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Abstract: Populations of ecological systems generally have demographic fluctuations due to birth
and death processes. At the same time, they are exposed to changing environments. We studied
populations composed of two phenotypes of bacteria and analyzed the impact that both types of
fluctuations have on the mean time to extinction of the entire population if extinction is the final
fate. Our results are based on Gillespie simulations and on the WKB approach applied to classical
stochastic systems, here in certain limiting cases. As a function of the frequency of environmental
changes, we observe a non-monotonic dependence of the mean time to extinction. Its dependencies
on other system parameters are also explored. This allows the control of the mean time to extinction
to be as large or as small as possible, depending on whether extinction should be avoided or is desired
from the perspective of bacteria or the perspective of hosts to which the bacteria are deleterious.

Keywords: population dynamics; demographic noise; environmental fluctuations; dichotomous
Markov process; normals and persisters; mean time to extinction; Gillespie simulations; WKB approach

1. Introduction

Many natural systems, such as genetic, proteomic, and cellular networks, as well
as populations of bacteria on a micro-scale and populations of ecological species on a
macro-scale, show demographic fluctuations due to birth and death events. At the same
time, these systems are exposed to changing environments, including periodic changes,
such as seasonal variations and daily changes in sunlight and darkness, and random
changes, such as outbreaks of diseases, catastrophes, and climate variations. In the last
decade, much activity has been invested in studying the interplay of demographic and
external fluctuations and their impacts on the temporary or final fate of the respective
systems [1–9]. Population dynamics under environmental conditions, which are frequently
or even continually switching between favorable and adverse conditions, were previously
studied in [1,2] in a population of two strains, one growing slightly faster than the other,
particularly their fixation (one strain takes over the population) properties.

However, these studies did not consider any switching between the strains or their
final fates, which we consider later. In a similar system with two strains and a randomly
switching carrying capacity, the correlations between the population size and its compo-
sition were determined, particularly for conditions under which a public good produced
by one of the strains is beneficial [3]. The authors of [6] focused on the establishment
probability of a population and the mean time for establishment in a time-varying en-
vironment. Finally, the impact of demographic and environmental fluctuations on the
mean time to extinction (MTE) was studied in a stochastic branching-annihilation process
in a time-modulated environment in [7], in populations consisting of two phenotypes of
bacteria in [8], and more recently, for two species interacting via competition in [9].

In more detail, the work in [8] considered a population comprising two phenotypes of
bacteria, normals and persisters. Normals multiply rapidly but are less resilient to stress
compared to persisters, which multiply less but are also less vulnerable. To cope with
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environmental stress, bacteria have developed some evolutionary strategies to survive
and thrive. One such strategy is switching between their different phenotypes [10,11]. For
example, it has been found that a subpopulation of persisters can survive high antibiotic
concentrations [10], and the persister state is fully reversible under growth-stimulating
conditions [11]. The presence of persisters considerably reduces the risk of extinction
as compared to their absence. This was shown in [8] for a constant environment or a
single catastrophic phase in the limiting cases of slow or fast switching. Switching is most
beneficial when it is not very frequent.

Instead of a single catastrophic phase, in this paper, we consider the environmental
variability to be either random (implemented as dichotomous Markov noise, characterized
by the rate and amplitude) or manifest as periodic variation (either a rectangular or sine
wave). The effect of unfavorable environmental conditions is simulated by reducing the
birth rate of the normals. Thus, the birth rate becomes time-dependent.

We pursue two questions. From the perspective of bacteria, which want to survive
as long as possible, we ask which optimal strategy of switching between phenotypes the
bacteria must employ to maximize their chances of survival when the environment changes
between favorable and adverse conditions at a given frequency and amplitude. On the
other hand, persisters are not the only way to survive antimicrobial attacks but are at least
one way to improve antibiotic resistance. In view of antibiotic resistance, we ask how to
optimally tune environmental changes in terms of doses and intervals of adverse conditions
so as to minimize the time to extinction of the bacterial population, given a fixed set of
parameters that characterize the population of normals and persisters.

Developing tactics for successfully eradicating the microbial population and prevent-
ing antimicrobial resistance is of great relevance nowadays, and it has been the main focus
of many recent studies [12]. Different types of protocols for antibiotic treatment have been
discussed [13,14], particularly the so-called cycling one, which refers to the administration
of drug A for T days followed by drug B for T days. In contrast, and not to be mixed up
with the cycling approach, we resolve the effect of periodically varying the concentration
of a single “drug” (in the form of more or less suppressed birth rates) during the total
administration period for a single type of population. The focus is on the extinction of this
population of bacteria beyond the mean-field limit.

Concerning the methodology, for the numerical part, we particularly used a modified
Gillespie algorithm [15,16] that accounts for explicitly time-dependent propensities. As
an analytical approach, we make use of the WKB method in the limit of weak perturba-
tions or high frequencies. The extinction risk is then quantified by finding the MTE of
the population.

This paper is organized as follows. In Section 2, we present the model in terms of
stochastic rates with different versions of the master equations. Section 3 deals with the
quasi-stationary distribution of the population, whose leakage over the course of time
determines the MTE that we estimate in the subsequent sections. For a wide range of
parameters and stochastically changing environments, we describe modified Gillespie
simulations in Section 4. For an analytical estimate of the MTE, we derive Hamilton’s
equations of motion in real and momentum space (Section 5) as they occur in the WKB
approach. Section 6 deals with the WKB approach for the linear approximation of weak
and periodically changing environments (Section 6.1) and the Kapitsa method for high
frequencies of environmental changes (Section 6.2). Section 7 contains the discussion and a
summary of the results. In the appendices, we include additional details on the numerical
algorithms and the analytical approaches.

2. Model

Our system comprises a well-mixed two-species population considered earlier in [8].
The population consists of normals (N ), whose number is denoted by n, and persisters
(M), whose number is denoted by m, and their total number is N. Normals die at a rate set
to unity throughout, and they divide at a rate B(1− n/K) per individual, where K is the
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carrying capacity for normals. The persisters neither die nor multiply as an approximation
of their low birth rate in comparison to normals. Normals switch to persisters at a rate α,
while persisters switch back to normals at a rate β. The ratio between the two switching
rates is denoted by Γ = α/β. In summary, the birth, death, and switching events governing
the population dynamics are:

N → N +N at a rate B(1− n/K)

N → ∅ at unit rate

N → M at a rate α

M → N at a rate β . (1)

The stochastic nature of these events and the discreteness of the individuals result in
intrinsic or demographic noise that will ultimately drive the system to extinction. All later
times that we measure are therefore measured in units of the death rate. In the experiments
in [10,17], the growth and switching rates are given per hour. Therefore, to understand our
results in natural units, we set the death rate to be 1 death per hour, and since all other
rates are in the units of the death rate, they are also in hours, without stating this explicitly.

In addition to intrinsic noise, the population is also subjected to extrinsic environ-
mental noise. The effect of environmental perturbations is implemented by making the
birth rate B time-dependent. These perturbations are taken to be either random (symmetric
or asymmetric dichotomous Markov noise: SDMN or ADMN) or deterministic (periodic,
either sinusoidal or symmetric or asymmetric rectangular).

