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Abstract: Graph-structured data, operating as an abstraction of data containing nodes and interactions
between nodes, is pervasive in the real world. There are numerous ways dedicated to extract graph
structure information explicitly or implicitly, but whether it has been adequately exploited remains an
unanswered question. This work goes deeper by heuristically incorporating a geometric descriptor,
the discrete Ricci curvature (DRC), in order to uncover more graph structure information. We present
a curvature-based topology-aware graph transformer, termed Curvphormer. This work expands
the expressiveness by using a more illuminating geometric descriptor to quantify the connections
within graphs in modern models and to extract the desired structure information, such as the inherent
community structure in graphs with homogeneous information. We conduct extensive experiments
on a variety of scaled datasets, including PCQM4M-LSC, ZINC, and MolHIV, and obtain a remarkable
performance gain on various graph-level tasks and fine-tuned tasks.

Keywords: transformers; discrete Ricci curvature; structure information

1. Introduction

Graph data include considerable structure information; however, existing graph-based
algorithms do not fully use the inherent structural information of graphs. Real-word
datasets with an inherent node–edge structure, such as citation networks [1], molecules [2],
and the Internet [3], can be naturally represented by graphs. Moreover, graphs can be
manually established in scattered data such as point clouds [4,5].

The vast majority of GNNs use a message passing (MP) mechanism to explore the
graph structure information by aggregating neighborhood information [6–8]; however,
they unavoidably run into oversmoothing and oversquashing issues. Due to the MP
mechanism, most graph convolution of GNNs may be considered as a special case of
Laplacian smoothing [9]. Analogously to random walk on graphs, smoothing operations
on graphs result in the mixing of the characteristics of individual nodes.Multiple pro-
cesses are taken to smooth the characteristics of individual nodes, culminating in the
reduction of variability across nodes from diverse groups. This phenomenon of the in-
ability to classify nodes when the network is deeper is the most widely discussed de-
fect of GNNs, i.e., oversmoothing [9,10]. Another newly discussed problem of GNNs is
oversquashing [11,12], which indicates that information flows between long-distant nodes
encounter an unavoidable distortion. Oversmoothing and oversquashing are inevitable
side effects of MP GNNs. Rong et al. [10] alleviated oversmoothing by randomly dropping
a percentage of edges in the graph. Alon and Yahav [11] tried to tackle oversquashing
by adding a fully adjacent layer. However, these approaches could not totally resolve
these issues [13].

Graph-based transformers are another line of recent research. Transformers were
originally proposed as powerful solvers for natural language processing (NLP) tasks [14]

Entropy 2023, 25, 885. https://doi.org/10.3390/e25060885 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25060885
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4264-5846
https://doi.org/10.3390/e25060885
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25060885?type=check_update&version=1


Entropy 2023, 25, 885 2 of 13

and soon became prevailing in many domains, such as computer vision [15], time series [16],
and graph representation learning [17,18]. For graph-based transformers, current works
mainly focus on how to integrate a graph structure into positional encoding (PE) in trans-
formers [18,19]. Since graph data do not have a canonical position as in images and
sequences, the most widely used PE is the graph Laplacian eigenvectors, which pre-
serve the global structure with a permutation invariance [20]. Different from PE methods,
Graphormer [21] added structural encodings to the self-attention module as a structure-
aware bias of attention weights.It has been experimentally proved that Graphormer is
exempt from the problem of oversmoothing. Moreover, because of the self-attention mech-
anism in the transformer architecture, each node in the network attends to the others as
if they were entirely nearby nodes. Consequently, transformer-based graph learners can
efficiently avoid the issue of oversquashing. Thus, it is natural to take graph transformers
as the backbone architecture for graph-based models.

