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Abstract: In this paper, the radial basis function finite difference method is used to solve two-
dimensional steady incompressible Navier–Stokes equations. First, the radial basis function finite
difference method with polynomial is used to discretize the spatial operator. Then, the Oseen iterative
scheme is used to deal with the nonlinear term, constructing the discrete scheme for Navier–Stokes
equation based on the finite difference method of the radial basis function. This method does not
require complete matrix reorganization in each nonlinear iteration, which simplifies the calculation
process and obtains high-precision numerical solutions. Finally, several numerical examples are
obtained to verify the convergence and effectiveness of the radial basis function finite difference
method based on Oseen Iteration.

Keywords: Navier–Stokes equation; radial basis function finite difference method; polynomial;
Oseen iteration

1. Introduction

The Navier–Stokes equations are a set of equations used to describe fluid substance
such as liquid and air, and can be used to simulate weather, ocean currents, water flows
in pipes, the motion of stars in galaxies, etc. Therefore, they are of significant research
value; this paper discusses the numerical solution method of steady incompressible Navier–
Stokes equations.

Scholars have studied many numerical methods for Navier–Stokes equations [1]. For
unsteady Navier–Stokes problems [2] and steady Navier–Stokes problems [3], a variety of
traditional numerical methods have been proposed, including the finite element method,
finite difference method, and finite volume method. In response to incompressible conditions,
nonlinearity, long-time integration, and other difficulties encountered in numerical solutions
of three-dimensional unsteady Navier–Stokes equations, this paper discusses the research
status and latest research results of highly efficient and fully discrete finite element methods,
which can be used to overcome these difficulties. In addition, this paper illustrates stability
and error estimation of finite element-space discrete solutions and optimal error estimation of
efficient fully-discrete finite element solutions for solving three-dimensional unsteady Navier–
Stokes equations [4]. These methods are mesh-based, and the generation of meshes increases
computational cost; moreover, the computational domain and the technology used for mesh
quality and stabilization affect the computational accuracy. Especially for high-dimensional
problems, it is difficult and costly to generate good meshes. Therefore, in recent years many
scholars have introduced meshless methods [5,6] for solving partial differential equations,
among which the radial basis function method [7] is increasingly popular.

The radial basis function method has been widely used for solving various partial
differential equations, with the radial basis function finite difference method (RBF-FD)
proposed considering ill-conditioned problems with a high occurrence rate in the matrix
generated by the global radial basis function method. In this way, it is easy to realize
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RBF-FD discretization without needing to use a mesh at all. The RBF-FD method can be
regarded as an extension of the standard finite difference and local refinement of global
radial basis function method. This method uses the radial basis function to create weights
for the RBF-FD formula, and the differential matrix obtained in this way is as sparse
as that obtained by the standard difference method, which combines many advantages
of radial basis function and traditional finite difference approximation. Thus, RBF-FD
approximation [8] is an attractive substitute for the global radial basis function method.

In order to control the stagnation error, Natasha Flyer et al. introduced higher-order
polynomials under the background of Gaussian (GA) and Polyharmonic Spline (PHS) in-
terpolation [9,10]. PHS eliminates the stagnation error in combination with the polynomial
to capture the basic physical properties of the problem, and achieves high-order accuracy
without the need to adjust the shape parameters. The present paper chooses the PHS basis
function and applies the radial basis function finite difference method with the polyno-
mial to discretize the spatial operator of the equation. It is well known that the iterative
method [11] is effective for Navier–Stokes equations with strong nonlinear terms, e.g., the
Newton iterative method, Stokes iterative method, and Oseen iterative method. This paper
focuses on the Oseen iterative method to deal with the nonlinear terms of the equation.
The radial basis function finite difference method based on Oseen iteration proposed in
this paper does not need a complete set of matrices in each nonlinear iteration, which is
more suitable for nonlinear problems, and obtains high-precision numerical solutions.

2. Problem Setup

This paper studies the following two-dimensional steady incompressible Navier–
Stokes equations [12].

−ν∆u + (u · ∇)u +∇p = f on Ω,

∇ · u = 0 on Ω,

u = 0 on ∂Ω.