Random switching of the environment. For a randomly switching environment, B
switches between B+ and B− such that B− < B+ according to ADMN, which is expressed as:

B(t) =
1
2
[(B+ + B−) + ζr(t)(B+ − B−)] (2)

with the random (r) transition ζr = 1 → ζr = −1 taking place at a rate ν+, while
ζr = −1→ ζr = 1 takes place at a rate ν−. The average switching rate is ν = (ν+ + ν−)/2,
and ∆ = (ν− − ν+)/2ν is a measure of the switching asymmetry, with ∆ = 0 for the
symmetric case. ADMN is stationary noise with the mean 〈ζ(t)〉 = ∆ and the autocorre-
lation function 〈ζr(t)ζr(t′)〉 − 〈ζr(t)〉〈ζr(t′)〉 = (1− ∆2)e−2ν|t−t′ |. The stochastic system is
described by a master equation, which, for a random (index r) environmental perturbation,
is described by the following set:

dP(r)(n, m, ζr, t)
dt

= (E−n − 1)B(t)n
(

1− n
K

)
P(r)(n, m, ζr, t) + (E+

n − 1)nP(r)(n, m, ζr, t)

+ (E+
n E−m − 1)αnP(r)(n, m, ζr, t) + (E−n E+

m − 1)βmP(r)(n, m, ζr, t)

+ ν−ζr P(r)(n, m,−ζr, t)− νζr P(r)(n, m, ζr, t), (3)

where E±n/m denotes shift operators such that E±n f (n, m, ζ, t) = f (n± 1, m, ζ, t), and sim-
ilarly, E±m f (n, m, ζ, t) = f (n, m ± 1, ζ, t). As indicated before, the switching rates are
ν−ζr = ν∓ for ζr = ±1 and νζr = ν± for ζr = ±1.

Deterministic changes in the environment. Deterministic changes are realized as
either abrupt periodic rectangular switches or continuous sinusoidal changes. For a periodic
(index p) (possibly asymmetric rectangular and sinusoidal) environmental change, the birth
rate varies deterministically, and the master equation reduces to

dP(p)(n, m, t)
dt

= (E−n − 1)B(t)n
(

1− n
K

)
P(p)(n, m, t) + (E+

n − 1)nP(p)(n, m, t)

+ (E+
n E−m − 1)αnP(p)(n, m, t) + (E−n E+

m − 1)βmP(p)(n, m, t). (4)

Abrupt periodic rectangular switches. For a periodic rectangular wave, B(t) switches
periodically between B+ and B−, again such that B− < B+. Again, B(t) is given by
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Equation (2), but with ζr replaced by ζp, which enters the rectangular wave of period
T = (1/ν+) + (1/ν−), defined as

ζp(t) =
∞

∑
j=−∞

[
rect

(
t + 1

2ν+
+ jT

1/ν+

)
− rect

(
t− 1

2ν−
+ jT

1/ν−

)]
, (5)

where rect(.) is a rectangular function defined as rect(x) = 1 if |x| < 1/2 and rect(x) = 0
if |x| > 1/2, while rect(±1/2) = 0, as was also used in [2]. It becomes a square wave
ζp(t) = sign{sin(πνt)} when the indicator of asymmetry ∆ = 0.

Continuous sinusoidal changes. When B(t) changes continuously according to a
periodic sinusoidal wave, it is given by B(t) = B0 + ε sin(ωt), where ε is the amplitude,
and ω is the angular frequency of the perturbation. If we write the parameters of the
sinusoidal perturbation in terms of the parameters of ADMN or a rectangular wave, we
obtain ω = πν, B0 = (B+ + B−)/2, and ε = (B+ − B−)/2, but ε will vary independently
of B+ and B−. Figure 1 shows an example of each type of variation in B(t) and the
corresponding sample trajectories of the total population size N until extinction. The
different modulations of the environment are visualized in Figure 1 together with the
corresponding time evolution of the population size.

(a) (b) (c)

Figure 1. Time series of the birth rate B(t) (upper panel) and sample realization of the total pop-
ulation size N (lower panel) for (a) asymmetric random, (b) periodic rectangular, and (c) sinu-
soidal perturbations. The parameters are B+ = 1.5, B− = 1.1, α = 0.02, and β = 0.02. For (a,b),
(K, ν+, ν−) = (500, 0.00375, 0.00225), and for (c), (K, B0, ω, ε) = (300, 1.3, 0.007, 0.2). The initial
number of persisters is taken to be 0.3 K/2, and that of normals is 0.7 K/2.

Mean-field level. Before we look further into the dynamics of these master equations,
we should state what these equations yield on the mean-field level in the absence of any
noise, as their fixed-point structure is needed later. In the mean-field description, the
dynamics of the average number of normals n̄(t) and persisters m̄(t) are governed by the
rate equations [8]

dn̄
dt

= B n̄(1− n̄/K)− n̄− αn̄ + βm̄

dm̄
dt

= αn̄− βm̄ . (6)

These equations have a trivial fixed point (FP) F0 at n̄ = m̄ = 0, describing population
extinction, and a nontrivial FP FM at nM = K(1 − 1/B), mM = ΓnM. For B > 1, FM
is stable and the population is viable, while F0 is a saddle point. At B = 1, we have
a transcritical bifurcation, at which the fixed points exchange their stability properties.
The relaxation time tr of the system in the vicinity of FM is determined by the principal
eigenvalue of the Jacobian of the rate equation (Equation (6)), evaluated at FM, which gives
tr = 2/

(∣∣∣−δ− α− β−
√
−4δβ + (δ + α + β)2

∣∣∣) ∼ 1/δ, where δ = B− 1, if we consider
rare switching (α, β � 1) between phenotypes. 1/δ sets the time scale with which other
time scales should be compared.
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At this point, it should be mentioned that a detailed discussion on the mean-field level
of a population of normals and persisters is provided in [18]. The rate equations are similar
to Equation (6), but for exponential rather than logistic growth in the absence of medication
and a different time dependence of the effective birth rate, directly reflecting the application
of medication. The dynamics there were considered under the constraint of a finite overall
treatment time T and fixed overall dosage of drugs against the bacteria. By using a multi-
objective optimization approach, the best distributions of discrete medication times within
the treatment duration T have been determined such that the numbers of surviving normals
and persisters at the end of the treatment time are simultaneously minimized.

3. Quasi-Stationary Distribution

The stable FP FM of the deterministic system becomes metastable in the stochastic
description. After a short transient of the order of tr, the system enters the long-lived
metastable state centered around FM. This metastable state then slowly decays in time to
the absorbing state n = 0 = m, leading to extinction. Before we determine the MTE, let
us briefly describe the quasi-stationary distribution (QSD) of the population size. First,
consider the case of SDMN (∆ = 0, ν+ = ν−) (blue color in Figure 2). In each of the two
states corresponding to B+ and B−, the population tends to its metastable fixed point FM±
(at nM± = K(1− 1/B±), mM± = ΓnM± ) and fluctuates around it. As seen in previous
studies as well [3,4], for low values of the frequency, the population spends more time
around each of these fixed points than it spends switching between the two, and the
distribution is thus bimodal (see Figure 2a). However, as the switching rate increases, the
stochastic dynamics spend more time in between the fixed points (see Figure 2b). On further
increasing the switching (around ν ≈ (B0 − 1)), the QSD becomes unimodal, peaking at
the value between the two fixed points.

(a) (b) (c)

Figure 2. The quasi-stationary distribution for SDMN (blue color) and sinusoidal perturbations
(orange color) for three values of the environmental switching frequency ν = {0.001, 0.1, 0.5} (a–c).
N is the sum of normals and persisters, measured from 250 sample trajectories for the distribution.
Other parameters are B+ = 1.5, B− = 1.1, K = 1000, α = 0.02, and β = 0.02.

However, if instead of SDMN, we have sinusoidal perturbations (orange color in
Figure 2), the QSD is no longer a pronounced bimodal distribution (the remnants of a
bimodal distribution may be due to the longer time that the population sees a good or
adverse environment, where the slope of the sinusoidal perturbation is approximately
zero) for low frequencies, as B continually changes and takes on all values between B+

and B−. Another observation is that the distribution is broader for SDMN than for the
sinusoidal perturbation.

In Figure 3, we compare the results for ADMN and a rectangular wave with the duty
cycle (γ = ν−/(ν+ + ν−)) taken as (a) 0.75 and (b) 0.25, respectively. The distribution is
more skewed and broader for ADMN than for the rectangular wave perturbation and
shifted toward larger population sizes for higher duty cycles as in (a), in which the system
sees more favorable conditions.