However, current graph structure descriptors, such as node degrees and shortest path
distances (SPD), have limited expressiveness. Rich information in the topology of the
graphs still remains unexplored. Graph-based tasks rely heavily on structure information.
The basic distinction between graph data and other data types, such as pictures or se-
quences, is the non-Euclidean node–edge structure. Graphs can be treated as a discretized
manifold [22] from the topological view. Based on the homophily assumption of most
graphs, the mainstream graph-based tasks, such as node classification, link prediction
and graph classification/regression, tend in essence to strengthen the connection between
nodes with the same property and discriminate against nodes with different properties. To
describe the geometric relationships of nodes from intra-/intercommunities, we draw inspi-
ration from recent research focusing on developing community detection algorithms [22–24]
with the help of a geometric notion, i.e., the discrete Ricci curvature (DRC) [25].

The DRC quantifies the intensity of connections between nodes and their neighbor-
hoods with regard to the local graph topology. Node pairs being densely connected are
associated with positive DRC values, while sparsely connected pairs give rise to negative
DRC values. As illustrated in Figure 1, the nodes connected by a yellow edge are in the
same community and have densely connected/overlapped neighborhoods, while the nodes
connected by a green edge are from distinct communities with few connections/overlaps
between their neighborhoods. Therefore, the DRC value of the yellow edges is 1.33, which
is obviously larger than the value−0.6 of the green edges. Purple edges correspond to a sce-
nario between the two extremes; thus, they have a DRC between −0.6 and 1.33. Intuitively,
the DRC has the ability to measure the connectedness of nodes and their neighborhoods,
thus it can be integrated to graph transformers to explore deeper structure information.

DRC = 1.33

DRC = -0.6

DRC = 0.53

Figure 1. Illustration of DRC on a small graph. Edges with the same color have the same DRC value
because of symmetry. Dense connections (yellow edges) correspond to a positive DRC, while sparse
connections (green edges) have a negative DRC.
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In this paper, we propose a novel curvature-based topology-aware graph transformer
architecture, namely, Curvphormer, to exploit advanced structural information from a
topological view. We evaluated the performance of our proposed algorithms on widely
used testbeds such as MolHIV, PCQM4M-LSC, and ZINC. Curvphormer exceeded previous
benchmarks by a significant margin.

2. Related Work

In this section, we highlight the most recent approaches on NN-based models working
on demystifying the structure information of graph data. Then, we give prominence to
some related applications of the DRC in finding the underlying structure of graphs.

2.1. Structural Encodings
2.1.1. On MP-GNNs

GNN methods processing graph data have natural merits from a theoretical basis.
Most GNNs follow the MP mechanism and leverage random walk algorithms to explore
the underlying structure of graphs with the aid of stochastic theories [9,26]. Some other
GNN methods try to incorporate local structure information by utilizing a local k-hop
subgraph as the structure fingerprint of its central node [27,28]. Moreover, some methods
propose to explicitly or implicitly introduce some additional structure information encoded
by geometric notions such as DRC to GNNs [29,30]. However, due to the inevitable
oversmoothing and oversquashing problems and the limited expressiveness of GNNs,
the increment of structure information does not yield much improvement in performance.

2.1.2. On Graph-Based Transformers

The challenge of building a powerful transformer architecture in graph representation
is how to properly encode structure information into a positional encoding (PE) module [18]
or the self-attention module [21]. Dwivedi and Bresson[18] exploited graph structure by pre-
computing the Laplacian eigenvectors of the adjacency matrix acting as the PE in the vanilla
transformer architecture to provide distance-aware information. Graph-BERT [19] operates
on sampled linkless subgraphs for the local structure information and enhances its capabil-
ity on extremely large graphs. Furthermore, Graph-BERT introduces three PE embeddings
to take in the positional information on local subgraphs. Specifically, a Weisfeiler–Lehman
(WL) absolute PE is leveraged to capture the global information, and an intimacy-based PE
and a hop-based relative PE are introduced to extract the local information in subgraphs.
It is notable that TokenGT [17] puts forward that pure transformers can attain impressive
performance on graphs by an orthonormal node identifier and a type identifier. It suggests
that the transformer architecture itself has the potential to fit in the graph structure. The
key to developing transformers for graphs is to extract proper graph structure information
in the model. Thus, most graph transformers incorporate graph structure information
by some strong graph-specific modifications. Following this guideline, further involving
advanced geometric descriptors into the transformer architecture is a promising direction.

