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Abstract: In classical physics, there is a well-known theorem in which it is established that the energy
per degree of freedom is the same. However, in quantum mechanics, due to the non-commutativity
of some pairs of observables and the possibility of having non-Markovian dynamics, the energy is
not equally distributed. We propose a correspondence between what is known as the classical energy
equipartition theorem and its counterpart in the phase-space formulation in quantum mechanics
based on the Wigner representation. Further, we show that in the high-temperature regime, the
classical result is recovered.
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1. Introduction

The energy equipartition theorem is one of the most important results in the classical
theory of statistical mechanics due to its quantitative predictions and applicability in many
areas of physics [1]. However, few references exist for an extension of it when quantum
effects become relevant, that is, mainly with low-temperature phenomena [2]. A better
understanding of the energetic distributions in this regime is then necessary for progressing
in theoretical aspects and applications with quantum systems.

Currently, the authors working in the area agree that the equipartition of energy no
longer holds in the quantum regime, and the energetic distribution follows a better-called
energy partition theorem supported in the construction of a distribution function [3–5].
Applications to a few models have been made with satisfactory results and holding the
correspondence with the classical theorem at a high-temperature regime [4,6,7]. Nonethe-
less, these works are based on the same conceptual and mathematical framework, and
none of them is formulated in phase-space formalism. Therefore, in order to create a true
correspondence between the energy equipartition theorem in classical mechanics, it is
necessary to reformulate the quantum version in phase space.

In this article a novel approach is implemented; namely, we derive the partition
theorem in the phase space of quantum mechanics through the Wigner representation.
First, a review and certain mathematical manipulations are made to the classical statement
of the theorem so that with the aid of some results in the phase-space formulation, the
version of the theorem is shown straightforwardly in a completely analog manner. The
results derived are tested and validated, applying them to the harmonic oscillator in both
high and low-temperature regimes for the particular case of a weak coupling limit.

2. Classical Version of the Theorem

Consider a system composed of N particles in thermal equilibrium and described by
the set of generalized coordinates {qi, pi} where i = 1, 2, . . . , f N with f being the number of
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degrees of freedom per particle. The classical Hamiltonian of the system is HS(q, p) where
q and p represent all the generalized coordinates, so the 3D energy equipartition theorem
reads as follows [1] 〈

qi
∂HS
∂qi

〉
=

1
h3N

∫
dNq dNp ρ(q, p) qi

∂HS
∂qi

=
1
β

, (1)

〈
pi

∂HS
∂pi

〉
=

1
h3N

∫
dNq dNp ρ(q, p) pi

∂HS
∂pi

=
1
β

, (2)

where h is the Planck constant, β = (kBT)−1 where kB is the Boltzmann constant, q and p
denote all the coordinates per particle, and ρ(q, p) is the corresponding phase-space density
in any of the Gibbs ensembles [1]. Notice that the coordinates qi and pi have not been
merged into a single coordinate xi as is customary in the demonstration of this theorem;
this has a purpose, as will be shortly shown. In the particular case in which the density
distribution is given by the canonical ensemble, ρ(q, p) = exp(−βHS(q, p))/Z where
the partition function is explicitly Z = 1

h3N

∫
dNq dNp exp−(βHS(q, p)), it is possible

to conceive of an alternative version of this theorem for the case in which β does not
correspond with the known expression, but with a modified function of temperature
βmod = βmod(T). Then, Equations (1) and (2) read as follows〈

qi
∂HS
∂qi

〉
=

1
βmod

, (3)

〈
pi

∂HS
∂pi

〉
=

1
βmod

, (4)

where now the density distribution is given by ρmod(q, p) = exp(−βmodHS(q, p))/Zmod.
Let now assume that the Hamiltonian of the system can be separated into two functions

according to,
HS(q, p) = F(q) + G(p), (5)

so we will be able to transform Equations (1) and (2) into more favorable forms for the
connection with the quantum mechanical phase-space formulation. Let us now consider
the following Hamilton equations

q̇i =
∂HS
∂pi

= {qi, HS}PB, (6)