Regardless of whether there is an environmental perturbation or not, and irrespective
of the type of environmental perturbation, the QSD will eventually leak to zero on a
timescale much longer than the relaxation time tr of the system. This is shown in Figure 4
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as an example case for an SDMN perturbation. In the next sections, we discuss how long it
takes on average until the distribution completely decays to zero: we determine the MTE
as a function of the system parameters and the properties of the environment.

(a) (b)

Figure 3. Impact of more favorable (a) and more adverse environmental conditions (b) on the quasi-
stationary distribution for an ADMN (blue color) and rectangular wave perturbations (orange color):
(a) ν = 0.5, ν+ = 0.25, and ν− = 0.75; (b) ν = 0.5, ν+ = 0.75, and ν− = 0.25. N is the sum of normals
and persisters, measured from 1200 sample trajectories for the distribution. Otherwise, the conditions
are the same as in Figure 2.

(a) (b)

(c) (d)

Figure 4. Leakage of a quasi-stationary distribution of normals and persisters, whose sum is N. In
time windows of t ∈ [100–250] (a), t ∈ [350–500] (b), t ∈ [500–750] (c), and t ∈ [2300–2500] (d), we
measure the fraction of 250 sample trajectories, which takes a value N as the sum of normals and
persisters that have survived the respective time interval. The environment is modeled as SDMN for
ν = 0.05. Other parameters are B+ = 1.2, B− = 1.1, K = 500, α = 0.02, and β = 0.02.

4. Numerical Simulations

To access a broad—and to a certain extent, complementary—parameter range as
compared to analytical calculations, we directly simulated the stochastic reactions according
to Equation (1). For time-independent rates of births, deaths, and phenotypic switching, but
also for random switching between environmental states, we used the standard Gillespie
algorithm [15]. However, for systems with time-dependent rates, such as the birth rate in
our system, either a modified Gillespie algorithm or the modified next-reaction method, as
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discussed in [16], is at our disposal. For sinusoidal perturbations, we found it faster and
easier to implement the modified Gillespie algorithm. For periodic square and rectangular
waves, we used the modified next-reaction method.

We used the (modified) Gillespie algorithm in the parameter ranges α ∈ [0.01, 0.03],
β ∈ [0.01, 0.03], and K ∈ [500, 1000]. The reason is that the simulation time increases
exponentially with large α, small β, and a large capacity K. The range of frequencies is
determined by the saturation of the MTE to its unperturbed value. For a specific set of
parameters, we then pursue the time evolution of initially N = n + m individuals of the
two phenotypes until a sudden (exponentially fast) full extinction happens (caused by the
instanton between the two fixed points FM and the extinction fixed point F∅ of Hamilton’s
equations of motion). We simulated ensembles of 2400 sample trajectories to calculate
the MTE for each set of parameters. The main steps of the algorithms are presented in
Appendix A.1.

4.1. Numerical Simulations for Sinusoidal Perturbations

To compare the results with the random DMN and a periodic rectangular wave, we
also show the simulation results for a sinusoidal perturbation with respect to the switching
rate ν = ω/π. The results of the stochastic simulations show that as ν → 0, the MTE
reaches a maximum. As we increase ν, the MTE decreases and reaches a minimum near a
certain value of ν, which is around ν = 0.003 in Figure 5a. Thereafter, it again increases
and approaches the unperturbed value for higher ν. For each sample trajectory, the phase
of the external sinusoidal perturbation is chosen randomly from the interval (0, 2π). To
see how much deviation there is in the calculation of the MTE for smaller subsamples, we
divided the 2400 sample trajectories for each value of ν into 12 smaller ensembles of size
200 to determine the standard deviation of the MTE calculated over the subsamples and
show the results in Figure 5a (black bars) along with the MTE of all 2400 trajectories (red
dots). As we shall see later, the initial time evolution that we see in Gillespie simulations
will not be resolved by the linear theory in Figure 10 below.

(a) (b)

Figure 5. (a) Typical non-monotonic dependence of the MTE on the switching rate ν (or frequency ω)
obtained with Gillespie simulations (red dots) for fixed α and β. The black dashed line shows the
value of the MTE for the unperturbed system. The amplitude of perturbation is ε = 0.05. The dashed
green line shows the time 1/ν. For MTEs larger than that, the system on average has time to see more
than one period of environmental change. (b) Variation in the MTE with the external frequency ν (ω)
for three values of ε = 0.025 (black squares), 0.05 (red stars), and 0.075 (blue circles). The parameters
are α = β = 0.02, K = 500, B = 1.1, and 2400 sample trajectories.

We also illustrate the effect of the strength of perturbations on the MTE in Figure 5.
As expected, the higher the value of ε, that is, the stronger the perturbation, the greater its
effect on the MTE. The value of the minimum MTE decreases with an increase in ε. For an
antimicrobial treatment, this has the following impact. For appropriate frequencies, the
MTE is at the minimum value, and for these frequencies, the microbial population can be
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eliminated more quickly by increasing the dosage of antimicrobial drugs. For higher ε, it
also takes longer for the MTE to approach the unperturbed value.

4.2. Impact of the Switching Rates α and β on the MTE’s Frequency Dependence for the
Sinusoidal Change

To estimate how typical the qualitative features of Figure 5 for fixed switching parame-
ters α and β are, we plot the MTE as a function of the frequency but with different values of
α and β in Figure 6. The value of ν around which the MTE approaches its minimum value
increases with an increase in β and a decrease in α.

(a) (b)

Figure 6. Gillespie simulations for the MTE as a function of the frequency for (a) different values of
β and α = 0.02 and (b) different values of α and β = 0.02. Other parameters are K = 500, B = 1.1,
ε = 0.05, and 2400 sample trajectories.

4.3. Impact of the Minimum Value of the Birth Rates

As a reminder, we are mainly interested in extinction events caused by fluctuations in
a quasi-stationary population, which is stable on the mean-field level and does not decay
per se. Nevertheless, the choice of the minimum birth rate has some impact. The minimum
birth rate can be set either above the bifurcation point of the deterministic system or below
it, with the latter case chosen to be zero here. Since the impact should be more clearly visible
if adverse conditions hold over a whole interval at constant B− (as compared to the negative
phase of a sinusoidal change), to analyze the role of B−, we chose a randomly switching
environment (or—more precisely—the birth rate) between B+ and B− according to SDMN
(Equation (2)) and searched for remnants of the bifurcation in the deterministic system.

In all simulations (unless otherwise stated) with SDMN or a rectangular/square wave,
the initial environment was chosen with the probability determined by the duty cycle γ.

The case of B− > 1. Let us first consider the case where B switches randomly between
B+ = 1.15 and B− = 1.05 at the same rate, that is, ν+ = ν− = ν. The results are shown as
connected blue squares in Figure 7a.
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(a) (b)

Figure 7. (a) MTE as a function of ν = ω/π when B switches randomly according to SDMN between
B+ = 1.15 and B− ∈ {0, 1.05}. (b) MTE as a function of ν when B switches randomly according to
SDMN between B+ = {1.2, 1.3, 1.4, 1.5} and B− = 0. Other parameters are α = 0.02, β = 0.02, and
K = 500 in (a) and K = 1000 in (b). In the inset, we zoom into ν < 0.05.

The MTE reaches a maximum at a very low switching rate, that is, for ν→ 0. In the
limit of low switching rates, the MTE corresponds to the average value of MTE = (MTE|B+ +
MTE|B−)/2 for the two birth rates, while the MTE approaches MTE|(B++B−)/2 for high
switching rates. The MTE reaches a minimum at around ν ≈ 0.003–0.005 to increase again
for more frequent switches. From ν ≈ 0.08 onward, the MTE approaches the unperturbed
value that corresponds to the averaged environment with Bav = (B+ + B−)/2 = 1.1 and
keeps fluctuating around this value. This frequency lies above the relaxation rate for
adverse conditions ∼ B− 1 = 0.05 and below that for favorable conditions ∼ B− 1 = 0.15,
so the favorable conditions are better resolved.