2.2. DRC in Finding Graph Structure

In light of the property of the Ricci curvature in Riemannian geometry, the discrete
version of the Ricci curvature is a natural choice as a topological descriptor. Ni et al. [3]
leveraged the DRC to analyze Internet topologies. Sia et al. [23] constructed a commu-
nity detection algorithm by removing negative curved edges step by step. Lai et al. [24]
leveraged a DRC-based Ricci flow to deform a graph, then intracommunity nodes be-
came closer and intercommunity nodes dispersed. The DRC is capable of finding the
underlying relationship between nodes, characterizing them to clusters with identical or
distinct properties.
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3. Method

In this section, we elaborate the formulation of the discrete Ricci curvature (DRC)
and how to incorporate it in Curvphormer. Firstly, the basic settings are stated in Section 3.1.
Then, we carefully define the Ricci curvature on graphs in Section 3.2. In Section 3.3, we
propose the curvature-based topology-aware Curvphormer.

3.1. Preliminaries

Let G = (V , E) be a simple connected graph where V = {v1, · · · , vn} is the set of
nodes and E ⊂ V × V is the set of edges. n = |V| and m = |E | are the number of nodes and
edges, respectively. There are two kinds of information from G, i.e.,

• Attribute information: It represents the attribute features carried by the datasets.
For example, the signal intensity of a signal tower (which can be abstracted as a
node in the network), is a kind of attribute information. Actually, not only nodes
but also edges in graphs can contain attribute information. For example, the bonds
between molecule pairs can have different types, which can be included in the edge
features. We denote the node features by X = (x1, . . . , xn)T ∈ Rn×d and edge features
by E = (xe1 , . . . , xem)

T ∈ Rm×q, where d and q are the dimension of node and edge
features, respectively.

• Structure information: It represents the positions and interactions of nodes. Because of
the absence of canonical node ordering, without loss of generality, position information
can be viewed as a simple kind of interactions between nodes, i.e., a node is adjacent
or nonadjacent to others. More complex interactions are simply represented by the
node–edge form. Thus, in graphs, structure information is usually encoded by the
adjacency matrix of the entire graph or subgraphs. Let A = {aij} ∈ Rn×n denote the
adjacency matrix, where aij = 1 when (vi, vj) ∈ E , and aij = 0 otherwise.

3.2. Discrete Ricci Curvature

The Ricci curvature is originally a geometric notion, which plays a very important
role in Riemannian manifold analysis. It quantifies the degree of space bending. For its
discrete counterpart, the discretized Ricci curvature measures the connectedness of the
neighborhood of two nodes. For the discretization of the Ricci curvature, there are two main-
stream forms, i.e., the Ollivier Ricci curvature [25,31] and the Forman Ricci curvature [32].
Since the Ollivier Ricci curvature has more theoretical foundations and depicts inherent
structures more intrinsically [33], we applied a limit-free Ollivier Ricci curvature [24,34] as
the definition of the DRC.

The Ollivier Ricci curvature is defined on the base of the transportation distance. Firstly,
we define the probability distribution of nodes on the graph, which indicates the connections
or information flow between one node and others, especially its adjacent neighbors.

Definition 1. Probability distribution: For ∀α ∈ [0, 1] and ∀x ∈ V , the information flow
from node x to other nodes y ∈ V can be defined as a probability distribution on V by

mα
x(y) :=


α, y = x,

(1− α)
γ(wxy)

∑z∼x γ(wxz)
, y ∼ x,

0, otherwise.

(1)

where wxy denotes the edge weight on edge (x, y) ∈ E, y ∼ x means y is connected with x by an
edge, and γ(·) is an arbitrary non-negative real-valued one-to-one function. In our experiments, we
set γ(w) = w.

By the virtue of this definition, mα
x extracts the local topology of node x on the basis of

the graph. The relationship between any two nodes x and y is proportional to the distance
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between their neighborhoods, which is defined as the transportation distance between two
distributions mα

x and mα
y .

