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Abstract: Data-centric inverse problems are a process of inferring physical attributes from indirect
measurements. Full-waveform inversion (FWI) is a non-linear inverse problem that attempts to
obtain a quantitative physical model by comparing the wave equation solution with observed data,
optimizing an objective function. However, the FWI is strenuously dependent on a robust objective
function, especially for dealing with cycle-skipping issues and non-Gaussian noises in the dataset. In
this work, we present an objective function based on the Kaniadakis κ-Gaussian distribution and the
optimal transport (OT) theory to mitigate non-Gaussian noise effects and phase ambiguity concerns
that cause cycle skipping. We construct the κ-objective function using the probabilistic maximum
likelihood procedure and include it within a well-posed version of the original OT formulation,
known as the Kantorovich–Rubinstein metric. We represent the data in the graph space to satisfy the
probability axioms required by the Kantorovich–Rubinstein framework. We call our proposal the
κ-Graph-Space Optimal Transport FWI (κ-GSOT-FWI). The results suggest that the κ-GSOT-FWI is an
effective procedure to circumvent the effects of non-Gaussian noise and cycle-skipping problems.
They also show that the Kaniadakis κ-statistics significantly improve the FWI objective function
convergence, resulting in higher-resolution models than classical techniques, especially when κ = 0.6.

Keywords: κ-Gaussian distribution; optimal transport; seismic imaging; cycle skipping; non-linear
optimization; Wasserstein metric; inverse problems; wave propagation

1. Introduction

The task of inferencing physical parameters from indirect observations arises in various
practical problems. Determining parameters that cannot be directly observed remains a
complex issue and involves a robust set of tools that compose the theoretical basis of
the inverse problem theory [1]. The goal of an inverse problem consists of obtaining
a quantitative model m that explains the observations (or observed data) by matching
modeled data dmod = G(m) to observed data dobs, in which G denotes the so-called forward
operator. The forward operator maps the variables from the model space to the data space
through a physical law [2]. For instance, we may want to determine the thermal diffusivity
of a material (physical system) by analyzing the observed data: the temporal distribution of
the diffusing material density at a determined location. In this regard, the model consists of
the collective diffusion coefficient, and a diffusion equation represents the forward operator
G. So, the diffusion coefficients are determined by optimizing an objective function, which
measures the distance between modeled and observed data.

In this work, we consider a non-linear inverse problem that has attracted increasing
interest in several fields, such as astrophysics [3], biomedicine [4], machine learning [5],
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and geophysics [6], named the Full-Waveform Inversion (FWI) [7]. FWI is a powerful
imaging technique to obtain high-resolution quantitative physical models by analyzing the
complete information of a collection of waveforms [8]. In particular, we consider the FWI
technique in a geophysical context, in which the forward problem consists of simulating the
propagation of acoustic waves by solving a wave equation. In this regard, the acoustic wave
equation represents the forward operator G. At the same time, the data d and the model m
are the pressure waveforms and the distribution of acoustic wave velocities (coefficients of
the wave equation) of the subsurface medium. The inverse problem involves inferencing
the coefficients of the wave equation (model parameters) by comparing the modeled data
(wave equation solution) with the observed data by employing an objective function [9].

The objective function based on the least-squares method (or squared l2-norm) is the
most employed for handling FWI issues [7]. The least-squares objective function (from now
on, classical objective function) computes the square root of the sum of the absolute squares
of the residual data (or errors), the difference between the modeled and the observed
data. Each objective function is closely connected to a statistical interpretation of the
errors [2]. The classical objective function bears a relationship to Gaussian statistics. Indeed,
in this classical framework, the errors are assumed to be independent and identically
distributed according to a Gaussian probability distribution [10]. However, this assumption
is sometimes adequate since the errors seldom are Gaussian in non-linear problems [11,12].
Let us remind the reader that errors arise from different natures, comprising the noise in
the observations and uncertainties related to the physical rule employed in the forward
problem. In fact, non-Gaussian noises are present in geophysical datasets and are caused
by several elements, such as weather-related mechanisms [13] and instrument noise [14].
Several objective functions based on non-Gaussian statistics have been presented in the
literature as alternative criteria. Non-Gaussian distributions exhibit much longer tails than
the Gaussian ones, a crucial feature for dealing with erratic data (outliers) [15]. Several
works have shown the effectiveness of non-Gaussian criteria in geophysical data inversions,
such as objective functions based on Laplace distribution [16], Student’s t distribution [17],
generalized approaches [18,19], and hybrid criteria [20,21].