The case of B− < 1. So far, the minimum birth rate was chosen to be larger than
1, because in the deterministic limit, the fixed point FM loses its stability at B = B− = 1.
Therefore, as soon as B− ≤ 1, the fate of the population is extinction without the need for a
large stochastic fluctuation that drives it to extinction via an instanton. In the context of an
antimicrobial treatment, the unfavorable environment for the microbial population would
correspond to the introduction of biostatic drugs into the environment. Biostatic drugs
prevent microbes from growing. When the biostatic drug only reduces the birth/growth
rate of the microbes, as discussed in the case above, it is imperfect. Ideally, the biostatic drug
should completely stop the growth of the microbes. Therefore, in our simulations, we also
studied the case of the birth rate of normals completely going to zero under unfavorable
environmental conditions, that is, B− = 0, mimicking the effect of a perfect biostatic drug.

The results are shown for B+ = 1.15 and B− = 0 by red dots in Figure 7a. At low
frequencies, again, the MTE reaches a maximum and is similar to the case with B− = 1.05.
Then, as the switching rate increases, the MTE falls faster than it did for B− = 1.05. Under
unfavorable environmental conditions, the population of the system falls exponentially,
and if the duration of the unfavorable environment lasts longer than the decay time of
the population, then it goes completely extinct. However, as the switching rate further
increases, the conditions can improve for the population in the sense that the MTE decays
less quickly around ν = 10−2, that is, at intermediate frequencies.

This increase becomes more pronounced when we have higher birth rates in the
favorable environment, as shown in Figure 7b. This is due to the fact that the environment
switches more often, particularly due to favorable conditions with some finite birth rate
B+ > 1, which rescues the population and allows survival. Once the system sees the
average birth rate Bav < 1, for which it becomes less than the death rate, it corresponds to
the unstable FM in the rate equation, and the population goes extinct very quickly with a
very low value for the MTE, even before reaching the quasi-stationary distribution.
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4.4. Deterministic versus Stochastic Changes in the Environment for Square Waves and SDMN

In general, there is a big difference for a population between being exposed to a pe-
riodically varying environment to which it can, in principle, adapt and being exposed to
random changes that come as a surprise. What is the effect if the changes are almost peri-
odically occurring, but with some fluctuations about the regular periodicity? To focus on
this effect, it is natural to compare the MTEs for SDMN ζr(t) with MTEs for a square wave
ζp(t), where B again switches between two discrete states, but regularly and periodically
(see also Figure 1a). The dip in the MTE is larger for periodic switching than for random
switching, but the range of ν for which the MTE is significantly lower than the unperturbed
value is larger for random switching than for periodic changes (figure not displayed).

In Figure 8, we plot the distribution of the escape times for the symmetric random
(a) and periodic (b) environments. In (a), the initial environment is chosen according
to the probability decided by γ (which for the square wave is 1/2). In (b), the initial
ζp is always chosen to be +1, and the phase of the square wave is taken to be zero.
Therefore, in (b), all sample trajectories experience switching at the same time points. The
distribution of escape times is Poissonian for random switches and shows intervals of
“forbidden” extinction times for intermediate ν values in (b). The reason is that, for low
ν, the system can distinguish between good and bad environmental conditions. During
favorable conditions, the leakage of the quasi-stationary distribution due to fluctuations
seems to be overcompensated by the resolved growing birth rate such that extinction events
during these favorable conditions become very unlikely and lead to “forbidden” intervals.
Note that the frequency of the environmental changes is linearly related to the number of
peaks of escape times in the histogram.

As expected, for higher frequencies, as well as for random initial conditions for the
deterministic changes (the latter case is not displayed), the histograms for SDMN and the
square wave look similar. This means in particular that the impact of the random versus
strictly periodic administration of antibiotics depends on the frequency. On the other hand,
for given fixed initial conditions, there are time intervals in which an extinction is very
unlikely as long as the different environmental states can be resolved.

(a)

(b)

Figure 8. Histogram of escape times (a) for SDMN and (b) for square-wave perturbations. For
square waves, all start with the zero phase, for SDMN, half start with +1 and the other half with −1.
Parameters are B+ = 1.15, B−1.05, α = 0.02, β = 0.02, and K = 500.
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4.5. Duty Cycles with Asymmetric Switching in Competition with Amplitudes

In view of controlling the population size of bacteria, the choice of the maximum
and minimum birth rates is of interest in relation to the choice of duty cycles. Can an
asymmetric exposure to good or bad conditions be compensated by the more or less strong
suppression of the birth rates of the population? When the individual birth rates are chosen
to be the same, does it make a difference if the average birth rate Bav = γB+ + (1− γ)B−
is larger or smaller than 1 because of a difference in the duty cycles? The answer is given
in Figure 9a with Bav > 1 (red squares) and Bav < 1 (black dots). The MTE for the
unperturbed system with a birth rate equal to Bav for the first case (Bav > 1) is shown by
the blue dashed line. Bav > 1 leads to the convergence of the MTE for the unperturbed
system with Bav = 1.02, while Bav < 1 yields short MTEs due to the unstable population,
even in the deterministic limit.

In Figure 9b, we check whether a higher birth rate B+ = 2.0 can compensate for
a longer time spent under adverse conditions (γ = 0.1) to achieve long survival. For
this combination of parameters, the answer is negative. Both minimum and maximum
MTEs are below the values for B+ = 1.3 and γ = 0.3, before the system converges to
the MTE of an unperturbed system with an average birth rate of 1.055. Such observed
quantitative differences in the dependencies of the MTE on the environmental switching
frequency would matter in an antimicrobial treatment. From a comparison of Figure 9a,b,
we conclude the following: If the effect of the antimicrobial dose lasts only for a short
duration (γ > 0.5 means that the bacterial population sees more favorable conditions),
then in order to remove the microbial population quickly (before resistance arises), the
doses should be administered at a faster rate (Figure 9a). Conversely, if the effect of the
antimicrobial drug lasts for a long time (γ < 0.5) (Figure 9b), the doses should be given
at a lower frequency. Additionally, comparing the two curves in Figure 9b, even if B+ is
larger for the red curve, since the bad phase lasts longer, as its γ is smaller, the range of
frequencies for which the MTE is smaller than the average value (magenta dashed line) is
broader for the red curve.

(a) (b)

Figure 9. Variation in the MTE with ν for a few cases with different duty cycles γ and birth rates:
(a) B+ = 1.15, B− = 0.5; (b) B− = 0.95, Bav = 1.055. The switching rates are (ν+, ν−) = (2ν[1−
γ], 2νγ). Other parameters are α = 0.02, β = 0.02, and K = 500.

Although our model is not supposed to advise on antibiotic treatment, we expect some
qualitative features to survive more realistic modeling. While for very small frequencies, the
system sees either adverse or good environmental conditions and the MTE with randomly
chosen initial conditions converges to MTEl = (MTE|B+ +MTE|B−)/2, for high frequencies,
it approaches MTEh = MTE|(B++B−)/2, and due to the exponential dependence on the birth
rate, MTEl > MTEh. Additionally, the minimum at intermediate frequencies should
survive, where the frequency is low enough to resolve both environmental conditions
but too high for the population to recover under good conditions. Thus, the chosen
administration frequency should be smaller than the one for which the system sees the
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average birth rate of bacteria B++B−
2 and large enough that the bacteria, independently of

the starting point, see a change in environmental conditions.

5. WKB Approach for the MTE

In general, Gillespie results for the MTE should be complemented by analytical calcu-
lations if one wants to quantify how rare extinction events actually are. This question is of
interest independently of any possible application to antibiotic treatment. In a large popu-
lation, a fluctuation-induced extinction may take a rather long time. Such extinction events
may not be accessible to Gillespie simulations if the simulations are too CPU–time con-
suming. To find the MTE to exponential accuracy, we use the Wentzel–Kramers–Brillouin
(WKB) approximation for classical stochastic populations; for a review see, for example [19].
The WKB method is suitable for projecting the analysis on rare events by its very ansatz.