Definition 2. Transportation distance: Let A(x, y) : V × V → [0, 1] be a coupling satisfying

∑
y∈V

A(x, y) = mα
x and ∑

x∈V
A(x, y) = mα

y . (2)

Then, the transportation distance between two probability distributions mα
x and mα

y is defined as

W(mα
x, mα

y) := inf
A

∑
x,y∈V

A(x, y)d(x, y), (3)

where d(·, ·) is a distance function.

Here, we leveraged Dijkstra’s shortest path distance as d(·, ·) in this work. In order
to differentiate topology structures on the basis of graph geometry, the DRC is defined
as follows:

Definition 3. α-Ricci curvature:

κα(x, y) = 1−
W(mα

x, mα
y)

d(x, y)
, ∀α ∈ [0, 1]. (4)

Ollivier Ricci curvature [25]:

κ(x, y) = lim
α→1

κα(x, y)
1− α

. (5)

Note that, in the computation of Ollivier’s Ricci curvature, when the node pair x and
y connect densely, κ(x, y) is larger than the sparsely connected pairs. When computing
Ollivier’s Ricci curvature, in order to avoid the limit operation, former works set α to
0.5 [3,22] and utilized κα as an approximation of κ. In this work, we leveraged another
limit-free version of Ollivier’s Ricci curvature for computation convenience [34].

Definition 4. Let B : V ×V → R be a coupling function. We simply denote µ0
x as µx. For any

x, y ∈ V, if B satisfies

• B(x, y) > 0, while B(u, v) ≤ 0 for u 6= x or v 6= y;
• ∑u,v∈V B(u, v) = 0;
• ∑v∈V B(u, v) = −µx(u) for all u 6= x;
• ∑u∈V B(u, v) = −µy(v) for all v 6= y,

then we call B as a ∗-coupling between µx and µy.

Theorem 1. The ∗-coupling-based Ricci curvature is formulated as:

κ∗(x, y) =
1

d(x, y)
sup

B
∑

u,v∈V
B(u, v)d(u, v). (6)

and for any x, y ∈ V , x 6= y, the following equation holds:

κ∗(x, y) = κ(x, y). (7)

(Refer to [34] for proof.)
Thus, κ∗ illustrates the topological characteristic of a graph as an Ollivier Ricci curva-

ture and omits the limit calculation. In our implementation, we leveraged this κ∗ curvature
when computing the DRC and denoted the DRC by κ for simplicity. The proof of Theorem 1
can be found in [34]. Algorithm 1 formulates the computation of the DRC.
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Algorithm 1: Computation of Discrete Ricci Curvature (DRC)
Input: A graph G = (V , E).
Output: A weighted graph G = (V , E , w, κ), where w and κ are the weights and

discrete Ricci curvature on edges, respectively.
1 Initialization. If G is unweighted, set edge weights we = 1, ∀e ∈ E ;
2 Compute the shortest path distance (SPD) of each pair of nodes,

i.e., d(u, v)∀u, v ∈ V ;
3 for e = (x, y) ∈ E do
4 Compute the discrete Ricci curvature. κe =

1
d(x,y) supB ∑u,v∈V B(u, v)d(u, v);

5 end

3.3. Curvphormer

Curvphormer incorporates the advanced geometric information represented by the
DRC into a graph-based transformer architecture. The overall architecture of Curvphormer
is demonstrated in Figure 2.

+ η( )

v1

v2

v3
v4

v5

v6 v7

Edge level

Node Features Node Degrees

Edge Features Edge Curvatures

γ( ) + φ( )

Node level

⊕

Input

MatMul&Scale

Softmax

MatMul
h

Attribute Information Structural Information

Linear

Q

Linear Linear

K V

Figure 2. Illustration of Curvphormer with attribute/structure encodings. The input is a combination
of two types of node-level information, i.e., node features and node degree encoding. Edge-level
information, i.e., encodings of edge features and curvatures, describes the interactions between node
pairs; therefore, these two encodings are added to the multihead self-attention module as a bias of
the attention weights.

