributions are today available in the literature [16]. Among those, Sq is by far the
most frequently validated in natural, artificial and social complex systems up to now.
Then, seeking for a deeper understanding, a natural question emerges: in what senses is Sq
unique? In the present review, we have listed (basically in chronological order) many such
senses. In some cases, (Sections 2.1, 2.3, 2.4, 2.6–2.9, 2.11 and 2.12), the uniqueness of Sq is
established on rigorous grounds. In others (Sections 2.2 and 2.5), it is conjectured on partial
analytical arguments and/or strong numerical indications.

A related controversy has been briefly reviewed in Section 2.10.
Finally, in Sections 3.1 and 3.2, we have illustrated that (i) the values of the entropic

indices (for example, q for Sq and δ for Sδ) might depend on the class of states of the system
(for example, assuming either equal or unequal probabilities, basically corresponding
respectively to either a microcanonical or a canonical ensemble), and also that (ii) an
entropic functional must be clearly distinguished from the same or from a different entropic
functional applied to a specific system in specific states. Both are frequently referred to in the
literature as “entropy”, but their mathematical role is sensibly distinct. Further senses along
which Sq, or other entropic functionals, would be unique are certainly welcome.
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