As it turns out, for two-phenotype populations with demographic and environmental
perturbations, finding an analytical expression for the MTE becomes challenging. The ana-
lytical approaches, which we will consider below, apply to limiting cases of the parameters.
For two phenotypes, these calculations partially rely on numerical approaches. We will
present some analytical results for the system with periodic sinusoidal perturbations.

Let us now start with the WKB approximation. In general, there are two ways in
which the WKB approximation can be applied—the real-space WKB method and the
momentum-space WKB method. We summarize the results for both formulations below.

5.1. Real-Space WKB

We start with the WKB method in real space, as also pursued in the work of Lohmar
and Meerson [8]. Let us first consider the unperturbed case by taking the birth rate B as a
constant in the master equation (Equation (4)). As mentioned earlier, the metastable distri-
bution slowly decays over time. At t >> tr, P(n, m, t) ' πn,m exp(−t/τ) for (n, m) 6= (0, 0)
and P(0, 0, t) = 1− exp(−t/τ), where τ gives the MTE and is exponentially large in K, the
carrying capacity, while πn,m is the normalized quasi-stationary distribution.

To find the MTE, we apply the WKB-eikonal ansatz to the quasi-stationary distribution:

πn,m = exp[−KS(x, y)], (7)

where x = n/K and y = m/K are assumed to be continuous variables, and K is assumed
to be sufficiently large, that is, K >> 1. Using this ansatz to project on the leaking quasi-
stationary solution of Equation (4) with Pp ≡ P and expanding S around (x, y) to first
order, we obtain a zero-energy Hamilton–Jacobi equation in the leading order of 1/K:

H(x, y, px, py) = 0, (8)

where

H(x, y, px, py) = Bx(1− x)(epx − 1)+ x(e−px − 1)+ αx(e−px+py − 1)+ βy(epx−py − 1) (9)

is the effective Hamiltonian, and px = ∂S/∂x and py = ∂S/∂y are the conjugate momenta.
The corresponding Hamilton’s equations of motion are

ẋ = Bx(1− x)epx − xe−px − αxe−px+py + βyepx−py ,

ẏ = αxe−px+py − βyepx−py ,

ṗx = −B(1− 2x)(epx − 1)− (e−px − 1)− α(e−px+py − 1),

ṗy = −β(epx−py − 1) . (10)

The Hamiltonian H does not explicitly depend on time, and therefore, H = E = 0 is an
integral of motion. If H is time-dependent, such as for a time-dependent birth rate B(t),
this is no longer true. There are three zero-energy saddles FP of the Hamiltonian flow:
(0, 0, 0, 0), (1− 1/B, Γ(1− 1/B), 0, 0), and (0, 0,−lnB,−lnB). The first two correspond to F0
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and FM, respectively, and the third saddle is called a fluctuational extinction point, which
is denoted by F∅. The instanton is a heteroclinic trajectory starting at the metastable FP FM
at time −∞ and approaching the extinction fixed point FP F∅ at time t = +∞. To find the
MTE, we need to determine the action along this heteroclinic trajectory:

S =
∫
(pxdx + pydy− Hdt) . (11)

Since the Hamiltonian is nonintegrable, we obtain the instanton numerically using an
iterative numerical scheme, detailed in Appendix A.2. From the action, the MTE τ can be
obtained with exponential accuracy from τ ∼ exp(KS).

5.2. Momentum-Space WKB

For comparison and later use, we next outline the WKB method in momentum space.
This method involves deriving a linear partial differential equation (PDE) for the probability-
generating function. We define the probability-generating function G as

G(ρ1, ρ2, t) =
∞

∑
n,m=0

ρn
1 ρm

2 P(n, m, t), (12)

where ρ1 and ρ2 are auxiliary variables. Once G(ρ1, ρ2, t) is found, the probabilities
P(n, m, t) are given by the coefficients of its Taylor expansion around ρ1 = ρ2 = 0. Multi-
plying both sides of the master equation (Equation (4)) by ρn

1 ρm
2 and summing over n and

m gives an evolution equation for the generating function that, in our case, reads:

∂G
∂t

= B ρ2
1

∂G
∂ρ1
− B

K

(
ρ2

1
∂G
∂ρ1

+ ρ3
1

∂2G
∂ρ2

1

)
− Bρ1

∂G
∂ρ1

+
B
K

(
ρ1

∂G
∂ρ1

+ ρ2
1

∂2G
∂ρ2

1

)

+ (1− ρ1)
∂G
∂ρ1

+ (ρ2 − ρ1)

(
α

∂G
∂ρ1
− β

∂G
∂ρ2

)
. (13)

Making use of the eikonal ansatz G(ρ1, ρ2, t) = exp[−S′(ρ1, ρ2, t)] with S′ as the action in
momentum space in Equation (13) and neglecting ∂2S′/∂ρ2

{1,2}, we obtain the following
Hamilton–Jacobi equation that defines H′:

H′ = 0 =
∂S′

∂t
+ (ρ1 − 1)

[
(B(1− 1/K)ρ1 − 1)Q1 − B/Kρ2

1Q2
1 + (αQ1 − βQ2)(ρ2 − ρ1)

]
, (14)

where Q1 = −∂S′/∂ρ1 and Q2 = −∂S′/∂ρ2 are the canonically conjugate coordinates to
the momenta ρ1, ρ2. Shifting the momenta p1 = ρ1 − 1, p2 = ρ2 − 1 and taking Q1 = q1K,
Q2 = q2K, B(1− 1/K) ≈ B, assuming K >> 1, gives the Hamiltonian

H = H′/K =
(

p1q1

[
(−1 + B(1 + p1))− Bq1(1 + p1)

2
]
+ (−p1 + p2)(q1α− q2β)

)
, (15)

and the action S ≡ S′/K. Hamilton’s equations of motion in momentum space, which we
will use later, are then given by

q̇1 = q1[−1 + B(1 + 2p1 − (1 + p1)(1 + 3p1)q1)] + βq2 − αq1

q̇2 = αq1 − βq2

ṗ1 = −p1(−1 + B(1 + p1)) + 2Bp1(1 + p1)
2q1 − α(p2 − p1)

ṗ2 = β(p2 − p1) . (16)

The fixed points become (0, 0, 0, 0), (−1+B
B , −1+B

B Γ, 0, 0), and (0, 0, 1−B
B , 1−B

B ). Note that we
can go from the momentum-space Hamiltonian to the real-space Hamiltonian by using
the transformation p1 → epx − 1, p2 → epy − 1, q1 → xe−px , and q2 → ye−py or, more
generally, by using the transformation pxm → epxr − 1, pym → epyr − 1, xm → xre−pxr , and
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ym → yre−pyr , where {xr, yr} and {pxr , pyr} are coordinates and momenta in real space,
and {xm, ym} and {pxm , pym} are coordinates and momenta in momentum space. From
here onward, we use the momentum-space Hamiltonian, as it is more convenient to work
with when we discuss the Kapitsa method for high frequencies.

Before we look at the effects of environmental perturbations on the MTE of the popula-
tion in the next section, let us first briefly discuss the unperturbed case. It was shown in [8]
that, close to the bifurcation point B = 1, the separation of timescales for the dynamics of
slow variables (persisters) and fast variables (normals) can be used to obtain the expression
for the MTE in a constant environment, which is given by τ ' exp

[
Kδ2(1/2 + Γ)

]
. Since

Γ = α/β, this means that the MTE increases exponentially with the carrying capacity K and
the switching rate from normals to persisters α, but the inverse is true for the switching rate
from persisters to normals β−1. This dependence also holds outside the validity range for
which it was derived in [8]. Due to the exponential dependence of the MTE on the system
parameters, the stochastic simulations become computationally expensive as we increase α
and K or decrease β. This acts as a practical constraint on the range of parameters that we
can explore in our simulations.