Recently, ref. [22] introduced a new non-Gaussian criterion, namely ,the κ-objective
function, based on the Kaniadakis statistics (or κ-statistics) [23–27], which is robust to erratic
data. The κ-objective function assumes that the errors are independent and identically
distributed according to the κ-deformation of a Gaussian distribution (or κ-Gaussian
distribution), in which the classical approach is a particular case [28]. The κ-Gaussian
distribution arises from optimizing the Kaniadakis κ-entropy as a generalization of the
well-known Gaussian distribution [29]. The κ-criterion exhibits robust characteristics
thanks to the much longer tail of the κ-Gaussian distribution than the classical Gaussian
probability function, which is crucial to mitigate the effects of non-Gaussian errors in FWI
problems [30].

Due to the high computational efforts to solve the wave equation several times during
the FWI process, the minimization process of the objective function is usually solved by
local optimization methods [7]. Thus, FWI is prone to trapping into a non-informative local
minimum if the initial background velocity model is not kinematically accurate [31]. Such
an intrinsic limitation of FWI is associated with the absence of low-frequency contents,
causing cycle-skipping issues [32,33]. Cycle-skipping is a phase ambiguity problem when
the phase correspondence between two waveforms is greater than half a wavelength [34].
Although the approaches mentioned above are robust to non-Gaussian errors, they mea-
sure sample-by-sample the data misfit, making them sensitive to cycle skipping. Hence,
a vast body of objective functions has been introduced for mitigating the cycle-skipping
effects, such as those based on the waveform envelopes [35], convolutional filters [36],
non-parametric techniques [37], and optimal transport metrics [38]; this is the methodology
employed in the present study.

The theory of optimal transport (OT) was formally introduced by Gaspard Monge [39],
who sought to understand the most effective allocation of resources by redistributing
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materials (mass) from sources to sinks. In recent years, OT theory has received much
attention in broad literature (e.g., refs. [40–43]), such as geophysics issues [44–46]. However,
the OT-based objective function is suitable for comparing probability distributions, that
is, positive and normalized quantities, two requirements that seismic signals do not greet
due to their oscillatory nature. In this way, waveforms are commonly distorted through
transformations to satisfy the probability axioms, which may manufacture unwanted
information. Indeed, several applications have demonstrated the effectiveness of OT-based
objective functions to mitigate the effects of phase ambiguity; however, all assume that the
errors obey Gaussian statistics.

In this work, we explore the κ-objective function in the context of OT theory to
introduce an objective function resistant to non-Gaussian noise and less sensitive to cycle-
skipping issues. In this regard, we propose a robust framework for matching seismic
waveforms using the Wasserstein distance, a well-posed relaxation of the OT formulation.
Furthermore, inspired by ref. [47], we consider the representation of the waveforms in the
graph space suitable for real large-scale problems [33]. In this approach, the waveforms are
represented by Dirac delta functions in a two-dimensional space (amplitude versus time).

We organize the present work as follows. In Section 2, we briefly introduce the theo-
retical basis of inverse problems in the context of κ-Gaussian statistics and their robustness
properties. In Section 3, we present a well-posed relaxation of the original optimal transport
formulation using the Kaniadakis κ-objective function. Then, in Section 4 we present FWI
based on optimal transport and κ-Gaussian statistics in the context of the adjoint state
method. In Section 5, we demonstrate how the proposed objective function deals with
cycle-skipping issues and non-Gaussian noise by considering a Brazilian pre-salt case study.
Finally, we devote Section 6 to the final remarks and future applications.