(1)

where Ω is the bounded region on R2, u = (u, v) : Ω→ R2 is the velocity vector, p : Ω→ R
is the pressure, ν > 0 is the viscosity coefficient, and f = ( f1, f2) is the external force acting
on a unit volume of fluid, assuming that the uniqueness of p can be achieved by imposing
the condition,

∫
Ω p dx = 0.

We define the 2-norm and ∞-norm of the vector x as

‖x‖2 = (
n

∑
i=1

x2
i )

1
2 , ‖x‖∞ = max

1≤i≤n
|xi|.

3. Numerical Method

In this part, we focus on the radial basis function finite difference method with polynomial.

3.1. Radial Basis Function Finite Difference Method with Polynomial

First, this part provides a brief introduction to the radial basis function (RBF). The
RBF, expressed as Φ(r) : Rd → R, is a d-dimensional radially symmetric function, and is
only dependent on r = ‖x− xk‖2, where ‖ · ‖2 represents the Euclidean distance between
two points, x is the point to be solved, and xk is the center position of the RBF. Common
radial basis functions include Gauss (GA) (e−(εr)2

), multiquadratic function (
√

1 + (εr)2),
and Polyharmonic Spline (PHS) (rm, m = 1, 3, 5, · · · ), where ε is the shape parameter that
determines the radial basis function. Next, we introduce the radial basis function finite
difference method with polynomial. First, L is defined as a linear operator, which can

be ∆,
∂

∂x
,

∂

∂y
, etc. We can approximate the value of the operator L at node xc by linear

combination of the function value {uk}n
k=1. For this, we need to select n nodes near the

central node xc to form a node template, which is recorded as X = {xk}n
k=1, including xc,

as follows:
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(Lu) |x=xc=
n

∑
k=1

wkuk, (2)

where n is the size of the node template and wk is the differential weight. In order to
calculate the weight wk, we can specify that the linear combination of function values be
accurate for interpolation s(x):

s(x) =
n

∑
k=1

λkΦ(‖x− xk‖2) +
`

∑
k=1

µk pk(x), (3)

The constraint condition is
n

∑
k=1

λk pj(xk) = 0 j = 1, 2 · · · `, (4)

where pl(x) is degree l of the binary polynomial and Φ(‖x− xk‖2) is the radial basis
function.

When d = 2 and the degree of the polynomial is l = 1, Equation (3) is

s(x) =
n

∑
k=1

λkΦ(‖x− xk‖2) + µ1 + µ2x + µ3y, (5)

with the constraint condition (4)

n

∑
k=1

λk =
n

∑
k=1

λkxk =
n

∑
k=1

λkyk = 0. (6)

Suppose that the function value at xk is fk, k = 1, · · · , n; then, the matrix form of
Equations (5) and (6) is

Φ(‖x1 − x1‖2) · · · Φ(‖x1 − xn‖2) 1 x1 y1
Φ(‖x2 − x1‖2) · · · Φ(‖x2 − xn‖2) 1 x2 y2

...
...

...
...

...
...

Φ(‖xn − x1‖2) · · · Φ(‖xn − xn‖2) 1 xn yn
1 · · · 1 0 0 0
x1 · · · xn 0 0 0
y1 · · · yn 0 0 0





λ1
λ2
...

λn
µ1
µ2
µ3


=



f1
f2
...
fn
0
0
0


,

In this formula, Â is used to represent the matrix at the left end (n + 3)× (n + 3); thus,

s(x) = [Φ(‖x− x1‖2) . . . Φ(‖x− xn‖2) 1 x y][λ1 . . . λn µ1 µ2 µ3]
T

= [Φ(‖x− x1‖2) . . . Φ(‖x− xn‖2) 1 x y]Â−1[ f1 . . . fn 0 0 0]T ,
(7)

The linear operator L is used to calculate the result at x = xc:

Ls(x)|x=xc = [LΦ(‖x− x1‖2)|x=xc . . . LΦ(‖x− xn‖2)|x=xc

L1|x=xc Lx|x=xc Ly|x=xc ]Â
−1[ f1 . . . fn 0 0 0]T .