6. Effects of a Changing Environment: Analytical Approaches

We study the effect of an environmental perturbation by making the birth rate time-
dependent. We consider the periodic sinusoidal perturbation in two limits: the linear
approximation for small-amplitude perturbations and the Kapitsa approximation for high-
frequency perturbations.

6.1. Sinusoidal Changes in the Environment for Weak Perturbations

We consider the environmental perturbation to vary sinusoidally in time with a
frequency ω and an amplitude ε such that

B(t) = B0 + ε sin ωt. (17)

The Hamiltonian in momentum space is now time-dependent:

H(q1, q2, p1, p2, t) = H0(q1, q2, p1, p2) + εHp(q1, q2, p1, p2, t), (18)

where H0 is the unperturbed Hamiltonian given by Equation (15), 0 ≤ ε ≤ 1, while

Hp = −q1 p1(1 + p1)(−1 + q1 + q1 p1) sin ωt (19)

is the time-dependent Hamiltonian resulting from the environmental perturbations.
In the limit of ε << 1, the action along the extinction trajectory is S(t0) = S0 + ∆S(t0),

where t0 is a yet-to-be-determined phase (the optimal time instant to escape), and S0 is the
action along the unperturbed path, while ∆S is the correction to the action [7]. Assuming
that the perturbed Hamiltonian εHp is too small to affect the extinction trajectory obtained
from the unperturbed Hamiltonian, the minimum action barrier along the same trajectory
can be calculated as

∆S = min
t0

{
−ε

∫ ∞

−∞
Hp(t, t0)dt

}
. (20)

The minimum additional action can thus be numerically obtained by varying the phase
difference t0 ∈ (0, T], where T = 2π/ω. The MTE is then estimated as τ ∝ exp K(S0 + ∆S).

In Figure 10, we show the variation in the MTE as a function of ω. The unperturbed
action S0 is calculated along the extinction trajectory using the iterative scheme detailed in
Appendix A.2. The correction to the action ∆S is then calculated along the same trajectory
using Equation (20). According to Figure 10, the linear theory predicts that the MTE reaches
a minimum for ω → 0. As ω increases, the MTE also increases and eventually approaches
the unperturbed value for ω > δ (with δ approximately the inverse relaxation time). The
wiggling form of the curve seems to be a numerical artifact. The linear theory does not give
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correct predictions below ν (or corresponding ω) = 0.003. Beyond this value, it predicts
that the MTE increases or the correction to the action decreases with a further increase in ν
(or ω). Eventually, it approaches its unperturbed value for higher frequencies.

Figure 10. Variation in the MTE as a function of the frequency of the perturbation predicted by
the linear theory for K = 500, α = β = 0.02, B = 1.1, and ε = 0.05. The maximum reduction
in the MTE due to the perturbation in the birth rate is observed at small frequencies. For high
frequencies (ω >> δ), the system sees an average of the environmental perturbation, which equals
the unperturbed case, and thus, the MTE approaches the unperturbed value.

A quantitative comparison between results for the MTE from the linear theory and
Gillespie simulations shows a clear discrepancy. This may be due to different reasons.
First of all, the WKB approach gives the MTE only up to a pre-exponential factor that we
have not determined, as Gillespie simulations for large population sizes become very time-
consuming. Moreover, the pre-exponent may also depend on ω. However, the prefactor
does not explain the order-of-magnitude difference. Errors also arise due to the action
calculated using an iterative scheme that involves a discretization error and a cut-off of the
integration time. The error in the iterative scheme is exaggerated due to the exponential
dependence of the MTE on S, which is also multiplied by K, which exaggerates it even
more. This explains why the MTEs in Figure 5 differ by an order of magnitude from those
in Figure 10 when they fluctuate about the unperturbed value at high frequencies and are
calculated either analytically or numerically.

In Figure 11a,b, we compare the correction to the action ∆S, rescaled by ε times
the unperturbed action S0, as predicted by the linear theory for three values of α and β,
respectively. These results show that the range of ω, for which the correction to the action
∆S is significant, decreases as we increase α or as we decrease β. This tells us that the MTE
approaches its unperturbed value at a lower value of ω as we increase α, whereas, as we
increase β, the corresponding value of ω increases. Opposing behaviors between the α and
β dependence were also seen in the stochastic simulations presented in Figure 6, but there
it was for the shift of the location of the minimum MTE.

It should be noticed that the correction ∆S/ε with ∆S of Equation (20) may be inter-
preted as the linear response of the MTE ∝ exp K(S0 + ∆S) to an external perturbation
δh ≡ ε sin ωt. The response is then evaluated at the best time instant t0 (that is, the instant
with the smallest entropic barrier) to escape along the optimal path that minimizes the
escape barrier, where the optimal path is still assumed to be the unperturbed one. Therefore,

| lim
δh→0

∆S/ε| = min
t0

{
−
∫ ∞

−∞
Hp(t, t0)dt

}
= | lim

δh→0

δ log MTE
δh

| ≡ χS (21)

has the interpretation of a logarithmic susceptibility χS (the index S is reminiscent of the
action S), as is also considered in [7,9,20]. Here, this quantity indicates the sensitivity
of the MTE to the system parameters B, β, and α for given frequencies ω. We plot this
dependence of β and α in Figure 12a,b, respectively. The variation is non-monotonic in both
cases and peaks at certain values of β and α, respectively, which increases (decreases) with
an increase in ω of the environmental switching. Non-monotonicity was also observed
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in [9]. This means that at certain switching rates α and β, the system is most susceptible to
perturbations.

(a) (b)

Figure 11. (a) Correction to the action ∆S, rescaled by the unperturbed action S0 for three values of
α, while β = 0.02. As α increases, the correction to the action approaches zero more rapidly; that
is, the range of frequencies for which the environmental perturbation has a significant effect on the
system decreases as α increases. (b) The same as in (a), but for three values of β for α = 0.02. Here, as
β increases, the range of frequencies for which the environmental perturbation has a significant effect
on the system increases together with β.

(a) (b)

Figure 12. (a) Logarithmic susceptibility χS as a function of β for four values of ω with a single peak
in χS for α = 0.02. (b) The same as (a), but as a function of α for three values of ω with a single peak
in χS for β = 0.02.

6.2. Sinusoidal Changes of the Environment for High Frequencies

Another limit that is analytically approximately accessible is the limit of high frequen-
cies ω >> δ. Here, we calculate the correction to the action, which turns out to be of the
second order in ε, by using the Kapitsa method [7]. These corrections are small even if ε is
of the order of 1. Here, we only summarize the main steps. The details are included in the
appendix. Naturally, one expects that for a fast-changing environment, the system sees only
a kind of time-independent average. Thus, the goal is to derive a time-independent effective
Hamiltonian, splitting the coordinates into slow (Xi, Yi) and fast (ξi, ηi) variables, i ∈ {1, 2}.
The first step is to derive Hamilton’s equations of motion for the fast variables, neglecting
terms of the second order in ξi, ηi. These equations can be integrated over time and lead
to the relations ξi = ξi(Xi, Yi, t) and ηi = ηi(Xi, Yi, t). The Hamiltonian in the new slow
variables should be equivalent to the one in the original variables; thus, the transformation
from old to new coordinates and momenta should be canonical and satisfy Poisson brackets.
As it turns out, when choosing the transformation from (qi, pi, t), i ∈ {1, 2} according to
qi(t) = Xi(t) + ξi(t), pi(t) = Yi(t) + ηi(t) by replacing ξi = ξi(Xi, Yi, t), ηi = ηi(Xi, Yi, t)
accordingly, the Poisson brackets vanish only up to O(ε/ω)2. In order to obtain the first
non-vanishing correction to the Hamiltonian, which is itself already of the order of ε2, we
use the so-obtained relations between old and new variables only as a starting point to
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guess a transformation that satisfies the Poisson brackets up to O(ε/ω)3. The generating
function F2(qi, Yi, t) of this transformation determines the new Hamiltonian according to
H′ ≡ H + ∂F2/∂t, which is then averaged over one time period of rapid oscillations to
result in the desired time-independent Hamiltonian. Its equations of motion are solved by
the iteration method in Appendix A.2. The results are shown in Figure 13. The MTEs of
the Kapitsa method approach the unperturbed values as they should for high frequencies
(Figure 13a) and also those of the linear approximation for large frequencies, while the
Kapitsa method is not reliable for low frequencies.