3.3.1. Attribute Encoding

As mentioned before, in graph data, the attribute information is the features carried by
nodes and edges, describing some specific information in the dataset. Node features are the
most important information characterizing a dataset. In Curvphormer, we leveraged the
node features without any affine transformation. In many graphs, edges also have attribute
features, which are essential for understanding the underlying graph structure. Although
edge features are provided by the dataset, they usually indicate the type or intensity of
the interactions between nodes. Thus, for any node pair (vi, vj) in a graph, the correlation
between vi and vj has to account for the edges connecting them. Let vi and vj be connected

by a shortest path denoted by vi
e1∼ · · · eN∼ vj. The correlation between vi and vj can be

formulated by the mean of the embedded edge features along the path.

γ(vi, vj) =
1
N

N

∑
k=1

EdgeEmbeddingk(xek ), (8)

where xek ∈ Rq is the edge feature of ek. EdgeEmbeddingk(xek ) = xT
ek
·wk, wk ∈ Rq is a

learnable vector.
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3.3.2. Structural Encoding

Structure information here refers to the knowledge of the graph that is induced by the
connectedness. As demonstrated in Figure 2, we considered two dimensions of structure
information. One is the node-level information to quantify the importance of nodes in the
graph. Taking the citation network as an example, the more influential a paper is, the more
citations it has, and vice versa. Thus, in an abstract graph, an important node must connect
to more neighbors. The node degree is an intuitive choice to describe this node property as
in [21]. Let di = ∑j∈V aij be the degree of node vi. Then, we embed di into a vector:

η(vi) = di ·wi, (9)

where wi ∈ Rd is a learnable vector. Then, we incorporate the node’s degree embed-
ding matrix D = (η(v1), . . . , η(vn))T ∈ Rn×d with the node features as the input of the
subsequent module, i.e., H(0) = X + D.

The other is the edge-level information, which can be interpreted by the positional
relationship between any node pairs via the edges connecting them. Former works en-
coded the position information on graphs by a simple shortest path distance (SPD) [21,35].
However, the SPD can only provide a relative distance on graphs. Graphs can be viewed as
a discretized manifold in Riemannian spaces. Thus, the topology structure of the manifold
determines the foundation of graphs. A pure SPD neglects the topology structure of the
spaces where graphs are embedded in. As we stated in Section 3.2, the DRC depicts the
connectedness on the basis of the node’s neighborhoods. Nodes with a positive DRC con-
nect densely, while a negative DRC is related to sparsely connected nodes. By virtue of the
expressive power of DRC, we encode the relations of the nodes on the graph topology with

ϕ(vi, vj) = κ(vi, vj) · wij, (10)

where wij is a learnable scalar.

3.3.3. Self-Attention Mechanism

The self-attention module is the main part of the transformer architecture, which cap-
tures the global information by connecting all positions [14,21]. It computes the weighted
sum of values, where the weights of values is obtained by a query-key function. Let
H = (h1, . . . , hn)T ∈ Rn×d be the input of the module. In Curvphormer, when a node
attends other nodes in the graph, the edge attribute information Γ = {γ(vi, vj)} as well as
the DRC-based structural information Φ = {ϕ(vi, vj)} are added to the attention weights
to provide more topology-aware ability. Therefore, the self-attention can be formulated as

Attention(H) = softmax
(

QKT
√

dK
+ Γ + Φ

)
V , (11)

where Q = HWQ, K = HWK, V = HWV , and WQ, WK ∈ Rd×dK , WV ∈ Rd×dV . Thus, the
correlation between nodes vi and vj is

Aij = softmax

(
(hiWQ)(hjWK)

T
√

dK
+ γ(vi, vj) + ϕ(vi, vj)

)
V . (12)

The multihead self-attention is obtained by

MHA(H) = Concat(Attention1(H), . . . , Attentionh(H))WO, (13)

where WO ∈ Rhd×dmodel .
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3.3.4. Curvphormer Structure