(8)

If fi = 1 and f j = 0, then j 6= i; thus, Ls(x)|x=xc = wi and i = 1, · · · , n, according to
Formula (2). Therefore,

[w1, · · · , wn] = [LΦ(‖x− x1‖2)|x=xc . . . LΦ(‖x− xn‖2)|x=xc

L1|x=xc Lx|x=xc Ly|x=xc ]Â
−1
[

D
O

]
(n+3)×n

,

where D is the identity matrix of (n× n) and O is the null matrix of (3× n). An identity
matrix is formed by adding three columns to the right matrix, which can be ignored. Thus,
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the left-hand matrix is added with [wn+1, wn+2, wn+3]. The right-hand matrix is multiplied
by Â and then transposed, obtaining the following linear equations:

Φ(‖x1 − x1‖2) · · · Φ(‖x1 − xn‖2) 1 x1 y1
Φ(‖x2 − x1‖2) · · · Φ(‖x2 − xn‖2) 1 x2 y2

...
...

...
...

...
...

Φ(‖xn − x1‖2) · · · Φ(‖xn − xn‖2) 1 xn yn
1 · · · 1 0 0 0
x1 · · · xn 0 0 0
y1 · · · yn 0 0 0





w1
w2
...

wn
wn+1
wn+2
wn+3


=



LΦ(‖x− x1‖2) |x=xc

LΦ(‖x− x2‖2) |x=xc

...
LΦ(‖x− xn‖2) |x=xc

L1 |x=xc

Lx |x=xc

Ly |x=xc


.

Therefore, the weights w1 · · ·wn are obtained from the above equations. In the follow-
ing numerical examples, the resulting linear system changes with the varying degree
of the polynomial. In this paper, the PHS radial basis function is mainly considered;
Φ(r) = rm, m = 1, 3, 5, · · · , PHS is a piecewise smooth function, where r = ‖x− xk‖2, and
it is unnecessary to select a shape parameter ε .

3.2. Radial Basis Function Finite Difference Method Based on Oseen Iteration

In this part, we introduce discretization of the Navier–Stokes equations using the
radial basis function finite difference method based on Oseen iteration. First, we use the
radial basis function finite difference method with polynomial to discretize the component
equations. Then, we linearize the equations based on Oseen iteration starting from this
scheme, and finally obtain the fully discrete scheme of the equations.

3.2.1. Discrete Scheme of Equation

First, the radial basis function finite difference method with polynomial is used to discretize
the spatial operator of the equation. Equation (1) is expressed as the following components:

−ν(
∂2u
∂x2 +

∂2u
∂y2 ) + u

∂u
∂x

+ v
∂u
∂y

+
∂p
∂x

= f1, (9)

−ν(
∂2v
∂x2 +

∂2v
∂y2 ) + u

∂v
∂x

+ v
∂v
∂y

+
∂p
∂y

= f2, (10)

∂u
∂x

+
∂v
∂y

= 0. (11)

For Equation (9), the differential value at a point xc is

Lu(xc) =
n

∑
j=1

wju
(
xcj
)
, (12)

where
{

xcj
}n

j is the n points around xc and
{

wj
}n

j is the weight coefficient corresponding

to these points obtained by applying the interpolation condition f
(
xcj
)
= f j.

First, we assume that there are N nodes in a zone. At a certain point xc, Formula (9) is
discretized according to RBF-FD interpolation and the following form is obtained:

−ν
n1

∑
j=1

w∆
j u(xcj) + u(xc)

n1

∑
j=1

w∇x
j u(xcj) + v(xc)

n1

∑
j=1

w
∇y
j u(xcj) +

n2

∑
j=1

w∇x
j p(xcj)