2. Inverse Problems in the Context of Kaniadakis κ-Statistics

In science issues, several practical problems are data-centric. Indeed, determining a
quantitative physical model that explains the observations is crucial to more accurately
model and describe a wide variety of existing physical systems. In this context, the inverse
problem theory is an excellent tool.

From a practical point of view, an inverse problem is formulated as an optimiza-
tion task for obtaining a quantitative model by comparing modeled data to observed
data. Modeled data are calculated using an appropriate physical law. The comparison
between modeled and observed data is performed through an objective function. In the
classical approach, the objective function is constructed from the assumption that the
errors (the difference between modeled and observed data) obey Gaussian statistics. Let
~ε = {ε1, ε2, · · · , εN} be the errors. From the assumption that the errors are independent
and identically distributed according to a standard Gaussian distribution,

p0(εi) =
1√
2π

exp
(
−1

2
ε2

i

)
, (1)

we can determine the associated likelihood function as follows [11]:

L0 =
N

∏
i=1

p0(εi) =

(
1√
2π

)N

exp

(
− 1

2

N

∑
i=1

ε2
i

)
, (2)

where L0 is the Gaussian likelihood. The use of index 0 will become clear later on. It is
worth remembering that the standard Gaussian distribution can be determined from the max-
imization of the Boltzmann–Gibbs–Shannon entropy subject to the normalization condition∫ +∞

−∞
p(ε)dε = 1 (3)
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and the unit variance constraint, ∫ +∞

−∞
ε2 p(ε)dε = 1. (4)

In inverse problems, the errors~ε depend on the model parameter m and are com-
puted through the difference between modeled (dmod = G(m)) and observed (dobs) data,
i.e., εi(m) = dmod

i (m)− dobs
i , where G represents the forward operator. In this way, obtaining

the model parameter can be performed by employing the maximum likelihood estimation
(MLE) method, which is achieved by maximizing the likelihood function as follows:

m̂ = max
m
L0(m|dobs) (5)

where m̂ represents the estimated model. The MLE estimates an unknown model parameter
by considering that its optimal value maximizes the probability that the observed data are
measured. Since the minimum of the negative log-likelihood coincides with the maximum
of the likelihood function, maximizing L0 (5) is equivalent to minimizing the negative
log-likelihood, i.e.,

max
m
L0(m|dobs) ≡ min

m
− ln

(
L0(m|dobs)

)
. (6)

From the principle of maximum likelihood, an objective function φ0 can be obtained
from [11]:

φ0(m) ∝ − ln
(
L0(m|dobs)

)
, (7)

which can be rewritten as:

φ0(m) ∝
N
2

ln(2 π) +
1
2

N

∑
i=1

ε2
i (8)

φ0(m) =
1
2

N

∑
i=1

ε2
i . (9)

We notice that minimizing Equation (8) or (9) is the same since the term N
2 ln(2 π) is

constant. The latter equation is well-known and used in solving problems via the least
squares method. Please see Section 2 of ref. [48] for more detail.

However, due to the non-Gaussianity of the errors, it is reasonable to assume that the
errors are non-Gaussian. In this study, we consider that the errors are distributed according
to a Kaniadakis κ-Gaussian distribution of the form [22]:

pκ(εi) =
1

Zκ
expκ

(
−βκ ε2

i

)
, (10)

where Zκ is a normalizing constant, βκ is a scale parameter, and

expκ(y) = exp
(

1
κ

arcsinh(κy)
)
=
(√

1 + κ2y2 + κy
) 1

κ
(11)

with 0 ≤ |κ| < 1, is the κ-exponential function [26], a generalization of the exponential
function. The κ-exponential becomes the ordinary exponential function in the limit κ → 0:
exp0(y) = exp(y).