ṗi = −
∂HS
∂qi

= {pi, HS}PB, (7)

where {, }PB is the Poisson bracket defined for quantities A(q, p) and B(q, p) as

{A, B}PB = ∑
i

(
∂A
∂qi

∂B
∂pi
− ∂A

∂pi

∂B
∂qi

)
, (8)

including a third function C(q, p), the following identity can be demonstrated

{AB, C}PB = A{B, C}PB + {A, C}PBB, (9)

applying these results for the quantities qi
∂HS
∂qi

and pi
∂HS
∂pi

, using Equations (5)–(7) and
identity (9), it can be shown that

qi
∂HS
∂qi

= −qi{pi, HS}PB = −qi{pi, F(q)}PB = −{qi pi, F(q)}PB, (10)
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pi
∂HS
∂pi

= pi{qi, HS}PB = pi{qi, G(p)}PB = {piqi, G(p)}PB. (11)

Replacing Equations (10) and (11) in (3) and (4), respectively, one obtains

〈
qi

∂HS
∂qi

〉
= −

∫
dNqdNp

exp(−βmodHS(q, p))
Zmod

{qi pi, F(q)}PB =
1

βmod
, (12)

〈
pi

∂HS
∂pi

〉
=
∫

dNqdNp
exp(−βmodHS(q, p))

Zmod
{piqi, G(p)}PB =

1
βmod

. (13)

These are the algebraic forms of the modified energy equipartition theorem that
will allow us henceforth to easily connect with the quantum mechanical phase-space
formulation. In the case when βmod = β, we recover the usual equipartition theorem.

3. Density Operator in Quantum Mechanics

For a non-factorizing initial state, it is known that the total state of a system (S) and an
environment (E) in quantum mechanics can be described by the thermal equilibrium state
through the density operator [8]

ρ̂ = exp(−βĤ)/Z, (14)

where Ĥ is the total Hamiltonian of the system plus environment acting on the total Hilbert
space H = HS ⊗HE and Z the total partition function. Explicitly, the total Hamiltonian
is Ĥ = ĤS + ĤE + V̂, where ĤS, ĤE and V̂ represent the Hamiltonian of the system, the
environment, and the mutual interaction, respectively. The interaction V̂ can always be
written in a diagonal decomposition of a set of operators

{
Ŝα

}
acting only on the system and

a set
{

B̂α

}
acting only on the environment, such that V̂ = ∑α Ŝα ⊗ B̂α [9]. The description

of the system of interest is given by the reduced density matrix; this object contains all the
information that can be extracted by an observer of the system [9]. It can be shown that the
reduced density matrix at the second order can be written as [10]

ρ̂s ∝ e−βĤS

[
1 +

1
h̄ ∑

α

∫ h̄β

0
dτ1

∫ τ1

0
dτ2Ŝα(−iτ1)Ŝα(−iτ2)kα(τ1 − τ2)

]
, (15)

where h̄kα(τ) =
〈

B̂α(−iτ)B̂α(0)
〉

B is the two-time correlation function of the environment
operators. Equation (15) shows that, in general, it is not possible to describe the influence
of the bath in a system using the Gibbs state as in the case of classical mechanics [10]. In
order to give a simple illustration in Section 6, we consider the weak coupling limit. The
reduced density matrix, in this case, is the Gibbs state given by

ρ̂S = exp(−βĤS)/ZS, (16)

with ZS = TrS(exp(−βĤS)) being the canonical partition function. On the other hand,
it is useful to note that there is a relationship between the propagator K(q f , t, qi, 0) =〈

q f |exp(− it
h̄ ĤS)|qi

〉
formulated in terms of path integrals [11] and the matrix elements in

the position basis of Equation (16). Such a relation is evident when we replace t→ −ih̄β in
the propagator, i.e, K(q f ,−ih̄β, qi, 0) =