= f1(xc),

(13)

where n1 represents the number of nearest nodes at the central node xc, used for approx-
imating the weight coefficients of ∆u and ∇u, and n2 represents the number of nodes
at the central node xc, used to form a template of nearest nodes for approximating the
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weight coefficients of ∇p; moreover, w∆
j is a weight coefficient for approximating ∆u, w∇x

j

is a weight coefficient for approximating operator ∂
∂x , and w

∇y
j is a weight coefficient for

approximating operator ∂
∂y . Next, we use the Oseen iterative scheme to deal with the

nonlinear terms of the steady Navier–Stokes equation. Iterating according to Discrete
Equation (13), we obtain the following form:

−ν
n1

∑
j=1

w∆
j u(xk+1

cj ) + u(xk
c)

n1

∑
j=1

w∇x
j u(xk+1

cj ) + v(xk
c)

n1

∑
j=1

w
∇y
j u(xk+1

cj ) +
n2

∑
j=1

w∇x
j p(xk+1

cj )

= f1(xk+1
c ),

(14)

then(
−ν

n1

∑
j=1

w∆
j + u(xk

c)
n1

∑
j=1

w∇x
j + v(xk

c)
n1

∑
j=1

w
∇y
j

)
u(xk+1

cj ) +
n2

∑
j=1

w∇x
j p(xk+1

cj ) = f1(xk+1
c ), (15)

where k denotes the number of iterations, u(xk
c) denotes the value of u at the kth itera-

tion, u(xk+1
c ) denotes the value of u at the (k + 1)th iteration, and the initial value of the

velocity u0 is obtained from the corresponding Stokes equation. In Equation (15), the
value of u at the kth level is known; thus, the nonlinear term in Equation (9) is linearized.
Likewise, there are similar discrete forms for Equations (10) and (11):(
−ν

n1

∑
j=1

w∆
j + u(xk

c)
n1

∑
j=1

w∇x
j + v(xk

c)
n1

∑
j=1

w
∇y
j

)
v(xk+1

cj ) +
n2

∑
j=1

w
∇y
j p(xk+1

cj ) = f2(xk+1
c ), (16)

n1

∑
j=1

w∇x
j u(xk+1

cj ) +
n1

∑
j=1

w
∇y
j v(xk+1

cj ) = 0, (17)

There are N nodes in a zone including NB boundary nodes and NI internal nodes, where
N = NI + NB. The central node xc in Formulas (15) and (16) is considered on NI internal
nodes, and the central node xc in Formula (17) is considered on N total nodes. Considering
the boundary condition u = 0, Equations (15)–(17) and the boundary conditions form the
following equations:

W∆+∇
NI×NI

W∆+∇
NI×NB

ONI×NI ONI×NB W∇x
NI×N

ONB×NI ENB×NB ONB×NI ONB×NB ONB×N

ONI×NI ONI×NB W∆+∇
NI×NI

W∆+∇
NI×NB

W
∇y
NI×N

ONB×NI ONB×NB ONB×NI ENB×NB ONB×N

W∇x
N×NI

W∇x
N×NB

W
∇y
N×NI

W
∇y
N×NB

ON×N




UI
UB
VI
VB
P

 =


F1
0
F2
0
0

, (18)

We can now write (18) in the form of a block matrix:W∆+∇
u O W∇x

p

O W∆+∇
v W

∇y
p

W∇x
u W

∇y
v O


U

V
P

 =

F1
F2
0

. (19)

The stabilization parameter ε is added to Equation (19) to obtain a system of equations in
the form of BU = F: W∆+∇

u O W∇x
p

O W∆+∇
v W

∇y
p

W∇x
u W

∇y
v εD


U

V
P

 =

F1
F2
0

. (20)
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where B is the left-end weight matrix, W∆+∇
u and W∆+∇

v are (N × N) matrices composed
of weight coefficients and boundary condition coefficients used to approximate u and v in

Equations (15) and (16), respectively, W∇x
u and W

∇y
v are a matrix of (N × N) composed of

weighted coefficients for approximating ∂u
∂x and ∂v

∂y , W∇x
p and W

∇y
p are a matrix of (N × N)

composed of weighted coefficients for approximating ∂p
∂x and ∂p

∂y , F1 and F2 are known
right-end terms, U is the solution of velocity u on point set X, V is the solution of velocity v
on point set X, P is the solution of pressure p on point set X, D is the unit matrix of (N× N),
and ε is the stabilization parameter, ε = 1.0 × 10−6.