Curvphormer follows the basic architecture of Graphormer [21], which is a variant
of the vanilla transformer encoder [14]. Each layer of Curvphormer consists of a multi-
head attention module (MHA) and a feed-forward network (FFN) module. The detailed
implementation of a Curvphormer layer is formulated as

Ĥ(l+1) = MHA(LayerNorm(H(l))) + H(l) (14)

H(l+1) = FFN(LayerNorm(Ĥ(l+1))) + Ĥ(l+1) (15)

Moreover, in order to enhance the ability of Curvphormer to capture the representation of
the entire graph, as in [21], a virtual node is applied, which is connected to all nodes in
the graph by virtual edges, and the corresponding structural encodings are set to distinct
learnable variables.

The training procedure of Curvphormer is mainly based on a transformer encoding
module. The self-attention mechanism has a complexity of O(n2 · d) per layer, where n is
the number of nodes, and d is the dimension of node features. Before training, Curvphormer
computes the DRC as the input of the structural encoding. The computing complexity of
DRC is O(m · d̄3), where m is the number of edges, and d̄ is the average degree of nodes.
It is time-consuming to compute the DRC on very large graphs, thus we compute this
valuable structure information of graphs before training.

4. Experiments

In this section, we conduct three experiments to intuitively clarify the motivation as
well as effectiveness of Curvphormer. Firstly, we illustrate the importance of the topology
information in Section 4.1 on a small dataset, i.e., Zachary’s Karate Club Network [36],
indicating the importance of our inclusion of the curvature as a factor. Then, we intuitively
show the expressiveness of the DRC on graph structures comparing it with the widely used
graph structure descriptor SPD in Section 4.2. Finally, we perform experiments on three
different scaled real-world datasets to test the performance of Curvphormer in Section 4.3.

4.1. Structure Information Is Crucial in Graph-Based Tasks

To illustrate the importance of graph structure information, we devised a binary node
classification experiment on the small Karate Club Network (Karate). Karate is composed of
two communities with 34 nodes (members of the club). The edges between nodes indicate
the interactions between club members. We applied a simple two-layer GCN model [6]
to learn the underlying graph structure. Moreover, the node feature was designed based
on three cases, i.e., random numbers, the SPD, and the DRC, for testing the influence of
different kinds of information in a simple NN-based model.

The accuracy of these three scenarios is shown in Table 1 (best performance in 10 runs).
For random features, even though they could not provide any useful information, the clas-
sification accuracy was still better than random guess because of the utilization of the
adjacency matrix in the model. Notice that when more structure information was provided,
the performance of the model improved remarkably. Moreover, the DRC outperformed
the SPD in this experiment setting. It indicated that advanced topology information could
extract more effective structure information than simple distance information.
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Table 1. Test on different types of structure information on the Karate dataset with a 2-layer GCN.
Structure information yields better results, and advanced topological DRC outperforms SPD.

Feature Type Feature Description Accuracy (%)

Random numbers No useful information 78
SPD Provides distance information for nodes 95
DRC Provides advanced topology information 97

4.2. Why Does DRC Depict Structure Information Better than SPD?

Now, we intuitively show the expressiveness of the DRC compared to that of the SPD
by a small graph composed of two small communities bridged by an edge, as shown in
Figure 3. Though both the SPD and DRC had the ability to know there were two com-
munities, the DRC depicted more in-depth structure information than the SPD. Note the
interactions between nodes 1, 3 and nodes 1, 5. Nodes 1 and 3 were from the same com-
munity, while nodes 1 and 5 were from different communities. The relationships of these
two pairs were different, while SPD13 = SPD15 = 2 (highlighted by orange circles in
Figure 3c). Moreover, edge e45 was the only bridge edge connecting the two communi-
ties. However, SPD45 = 1 (red dotted circle in Figure 3c) could not differentiate e45 from
other one-hop pairs. The SPD was incapable of describing these differences in structure.
Fortunately, the DRC could amend these defects because it considered the nodes’ neighbor-
hoods. The tightly interacting pairs tended to have a larger DRC than sparsely interacting
pairs. DRC13 = 1 was apparently larger than DRC15 = 0.08 for the first case. Meanwhile,
DRC45 = −0.83 highlighted the difference of this edge from others.
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Figure 3. A small graph demonstrates the structural expressiveness of the SPD vs. the DRC. (a,b) are
the graph and hilights. (c,d) are the SPD and DRC values of node pairs. The difference between (1)
inter-/intra-community relations, i.e., 1 and 3 and 1 and 5, (2) the bridge edge e45 and other 1-hop
pairs, cannot be captured by the SPD but are well described by the DRC.