〈
q f |exp(−βĤS)|qi

〉
, then one obtains〈

q f |ρ̂S|qi

〉
=

1
ZS

〈
q f |exp(−βĤS)|qi

〉
=

1
ZS

∫
Dq exp(−1

h̄
SE[q]), (17)

where the integral is a functional integral running over all the functions satisfying the
boundary conditions q(0) = qi, q(h̄β) = q f and SE[q] =

∫ h̄β
0 dsHS(q(s), p(s)) is the action

of the system.
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4. Phase-Space Formulation of Quantum Mechanics

There are different approaches to the phase-space formulation of quantum mechan-
ics that try to associate a phase-space distribution function, for example, the Glauber–
Sudarshan, Kirkwood, Husimi Q-representations [12,13], etc. There is a particular approach
that consists in associating every quantum observable Ô(q̂, p̂) to a phase-space function
OW(q, p) (also called symbol) by means of a bijection Φ, called the Weyl transformation
and defined as [14]

Φ(Ô(q̂, p̂)) = OW(q, p) =
∫

dNu exp
(
− i

h̄
p · u

)〈
q+

u

2

∣∣∣Ô(q̂, p̂)
∣∣∣q− u

2

〉
, (18)

where
Φ(q̂) = q, (19)

Φ( p̂) = p, (20)

are the corresponding symbols of position and momentum operators. The Wigner distribu-
tion W(q, p) is defined as the Weyl symbol of the density operator ρ̂ by

W(q, p) = ρW(q, p) =
1

(2πh̄) f

∫
dNu exp

(
− i

h̄
p · u

)〈
q+

u

2

∣∣∣ρ̂(q̂, p̂)
∣∣∣q− u

2

〉
, (21)

is the corresponding phase-space distribution. This allows us to compute averages in a
similar way as in classical mechanics by means of

〈
Ô
〉
=
∫

dNq dNp W(q, p)OW . (22)

Our purpose is to create an analogy between the classical theorem and its counterpart
in phase-space quantum mechanics in the particular case where we analyze the energetic
distribution of the system. Thus the Hamiltonian that appears in the classical version
of the energy equipartition theorem is the Hamiltonian of the system ĤS. Therefore, it
is of interest to calculate the same average in quantum mechanics formulated in phase
space in order to create an analogy. To do that, we consider q̂i = q̂i ⊗ I, p̂i = p̂i ⊗ I and
∂Ĥs
∂q̂i

= ∂Ĥs
∂q̂i
⊗ I, ∂Ĥs

∂ p̂i
= ∂Ĥs

∂ p̂i
⊗ I, so we have

〈
q̂i

∂ĤS
∂q̂i
⊗ I
〉

= TrS

(
ρ̂S q̂i

∂ĤS
∂q̂i

)
=
∫

dNq dNp Ws(q, p)
(

q̂i
∂ĤS
∂q̂i

)
W

, (23)

〈
p̂i

∂ĤS
∂ p̂i
⊗ I
〉

= TrS

(
ρ̂S p̂i

∂ĤS
∂ p̂i

)
=
∫

dNq dNp Ws(q, p)
(

p̂i
∂ĤS
∂ p̂i

)
W

, (24)

where Ws(q, p) is the Wigner distribution associated with the reduced density matrix of
the system.

A Weyl symbol of particular interest is the one associated with the product of two
operators given by [14]

Φ(Â(q̂, p̂)B̂(q̂, p̂)) = AW(q, p) ?M BW(q, p)

= AW(q, p)exp
(

ih̄
2

(←−
∂q
−→
∂p −

←−
∂p
−→
∂q
))

BW(q, p),
(25)
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where
←−
∂q denotes the derivative with respect to q acting to the left and similarly for the other

derivatives. The ?M is called the Moyal product and allows one to define the associated
symbol for the commutator {, }M known as the Moyal bracket

Φ([Â(q̂, p̂), B̂(q̂, p̂)]) = {AW(q, p), BW(q, p)}M

=
2
h̄

AW(q, p)sin
(

h̄
2

(←−
∂q
−→
∂p −

←−
∂p
−→
∂q
))

BW(q, p),
(26)

which, expanded, is expressed as

{AW(q, p), BW(q, p)}M = 2
∞

∑
s=0

(−1)s

(2s + 1)!