3.2.2. Selection of Degrees of Added Polynomial and Number of Template Nodes

According to [13,14], without depending on the dimension, when using radial basis
function PHS: Φ(r) = rp, when p is an odd number and the l-degree polynomials are
supplemented to approximate the k-order derivative the convergence rate is not determined
by the order of PHS, and is instead determined by the highest degree of the polynomial
used. The solution accuracy is O(hl−k+1). For the PDE with only the first-order spatial
derivative, the convergence speed can reach O(hl), while for the PDE with the second-
order spatial derivative, the convergence speed can reach O(hl−1). The number of terms
of the l-degree polynomial is (l + 1)(l + 2)

2 . When approximating the value of an operator
acting on the center point of the template, symmetry of the node templates is beneficial,
as symmetrical node templates provide uniform information. In this paper, the numerical
examples are considered in two layouts, namely, a right-angle node layout and a hexagonal
node layout, with the node layouts shown in Figure 1. The right-angled node layout has
completely symmetrical templates on numbers 5, 9, 13, 21, 25, 29, 37, 45, etc., while the
hexagonal node layout has completely symmetrical templates on numbers 7, 13, 19, 31,
37, 43, 55, 61, etc. In this paper, the minimum distance between two points under the
right-angled node layout is h = 1√

N − 1
, while N is the total number of nodes.

Figure 1. Right-angled node layout (left) and hexagonal node layout (right).

4. Numerical Method

In this section, several numerical examples are used to demonstrate the effectiveness of
the proposed methods; the relative error L2 and error L∞ are applied for comparison of the
numerical solution and true solution. The relative error L2 is defined as errorL2 = ‖u−uh‖2

‖u‖2
,

while the error L∞ is defined as errorL∞ = ‖u− uh‖L∞(Ω) = max
x∈X
|u(x)− uh(x)|, where uh

is the obtained numerical solution and u is the true solution x ∈ X.
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4.1. Convergence Test

This example studies the two-dimensional Navier–Strokes equations under the layout
of right-angled nodes. We assume that Equation (1) has the true solutions

u =
(

x2 − 2x3 + x4
)(

2y− 6y2 + 4y3
)

on Ω,

v = −
(

y2 − 2y3 + y4
)(

2x− 6x2 + 4x3
)

on Ω,

p = cos(πx) sin(πy) on Ω.

(21)

where Ω = [0, 1] × [0, 1], the viscosity coefficient ν = 1, and the nodes are uniformly
distributed on Ω as shown in Figure 1 left. For purpose of the convergence test, the
basis function Φ(r) = r7 is applied to add third-order and second-order polynomials for
approximation of the velocity u = (u, v), while the basis function Φ(r) = r5 is applied to
add second-order and first-order polynomials for approximation of the pressure p. For the
number of node templates approximated at a central node of the velocity and pressure in
Equations (15) and (16), we select n1 = 21 and n2 = 9, respectively.

Figure 2 left shows the addition of the third-order polynomial for approximation of
the velocity and the error results for pressure approximation when adding the second-
order polynomial. The figure shows the relative error L2 when the number of nodes
N is 25, 81, 289, 1089, and 4225. The error decreases with increasing number of nodes,
and the convergence order of velocity and pressure reaches third-order and second-order.
When the number of nodes N is 4225, the velocity error is 4.4583× 10−5 and the pressure
error is 2.2254 × 10−2. The right0hand side of Figure 2 shows the error results of the
approximation when adding the second-order polynomial to the velocity and adding the
first-order polynomial to the pressure. When the number of nodes N is 4225, the relative
errors L2 of the velocity and pressure are 4.2393× 10−5 and 2.8000× 10−2, respectively.

Figure 2. Relative error L2 of the velocity u and pressure p (right-angled node layout).