4.3. Experiments on Real-Word Datasets

In this part, we devised our experiments on three different scaled datasets, i.e., Mol-
HIV (small), ZINC (medium), and PCQM4M-LSC (large). Statistics of the datasets are
summarized in Table 2. We summarize the statistics of datasets used in this work in
Tables 1 and 3, and Figure 4.
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Table 2. Statistics of the datasets.

DATASETS Scale #Graphs #Nodes #Edges Task Type

ZINC (sub-set) Small 12,000 277,920 597,960 Regression
MolHIV Medium 41,127 1,048,738 1,130,993 Binary classification
PCQM4M-LSC Large 3,803,453 53,814,542 55,399,880 Regression

Table 3. Results on the PCQM4M-LSC, ZINC, and MolHIV datasets. The performance metric for the
regression task on PCQM4M-LSC and ZINC is the MAE, and the AUC for the classification task on
MolHIV. validMAE and testMAE refer to the MAE on the validation set and test set, respectively.
The test set of PCQM4M-LSC is not publicly available. Curvphormer outperforms the benchmarks
on all these datasets.

Datasets Scale Task Model #Layers #Param validMAE

PC
Q

M
4M

-L
SC

Large Regression

GCN [37] 12 2.0M 0.1691
GIN [38] 12 3.8M 0.1537

DeeperGCN [39] 12 25.5M 0.1398
GT [18] 12 0.6M 0.1400

GraphormerSMALL [21] 12 12.5M 0.1264
Graphormer [21] 12 47.1M 0.1234

Curvphormer 8 34.1M 0.1024

Model #Layers #Param testMAE

Z
IN

C

Medium Regression

GIN [38] 2 510K 0.526
GraphSage [8] 2 505K 0.398

GAT [7] 2 531K 0.384
GCN [37] 2 505K 0.367

GatedGCN-PE [40] 2 505K 0.367
PNA [41] 16 387K 0.214

GraphormerSLIM [21] 12 489K 0.122
Curvphormer 8 34.1M 0.080

Model #Layers #Param AUC (%)

M
ol

H
IV

Small Classification

GCN-GraphNorm [37] 12 526K 78.83
PNA [41] 12 326K 79.05

PHC-GNN [42] 12 111K 79.34
DeeperGCN–FLAG [39] 12 532K 79.42

DGN [43] 12 114K 79.70

Graphormer-FLAG [21] 12 47.0M 80.51
Curvphormer 12 47.1M 83.93

(12, 83.93)

(16, 70.70)

(16, 84.14)

(12, 80.51)

~0.2

~10

Figure 4. Testing the performance of Curvphormer on MolHIV for different number of layers.
Curvphormer surpasses the baseline Graphormer by a significant margin and attains stable satisfac-
tory performance for a varying number of layers.
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4.3.1. Experimental Set-Up

We benchmarked Curvphormer with the non-topology-aware Graphormer base-
line [21]. The basic setting of Curvphormer followed [21] but we modified some parameters
for the model fine-tuning. The number of attention heads and the dimension of node/edge
features were set to 16. We used AdamW as the optimizer and set the hyperparameter
Adam-ε to 1 × 10−8 and Adam-(β1, β2) to (0.99, 0.999). The learning rate was set to
2 × 10−4 with a lower bound of 1 × 10−9. The batch size was set to 512. All models and
tasks were trained on eight NVIDIA 3080ti GPUs for about three days. Other settings
were the same as those of the baseline. We trained Curvphormer on PCQM4M-LSC and
ZINC from scratch. We fine-tuned the pretrained model on ZINC with the small dataset
MolHIV to test the transferable ability of Curvphormer. In addition, in order to test if
Curvphormer could effectively resist the performance drop caused by oversmoothing, we
tested Curvphormer on the MolHIV dataset with a varying number of layers up to 20.