(
−h̄
2

)2s 2s+1

∑
t=0

(−1)t(2s + 1)!
(2s + 1− t)!t!

×
[

∂t

∂qt
∂2s+1−t AW

∂p2s+1−t

][
∂2s+1−t

∂q2s+1−t
∂tBW
∂pt

]

= {AW(q, p), BW(q, p)}PB +O(h̄2).

(27)

5. Version of the Theorem in Phase-Space Formulation of Quantum Mechanics

Proceeding in a similar way as in Section 1, by assuming

ĤS(q̂, p̂) = F̂(q̂) + Ĝ( p̂), (28)

and considering the commutator for operators Â(q̂, p̂) and B̂(q̂, p̂) defined as

[Â, B̂] = ÂB̂− B̂Â, (29)

the following identities can be demonstrated [15]

[ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂, (30)

[q̂i,G( p̂)] = ih̄
dG( p̂)

dp̂i
, (31)

[ p̂i,F(q̂)] = −ih̄
dF(q̂)

dq̂i
, (32)

where F and G are arbitrary functions of operators q̂ and p̂. Thus, using Equations (31) and (32),
the quantum mechanical analog of the Hamilton equations can be stated as

dq̂i
dt

=
∂ĤS
dp̂i

=
1
ih̄
[q̂i, ĤS], (33)

dp̂i
dt

= −∂ĤS
dq̂i

=
1
ih̄
[ p̂i, ĤS]. (34)

Similarly, one arrives at

q̂i
∂ĤS
∂q̂i

= − q̂i
ih̄
[ p̂i, ĤS] = −

q̂i
ih̄
[ p̂i, F̂(q̂)] = − 1

ih̄
[q̂i p̂i, F̂(q̂)], (35)

p̂i
∂ĤS
∂ p̂i

=
p̂i
ih̄
[q̂i, ĤS] =

p̂i
ih̄
[q̂i, Ĝ( p̂)] =

1
ih̄
[ p̂i q̂i, Ĝ( p̂)]. (36)
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Using substitution in Equations (23) and (24) the result is〈
q̂i

∂ĤS
∂q̂i
⊗ I
〉

= −
∫

dNq dNp Ws(q, p)
(

1
ih̄
[q̂i p̂i, F̂(q̂)]

)
W

= −
∫

dNq dNp Ws(q, p){qipi, F(q)}M,
(37)

〈
p̂i

∂ĤS
∂ p̂i
⊗ I
〉

=
∫

dNq dNp Ws(q, p)
(

1
ih̄
[ p̂i q̂i, Ĝ( p̂)]

)
W

=
∫

dNq dNp Ws(q, p){piqi, G(p)}M.
(38)

Expanding the Moyal bracket as in (27) and noticing that the O(h̄2) vanishes since
derivatives of third-order or higher cancel out, one arrives at〈

q̂i
∂ĤS
∂q̂i
⊗ I
〉

= −
∫

dNq dNp Ws(q, p){qipi, F(q)}M

= −
∫

dNq dNp Ws(q, p){qipi, F(q)}PB,
(39)

〈
p̂i

∂ĤS
∂ p̂i
⊗ I
〉

=
∫

dNq dNp Ws(q, p){piqi, G(p)}M

=
∫

dNq dNp Ws(q, p){piqi, G(p)}PB.
(40)