By comparing the two figures, the error between the numerical solution and the true
solution obtained from approximation by adding third-order and second-order polynomials
to the velocity and pressure is far less than that obtained from approximation by adding
second-order and first-order polynomials to the velocity and pressure. When the number
of nodes is less than 1089, the former reaches the corresponding convergence order. As the
number of nodes approaches 4225, the order of velocity is less than 2 due to the reduction
in point density. This example illustrates that under the right-angled node layout, the radial
basis function difference method based on Oseen iteration is convergent and effective for
solving incompressible Navier–Stokes equations.
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4.2. Small Viscosity Problem

In order to test the suitability of the method proposed in this paper for small viscosity
problems, we begin by assuming that Equation (1) has a true solution (21). By setting the
viscosity coefficient ν = 0.00001, the nodes are distributed in a right-angled node layout. In
this example, the basis function Φ(r) = r7 is applied to add the third-order polynomial
for approximation of the velocity u = (u, v), and the basis function Φ(r) = r5 is applied
to add the second-order polynomial for approximation of the pressure p. Table 1 shows
the error results when ν is 0.00001 and number of nodes N is 25, 81, 289, 1089, and 4225.
When the number of nodes N is 4225, the relative error L2 of the velocity is 6.7100× 10−5

and the relative error L2 of the pressure is 2.0271× 10−2. Figure 3 shows the corresponding
error order.

Figure 3. Relative error L2 of the velocity u (left) and the pressure p (right) (ν = 0.00001).

Table 1. Relative error L2 and error L∞ between numerical solution and true solution of the velocity
u and pressure p (ν = 0.00001).

N Relative Error L2 of u Relative Error L2 of p L∞ Error of u L∞ Error of p

25 2.9942× 10−2 2.4962× 10−1 9.9977× 10−1 1.0191× 10−1

81 1.1883× 10−2 1.5148× 10−1 1.9150× 10−1 3.3872× 10−2

289 1.5680× 10−3 7.9769× 10−2 1.2605× 10−2 9.4008× 10−3

1089 1.5564× 10−4 4.0410× 10−2 6.2549× 10−4 2.4502× 10−3

4225 6.7100× 10−5 2.0271× 10−2 1.3483× 10−4 6.2380× 10−4

4.3. Hexagonal Node Layout

In this section, in order to test the suitability of the method proposed in this paper for
different node layouts, we consider the two-dimensional equation under the hexagonal
node layout, as shown in Figure 1 right, assuming that Equation (1) has a true solution (21)
where Ω = [0, 1] × [0, 1] and the viscosity coefficient ν = 1. In this example, the basis
function Φ(r) = r7 is applied to add the third-order polynomial for approximation of the
velocity u and the basis function Φ(r) = r5 is applied to add the second-order polynomial
for approximation of the pressure p. For the velocity and pressure in a discrete equation,
the number of node templates approximated at a central node (n1 and n2) are separately
selected as n1 = 31 and n2 = 13. When number of nodes is 4699, the relative error L2
of the velocity is 2.8638× 10−5 and the relative error L2 of the pressure is 1.3900× 10−2.
Figure 4 shows the relative error L2 between the numerical solution and the true solution
when the number of nodes N is 68, 279, 1166, and 4699.
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Figure 4. Relative error L2 of the velocity u and pressure p (hexagonal node layout).

In summation, these numerical experiments show that the radial basis function
finite difference method based on Oseen iteration has good performance for solving
Navier–Strokes equations under the hexagonal node layout.

5. Conclusions

This paper proposes a radial basis function finite difference method based on Oseen
iteration for solving two-dimensional steady Navier–Stokes equations with discretization
of the spatial operators of the Navier–Stokes equations using the radial basis function
finite difference method with polynomial, then linearizing the equation based on Oseen
iteration. In this paper, we provide numerical solutions for the Navier–Stokes equations
under right-angled and hexagonal node layouts, analyze and compare the influence of the
number of polynomial additions on the accuracy and convergence of the solution, and
verify the effectiveness of the proposed method. Under the two node layouts studied
in this paper, the proposed method offers high-precision numerical solutions for solving
Navier–Stokes equations while demonstrating good performance. Its extension to unsteady
problems will be the focus of our future research work.
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