4.3.2. Results

Table 3 summarizes the performance of Curphormer and other baselines on PCQM4M-
LSC, ZINC, and MolHIV. The metrics were the mean absolute error (MAE) for the regression
task and the AUC for the classification task. We report the MAE on the validation set
(ValidMAE) for PCQM4M-LSC because its test set was not publicly available. Curvphormer
achieved the best results and noticeably surpassed the previous state-of-the-art GNNs as
well as the recent graph-transformer model GT [18] and Graphormer [21].

Next, we tested Curvphormer’s performance further on the MolHIV dataset by com-
paring it with the baseline Graphormer. Figure 4 shows that both models were capable of
resisting oversmoothing. Meanwhile, Curvphormer surpassed Graphormer by a noticeable
margin for all layer configurations. It is noteworthy that when the model layer changed
from 12 to 16, the performance of Graphormer dropped from 80.51 to 70.70. In contrast,
Curvphormer achieved a comparable result after a slight drop.

5. Conclusions and Discussion

This work introduced Curvphormer, a topology-aware graph transformer that incor-
porates advanced structure information into an expressive Graphormer architecture. The
DRC effectively differentiated the topology structure of graphs with the homophily prop-
erty and helped our model achieve remarkable performance improvements on different
scaled datasets in graph classification/regression tasks. It showed that applying more
geometric descriptors to expressive graph models is rewarding. Meanwhile, the exploration
of graph structure information is still challenging. For example, discovering the topology
information of heterogeneous graphs still needs future endeavors. Moreover, the com-
putation complexity of the DRC restricts its application in large dynamic systems. In a
nutshell, Curvphormer inspires a better understanding of graph structure and encourages
future work.
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41. Corso, G.; Cavalleri, L.; Beaini, D.; Liò, P.; Veličković, P. Principal neighbourhood aggregation for graph nets. Adv. Neural Inf.

Process. Syst. 2020, 33, 13260–13271.
42. Le, T.; Bertolini, M.; Noé, F.; Clevert, D.A. Parameterized hypercomplex graph neural networks for graph classification.

In Proceedings of the International Conference on Artificial Neural Networks, Bratislava, Slovakia, 14–17 September 2021;
pp. 204–216.

43. Beaini, D.; Passaro, S.; Létourneau, V.; Hamilton, W.; Corso, G.; Liò, P. Directional graph networks. In Proceedings of the
International Conference on Machine Learning, Virtual, 18–24 July 2021; PMLR: London, UK, 2021; pp. 748–758.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.4310/MRL.2010.v17.n2.a13
http://dx.doi.org/10.1088/1742-5468/2016/06/063206
http://dx.doi.org/10.1038/s41598-018-27001-3
http://dx.doi.org/10.4310/PAMQ.2021.v17.n5.a1
http://dx.doi.org/10.1609/aaai.v34i05.6243
http://dx.doi.org/10.1086/jar.33.4.3629752

	Introduction
	Related Work
	Structural Encodings
	On MP-GNNs 
	On Graph-Based Transformers

	DRC in Finding Graph Structure

	Method
	Preliminaries
	Discrete Ricci Curvature
	Curvphormer
	Attribute Encoding
	Structural Encoding
	Self-Attention Mechanism
	Curvphormer Structure


	Experiments
	Structure Information Is Crucial in Graph-Based Tasks
	Why Does DRC Depict Structure Information Better than SPD?
	Experiments on Real-Word Datasets
	Experimental Set-Up
	Results


	Conclusions and Discussion
	References