Notice the explicit resemblance with the classical version as shown in Equations (1)
and (2). The exact same result can be obtained for the environment but with the Wigner
distribution function associated with the reduced density matrix of the bath. Equations (39)
and (40) are very useful for understanding why in quantum mechanics, generally, there is
no energy equipartition per degree of freedom in a system. The key factor is that the Weyl
transform of the reduced density matrix does not coincide with the Gibbs state. Moreover,
note that, according to Equation (14), the Wigner distribution can be divided into two terms

Ws(q, p) =
∫

dNu exp
(
− i

h̄
p · u

)〈
q+

u

2

∣∣∣ exp
(
−βĤS

)
Z

∣∣∣q− u

2

〉

+
∫

dNu exp
(
− i

h̄
p · u

)〈
q+

u

2

∣∣∣ 1
Zh̄ ∑

α

∫ h̄β

0
dτ1

∫ τ1

0
dτ2Ŝα(−iτ1)Ŝα(−iτ2)kα(τ1 − τ2)

∣∣∣q− u

2

〉
.

(41)

The first and second terms contain information about the system in a thermal state
and the bath correlation, respectively. Then, because of the non-commutativity of the
observables in the system, the first term does not coincide with the Gibbs state due to
quantum corrections, and the second, in general, at finite temperatures does not vanish
even for simple models of bath-system coupling (Legget–Caldeira type) [10]. As we will
show in Section 7, these Equations (39) and (40) constitute the energy equipartition theorem
only for the special case of the high-temperature regime.

6. Application to the Quantum Harmonic Oscillator

As an illustrative example of the proposed method in the article for calculating the en-
ergy, let us consider the system to be a harmonic oscillator in the high and low-temperature
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regimes. First, we calculate the Wigner distribution associated with the reduced density
matrix in the weak coupling limit

Ws(q, p) =
1

ZS

1
2πh̄

∫
du exp

(
− i

h̄
p · u

)〈
q+

u

2
| exp(−βĤS)|q−

u

2

〉
, (42)

with ĤS = 1
2m p̂2 + 1

2 mω2q̂2. As we said in Section 2, the matrix elements of the density oper-
ator involved in the integral can be calculated in the imaginary time path integral formalism,
i.e., we use the expression of the propagator of a harmonic oscillator, and we replace t =

−ih̄β. We do this in the expression provided by [11] to get
〈
q+ u

2

∣∣∣exp(−βĤS)
∣∣∣q− u

2

〉
=√

mω
2πh̄sinh(h̄βω)

exp
(
− mω

h̄ q2tanh( h̄ωβ
2 ) − mω

4h̄ u2coth( h̄ωβ
2 )) and ZS = (2sinh( h̄ωβ

2 ))−1. Fi-

nally, we replace this in Equation (42) and get

Ws(q, p) =
1

πh̄
tanh

(
h̄ωβ

2

)
exp

(
−

tanh( h̄ωβ
2 )

ωh̄

(
p2

m
+ mω2q2

))
. (43)

In the high-temperature regime, we find that the Wigner distribution function is just
the reduced density matrix of the system, i.e., the classical phase-space density in the
canonical ensemble of a harmonic oscillator,

Ws(q, p) =
1
Z

exp
(
−β

(
p2

2m
+

mω2

2
q2
))

=
exp(−βHS(q, p))

Z
, (44)

where Z = 2π
βω . Finally, because Equation (44) corresponds exactly with the probability den-

sity function for the canonical ensemble as in the case of classical mechanics, Equations (39)
and (40) are equal to kBT using Equations (12) and (13). In the low-temperature regime,

〈
q̂i

∂ĤS
∂q̂i
⊗ I
〉

= lim
β→∞

(−1)
∫

dq dp Ws(q, p){qipi, F(q)}M

= −
∫

dq dp
1

πh̄
exp

(
−2HS(q, p)

ωh̄

)
{qipi, F(q)}PB =

h̄ω

2
,

(45)

〈
p̂i

∂ĤS
∂ p̂i
⊗ I
〉

= lim
β→∞

∫
dq dp Ws(q, p){piqi, G(p)}M

=
∫

dq dp
1

πh̄
exp

(
−2HS(q, p)

ωh̄

)
{piqi, G(p)}PB =

h̄ω

2
,

(46)

in the last equalities we used Equation (13) where Zmod = πh̄, and βmod = 2
ωh̄ .