(a) (b)

Figure 13. MTE as obtained from the Kapitsa approximation (red dots) as a function of the frequency
in comparison to (a) the unperturbed case (blue squares) and (b) the linear approximation (blue
squares). Parameters are K = 500, α = β = 0.02, B = 1.1, and ε = 0.05.

7. Discussion and Summary of the Results

We considered populations of normals and persisters under deterministically and
stochastically varying environments. Both versions were realized under symmetric or
asymmetric durations of the periods of favorable and adverse environmental conditions,
characterized by the amplitude and frequency of the perturbation. An answer to our first
question of how the bacteria should best adapt to a given changing environment is to
choose the switching rate of normals to persisters to be as large as possible and that from
persisters back to normals to be as small as possible, as the MTE increases (decreases)
exponentially with increasing α (decreasing β), respectively. Nevertheless, we observed
a non-monotonic change in the exponential growth or decay that became visible in the
logarithmic susceptibility with respect to the external perturbation. For an increasing
frequency of environmental changes, the maximum sensitivity shifted to smaller (larger)
values of α (β), respectively.

More pronounced is the non-monotonic dependence of the MTE when it is plotted as
a function of the frequency of the environmental change between favorable and adverse
conditions. Here, only the Gillespie simulations could resolve the limit of rather low
frequencies. The MTE is largest for very low frequencies close to zero and initially decreases
with an increase in the frequency, rapidly dropping to a minimum value that lies below
the MTE for the unperturbed population. Upon further increasing the frequency, the MTE
increases again by possibly overshooting the unperturbed MTE value. The unperturbed
value is finally approached for high frequencies, as the system then sees only an average
about the unperturbed value over the environmental conditions if the fluctuations have
symmetric amplitudes about the unperturbed birth rate.

Thus, the answer to our second question of how to tune the amplitude and frequency
of applying adverse conditions to the bacteria to eliminate the population is just provided
by this non-monotonic behavior: choosing the dose of applications (amplitude in our
model) to be as large as possible (and still tolerable for the host of the bacterial population)
and a frequency outside of the small interval, in which the MTE is minimum. Adverse
conditions chosen so as to tune the minimum birth rate to zero or at least below the
bifurcation, from which on the population is unstable in the deterministic limit, turned
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out to be advantageous, as they impede the later resurrection of the population under
favorable conditions.

Further, let us compare the impact of symmetric versus asymmetric durations of
favorable and adverse conditions. Here, the MTE is continuously reduced with an increase
in the fraction of time that the population is exposed to adverse conditions (keeping all other
parameters fixed). A qualitative change in the dependence of the MTE on the frequency is
observed when adverse conditions push the birth rate below the bifurcation threshold (in
the deterministic limit): before any quasi-stationary population distribution is established,
it already goes extinct.

As to the comparison between deterministic and stochastic changes in the environment,
one may have expected a mere broadening of both the quasi-stationary distributions and the
spectrum of the times to extinction, that is, the probability distribution of extinction times.
However, the distribution of extinction times looks qualitatively different for rectangular
waves with duty cycles and ADMN of the same average rates ν+, ν− and amplitudes
B+, B−. For ADMN, we measured a histogram that is fitted by a Poissonian. For the
rectangular wave, we found a histogram in which entire intervals of extinction times seem
to be forbidden for the sample trajectories of the population when always starting from the
same initial conditions. This may reflect the fact that a population will most likely not go
extinct in a certain time interval as long as the environmental conditions are resolved by
the population to become increasingly favorable so that these conditions overcompensate
for the inherent leakage of the quasi-stationary distribution.

In view of further applications to microbial populations of bacteria, a natural exten-
sion of this work would be the inclusion of competition between normals and persisters.
Maintaining part of the population as persisters (not reproductive and being beneficial only
“in case”) amounts to insurance for the population or a luxury that has its price. This price
may be paid by including competitive interactions between the two phenotypes. Another
extension would be the inclusion of irreversible mutations in response to environmental
variation leading to resistance rather than persistence that we considered so far.

Author Contributions: Both authors conceived the project. B.T. performed the numerical and
analytical calculations and prepared the original draft of the manuscript. Both authors discussed
the manuscript. H.M.-O. is responsible for its final form. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the German Research Foundation (DFG), grant number
ME-1332/28-2.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank Michael Assaf for a valuable discussion, drawing our
attention in particular to Reference [8].

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Numerical Methods

Appendix A.1. Stochastic Simulations

As mentioned in the main text, we used the standard Gillespie algorithm [15] for
time-independent (birth) rates and either the modified Gillespie algorithm or the modified
next-reaction method by Anderson [16] for time-dependent rates. For details on the
modified next-reaction method, we refer to [16]. In the following, we summarize the main
steps of both algorithms.
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Appendix A.1.1. Gillespie Algorithm
Time-Independent Rates

1. Initialize the algorithm by setting the initial number of normals (n) and persisters (m)
and setting t = 0.

2. Calculate the propensity function for each reaction. In the absence of any environmen-
tal perturbation, we have four stochastic reactions i ∈ {1, . . . , 4} (birth of normals,
death of normals, switching from normals to persisters, and switching from per-
sisters to normals), each with a propensity function ai ∈ {Bn(1− n/K), n, αn, βm},
respectively. In the presence of ADMN, there are two additional stochastic reactions
corresponding to environmental switching ξr → −ξr.

3. Set a0 = ∑M
i=1 ai, where M = 4 for the unperturbed system and M = 6 for ADMN.

4. Generate two random numbers r1 and r2 from a uniform distribution U(0, 1).
5. Find the time until the next reaction should take place, that is, ∆t = 1/a0ln(1/r1).
6. Find the reaction µ ∈ [1, . . . , M] that takes place such that

µ−1

∑
i=1

ai < r2a0 ≤
µ

∑
i=1

ai.

7. Set t = t + ∆t and update the number of normals (n) and persisters (m) according to
the reaction µ.

8. Return to step 2 or quit.

Time-Dependent Rates: Modified Gillespie Algorithm

When we have time-dependent propensities, that is, when B varies periodically with
time, the time until the next reaction is found by solving the following equation for ∆t:

4

∑
i=1

∫ t+∆t

t
ai(n(t), m(t), s)ds = ln(1/r1). (A1)

The reaction µ that fires at that time is chosen according to the probabilities ai(n(t), m(t), t +
∆t)/a0 according to step 6, where a0 = ∑M

i=1 ai(n(t), m(t), t + ∆t) [16].

Appendix A.1.2. Modified Next-Reaction Method

The modified next-reaction method from [16] and the next-reaction method from [21],
on which it is based, make use of the fact that the reaction times of the systems can
be represented as the firing times of Poisson processes with internal times given by in-
tegrated propensity functions. Let the internal time for the ith reaction or process be
Ti =

∫ t
0 ai(n(s), m(s), s)ds and let Pi be the first firing time of the ith process. We define ∆ti

as the amount of time that must pass in order for the ith reaction to fire. The main steps of
the algorithm are:

1. Initialize the algorithm by setting the initial number of normals (n) and persisters (m)
and setting t = 0. For each i, set Ti = 0.

2. Generate M random numbers ri from a uniform distribution ri ∈ U(0, 1) and set
Pi = ln(1/ri) for each i.

3. Calculate ∆ti by solving
∫ t+∆ti

t ai(n(t), m(t), s)ds = Pi − Ti for ∆ti.
4. Set ∆t = mini{∆ti} and let ∆tµ be the time for which the minimum is realized, that is,

let ∆ti be the minimum for the reaction i = µ.
5. Increase the time by an increment of t = t + ∆t and update the number of normals

and persisters according to the reaction µ.
6. For each i, set Ti = Ti +

∫ t+∆ti
t ai(n(t), m(t), s)ds.