Considering the normalization (3) and unitary variance (4) conditions, we obtain

Zκ =

√
π

βκ

|2κ|−1/2

1 + 1
2 |κ|

Γ
(

1
|2κ| −

1
4

)
Γ
(

1
|2κ| +

1
4

) (12)



Entropy 2023, 25, 990 5 of 21

and

βκ =
|2κ|−1

2
1 + 1

2 |κ|
1 + 3

2 |κ|

Γ
(

1
|2κ| −

3
4

)
Γ
(

1
|2κ| +

1
4

)
Γ
(

1
|2κ| +

3
4

)
Γ
(

1
|2κ| −

1
4

) (13)

holding for |κ| < 2/3. The standard Gaussian distribution (1) is a particular case of
the κ-Gaussian distribution (10) in the classical limit κ → 0 since limκ→0 βκ = 1

2 and
limκ→0 Zκ =

√
2π. Figure 1 depicts the plots of the κ-Gaussian distribution (10) for typical

κ-values, with the solid black curve referring to the standard Gaussian distribution (κ → 0).

(a) (b)

Figure 1. Probability plots of the κ-Gaussian distribution (10) for some κ-values using (a) a linear
scale and (b) a linear scale on the axis of ordinates, and a logarithmic scale on the axis of abscissas.
The solid black line represents the standard Gaussian distribution (κ → 0).

Because we assume that the errors are independent and identically distributed by
the power law distribution represented in (10), we can calculate the corresponding objec-
tive function by estimating the most likely state using the probabilistic maximum likeli-
hood method:

min
m

φκ(m) ≡ max
m
Lκ(m|dobs), (14)

where Lκ(m|dobs) := ∏N
i=1 pκ(εi(m)) represents the likelihood function. It is crucial to

remember that minimizing the negative log-likelihood is the same as maximizing the
likelihood function. In this way, the objective function φκ can be obtained from (14):

φκ(m) ∝ N ln
(

Zκ

)
−

N

∑
i=1

ln

[
expκ

(
− βκε2

i (m)
)]

(15)

φκ(m) = −
N

∑
i=1

ln

[
expκ

(
− βκε2

i (m)
)]

, (16)

where φκ is the κ-objective function, which converges to the classical objective function (9)
in the limit κ → 0.

The κ-objective function is not easily influenced by aberrant measurements (outliers),
as it is based on κ-Gaussian criteria [49]. To demonstrate this, we compute the influence
function Υ related to the objective function. According to ref. [50], a statistical criterion
is not robust if Υ → ±∞ under |ε| → ∞, and robust (outlier-resistant) if Υ → 0 under
ε→ ±∞. Given a model mi, the influence function is defined by [50]:

Υκ(mi) :=
∂φκ(ε|mi)

∂ε
, (17)
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where φκ(ε|mi) is the κ-objective function computed from the errors ε given the model mi.
Thus, the κ-objective function generates the following influence function:

Υκ =
2βκε√

1 + κ2β2
κε4

(18)

for 0 < κ < 2/3, with Υκ = Υκ(mi) and ε = ε(mi). We notice that, as ε tends to ±∞,
the influence function associated with the κ-criterion (Υκ) approaches to 0; the κ-objective
function is then robust (outlier-resistant). Indeed, the influence function in its valid domain
(0 < κ < 2/3) is proportional to 1/ε for large errors (suppressing these) and to ε for small
errors (magnifying these). Figure 2 depicts the behavior of the κ-objective function and the
associated influence function.

(a) (b)

Figure 2. (a) Graphical representation of the κ-objective function (16), and (b) the associated influence
function (18) for some κ-values. The solid black line represents the classical criterion (κ → 0).