This simple example shows that, for this particular case, if one expects to create a
true correspondence between the classical equipartition theorem discussed in Section 1
and the theorem in quantum mechanics phase-space formulation, it must be done in the
high-temperature regime because, in the low-temperature regime, one gets the modified
density distribution. Furthermore, for a model whose coordinates are bilinearly coupled as
in [16], explicit expressions are found for Equations (23) and (24) in both regimes for the
weak coupling limit, where it is shown that the energy is not distributed equally for the
damped harmonic oscillator. This can also be seen from [17] where the Wigner distribution
function for Equations (40) and (39) does not correspond with the Gibbs distribution.

7. Theorem in the Classical Limit

Motivated by this example, we expect that in the classical limit, the Wigner function
described by Equation (42) behaves as the density probability function in the canonical
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ensemble for any system. In the general case of non-factorizing initial conditions in the high-
temperature regime equation, (14) takes the form of Gibbs state, and it can be shown [18]
that in this limit, the Wigner distribution function coincides with the same distribution as
in the classical case,

Ws(q, p) =
exp(−βHS(q, p))

Z
, (47)

where, in this case, we have used the fact that the Wigner distribution function must be
normalized. Using this in Equations (39) and (40), we have

〈
q̂i

∂ĤS
∂q̂i
⊗ I
〉
≈ −

∫
dNq dNp

exp(−βHS(q, p))
Z

{qipi, F(q)}PB, (48)

〈
p̂i

∂ĤS
∂ p̂i
⊗ I
〉
≈
∫

dNq dNp
exp(−βHS(q, p))

Z
{piqi, G(p)}PB. (49)

This is according to the classical theorem equal to kBT (see Equations (12) and (13)). Then〈
q̂i

∂ĤS
∂q̂i
⊗ I
〉
≈ kBT (50)

〈
p̂i

∂ĤS
∂ p̂i
⊗ I
〉
≈ kBT. (51)

These equations represent what we expect to get in the classical limit, i.e., the equiparti-
tion theorem. It must be stressed that this result has some approximations, restrictions, and
limitations. First, in general, the total state given by Equation (14) must contain some addi-
tional conditions resulting from experimentally achievable preparations [19], second the
result is derived based on an approximation method derived in [18], and we approximate
the product h̄β tends to zero to guarantee that the state is described by the Gibbs state. The
latter is guaranteed formally when T → ∞ and as long as the second-order perturbation
theory is valid [10]. In this case, no matter what kind of interaction is described by the
system and the environment, we get (50) and (51). On the other hand, the result is only
valid when one works with separable Hamiltonians, which is a particular case of more
general Hamiltonians presented in the literature [20].

8. Conclusions

We show that for a quantum system whose Hamiltonian can be separated in a sum of
two terms, one dependent exclusively on position coordinates and the other exclusively on
momentum, it is possible to establish a correspondence with classical energy equipartition
theorem when the quantum mechanical phase space formulation is implemented. In the
quantum case, the expression of what would be the equipartition theorem depends on
the Wigner distribution of the reduced density matrix instead of the classical phase space
density. This expression allows us to understand why in quantum mechanics, in general,
there is no energy equipartition theorem: the Wigner distribution function does not coincide
with the Gibbs state as would happen in the classical case. The main advantage of our
expression, as shown for a quantum harmonic oscillator, is that it allows studying the
energetic distribution completely in terms of the Wigner distribution function. Finally, as a
limit case, we investigate the high-temperature regime, and, as expected, we recover the
classical result.
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