7. For the reaction µ, let r be a uniform random number r ∈ U(0, 1), and set Pµ =
Pµ + ln(1/r).

8. Return to step 3 or quit.
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For time-independent rates and environmental switching between discrete states
(ADMN and periodic rectangular wave), the algorithm becomes simpler. For time- in-
dependent rates and ADMN (see Algorithm 3 in [16]), the equation to find ∆ti simplifies
to ∆ti = (Pi − Ti)/ai, and the update to Ti simplifies to Ti = Ti + ai∆t. In the case of
a periodic rectangular wave, the propensity function for the birth of normals becomes
a1 = B(ξp(t))n(1− n/K). Since B is discrete and therefore a constant in each iteration, the
integral in step 3 can be solved easily to find ∆ti, from which ∆t is determined in step 4. If
∆t > ∆tswitch, where ∆tswitch is the time to the next switch in the environment, we switch
ξ → −ξ and propagate the time to t → ∆tswitch. See the supplemental material to [2] for
additional explanations of the algorithm for a periodic rectangular wave.

Appendix A.2. The Adapted Chernykh–Stepanov Iteration Method

For a numerical solution of Hamilton’s equations of motion to find the extinction
trajectory, we used the Chernykh–Stepanov iteration method [22]. More precisely, we
used an adaptive version of the algorithm, as used in [8]. In this scheme, the starting
iteration numerically integrates the Hamilton’s equations for coordinates forward in time
by fixing the momenta at their final values (here, at the extinction fixed point). The resulting
coordinate trajectory is then used to fix the coordinates in the Hamilton’s equations for
momenta, which are then integrated backward in time, starting from some time t = tmax
going down to t = 0. This back-and-forth iteration method is repeated until the path
converges to the desired instanton solution.

Appendix B. The Kapitsa Method for High Frequencies

We consider the high-frequency limit (ω � 1) and calculate the small high-frequency
corrections to the unperturbed coordinates and momenta of the system. Separating slow
and fast timescales leads to:

q1(t) = X1(t) + ξ1(t) q2(t) = X2(t) + ξ2(t)

p1(t) = Y1(t) + η1(t) p2(t) = Y2(t) + η2(t), (A2)

where X1, X2, Y1, and Y2 are slow variables, and ξ1, ξ2, η1, and η2 are rapidly oscillating
variables. Expanding the Hamiltonian H(q1, q2, p1, p2, t) around q1 = X1, q2 = X2, p1 = Y1,
and p2 = Y2 up to the second order in ξ1, ξ2, η1, and η2, we obtain:

H(q1, q2, p1, p2, t) = H(X1, X2, Y1, Y2) + ξ1
∂H
∂X1

+ ξ2
∂H
∂X2

+ η1
∂H
∂Y1

+ η2
∂H
∂Y2

+
1
2

ξ2
1

∂2H
∂X2

1
+

1
2

ξ2
2

∂2H
∂X2

2
+

1
2

η2
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∂2H
∂Y2

1
+

1
2

η2
2

∂2H
∂Y2

2
+ ξ1ξ2

∂2H
∂X1∂X2

+ ξ1η1
∂2H

∂X1∂Y1
+ ξ1η2

∂2H
∂X1∂Y2

+ ξ2η1
∂2H

∂X2∂Y1
+ ξ2η2

∂2H
∂X2∂Y2

+ η1η2
∂2H

∂Y1∂Y2
≡ H̃ (A3)

with H̃ being the truncated Hamiltonian in terms of slow and fast variables. The Hamilton’s
equations become

q̇1 = Ẋ1 + ξ̇1 ≈
∂H̃
∂Y1

q̇2 = Ẋ2 + ξ̇2 ≈
∂H̃
∂Y2

ṗ1 = Ẏ1 + η̇1 ≈ −
∂H̃
∂X1

ṗ2 = Ẏ2 + η̇2 ≈ −
∂H̃
∂X2

. (A4)
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Demanding that the rapidly oscillating terms in Equation (A4) balance each other gives

ξ̇1 = −εX1[−1− 2Y1 + X1(1 + Y1)(1 + 3Y1)] sin ωt

ξ̇2 = 0

η̇1 = εY1(1 + Y1)[−1 + 2X1(1 + Y1)] sin ωt

η̇2 = 0 . (A5)

The terms of the order of ξ1, ξ2, η1, and η2 have been neglected. Treating X1, X2, Y1, and Y2 as
constants during the period of rapid oscillations 2π/ω and integrating Equation (A5) gives

ξ1 =
ε

ω
X1[−1− 2Y1 + X1(1 + Y1)(1 + 3Y1)] cos ωt

ξ2 = 0 (constant of integration taken as zero)

η1 = − ε

ω
Y1(1 + Y1)[−1 + 2X1(1 + Y1)] cos ωt

η2 = 0 (constant of integration taken as zero) . (A6)

This transformation is canonical up to the second order of
(

ε
ω

)2
<< 1. The first non-

vanishing correction to the Hamiltonian is of the order (ε/ω)2 as well; thus, it is not
sufficient. Therefore, we consider an almost-canonical transformation from the old variables
(q1, q2, p1, p2) to the new variables X1, X2, Y1, and Y2:

q1 = X1 +
ε cos ωt

ω
X1[−1− 2Y1 + X1(1 + Y1)(1 + 3Y1)]

+
ε2 cos2 ωt

ω2 X1[−1− 2Y1 + X1(1 + Y1)(1 + 3Y1)][−1− 2Y1 + 2X1(1 + Y1)(1 + 3Y1)]

q2 = X2

p1 = Y1 −
ε cos ωt

ω
Y1(1 + Y1)[−1 + 2X1(1 + Y1)]

− ε2 cos2 ωt
ω2 2X1Y1(1 + Y1)

2[−1− 2Y1 + X1(1 + Y1)(1 + 3Y1)]

p2 = Y2 (A7)

This transformation is canonical up to the third order of
(

ε
ω

)3
<< 1, as the Poisson brackets

{qi, qj} = 0, {pi, pj} = 0, {q1, p1} = 1 + O
(

ε
ω

)3, {q2, p2} = 1. The generating function of
this transformation is given as

F2 =
q1Y1(ω− (1 + Y1)(−1 + q1 + q1Y1)ε cos ωt)

ω
. (A8)

The new Hamiltonian reads H′ = H + ∂F2/∂t. Averaging the new Hamiltonian H′ over
the period of rapid oscillations 2π/ω gives the following time-independent Hamiltonian:

H′ = X1Y1(−B0(Y1 + 1)(X1Y1 + X1 − 1)− 1) + αX1(Y2 −Y1) + βX2(Y1 −Y2)

+
X1ε2

2ω2

[
αY2 − B0X3

1Y1(Y1 + 1)5(3Y1 − 1) + 2X2
1(Y1 + 1)2(

2B0Y4
1 + 3Y3

1 (−α + B0 − 1) + Y1(α− B0 + 6αY2 + 1) + Y2
1 (2α + 9αY2 + 2) + αY2

)
− X1(Y1 + 1)

(
3B0Y4

1 + Y3
1 (−7α + 5B0 − 7) + Y2

1 (α + B0 + 18αY2 + 1)

+ Y1(2α− B0 + 15αY2 + 2) + 3αY2) + Y4
1 (B0 + 4βX2)

+ 2Y3
1 (−α + B0 + 5βX2 − 1)− 2βX1X2(Y1 + 1)3(3Y1 + 1)Y1 + 2Y1(βX2 + 2αY2)

+ Y2
1 (−α + B0 + 8βX2 + 4αY2 − 1) ] . (A9)

The resulting Hamilton’s equations are solved numerically to give the optimal path for
which the action is calculated. In terms of the new coordinates and momenta, the fixed
points become lengthy expressions, even more so for Hamilton’s equations.
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