3. Optimal Transport Metric Based on Kaniadakis κ-Statistics

In 1781, Gaspard Monge first raised a challenger transportation problem [39], which
consisted of moving a pile of sand from one place to another optimally and without
losing mass. As formulated by Monge, the optimal transport (OT) issue is an ill-posed
problem; hence the solution, if it exists, is not unique. Nearly 200 years later, Leonid
Kantorovitch proposed a well-posed relaxation of Monge’s OT problem in the context of
optimal economic resource allocation [51]. In this regard, Kantorovich proposed what is
now known as the Kantorovich–Rubinstein metric (also referred to as Wasserstein distance),
which earned him the 1975 Nobel Memorial Prize in Economic Science.

The Wasserstein criterion is a metric that defines a distance between two proba-
bility distributions. Let us consider two sets of points Ω1 = {xi; i = 1, 2, · · ·, N1} and
Ω2 = {yj; j = 1, 2, · · ·, N2}, in which each point xi and yj are represented by “mass” func-
tions, namely µ(xi) and υ(yj), respectively. Considering the mass conservation constraint
(∑i µ(xi) = ∑j υ(yj) = 1), we can define the κ-optimal total transport costWκ as [30,40]:

Wκ(µ, υ) = min
T ∈Λ(µ,υ)

∑
i,j
Ti,j φκ,i,j, (19)

where Λ(µ, υ) denotes the set of transport maps T defined in

Λ(µ, υ) =

{
Ti,j ≥ 0, ∀(i, j);

N2

∑
j=1
Ti,j = µ(xi), ∀ i;

N1

∑
i=1
Ti,j = υ(yj), ∀ j

}
. (20)

The transport map T assigns how many “sand particles” from µ(xi) should be trans-
ported to υ(yj) for each pair (xi, yj), while the κ-objective function maps each pair (xi, yj)
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to [0;+∞]. The Monge–Kantorovich transportation relaxed problem (19), using the Ka-
niadakis κ-statistics, can therefore be solved by determining an optimal transport plan
T that minimizes the κ-optimal total transport costWκ from µ to υ, given an κ-objective
function φκ .

Let us consider a metric space P(X × Y) formed by a set of probability measures,
in which X and Y are two separable and complete metric spaces with µ ∈ X and υ ∈ Y .
From this point forward, for practical reasons, we assume that X = Y ⊂ RN (with
N1 = N2 = N ∈ N). In addition, let us consider the mass distributions µ and υ rep-
resented in terms of the Dirac delta function as follows: µ(x) = 1

N ∑N
l=1 δ(x− ul) and

υ(y) = 1
N ∑N

l=1 δ(y− wl), in which ul ∈ Ω1 and wl ∈ Ω2 point out the data points de-
scribing µ(x) and υ(x). In this context, we can reformulate the optimization problem in
Equation (19) as follows:

Wκ(µ, υ) = min
Ti,j

− 1
N

N

∑
i,j=1
Ti,j ln

{
expκ

[
− βκ

(
µ(xi)− υ(yj)

)2
]}

(21)

subject to

Ti,j ≥ 0,
N

∑
j=1
Ti,j = 1,

N

∑
i=1
Ti,j = 1. (22)

From a practical viewpoint, we notice that solving (21) consists of obtaining an optimal
transport plan that links data points from P(X ) to the corresponding data points in P(Y)
that minimizes the κ-optimal total transport costWκ . Although each element of the optimal
transport plan Ti,j can assume fractional values, a classic result states that the optimal
solution values are integer values, specifically 0 or 1 when the constraints described in
Equation (22) are considered [52,53]. Indeed, obtaining the minimum of Wκ implicates
solving a combinatorial optimization issue, which can be defined as:

Wκ(µ, υ) = min
σ∈S

− 1
N

N

∑
i=1

ln

{
expκ

[
− βκ

(
µ(xσ(i))− υ(yi)

)2
]}

, (23)

where σ represents a permutation solution for the linear sum assignment problem in (21)
related with T , and S(N) = {1, 2, · · ·, N} is a set of permutations. Equation (23) represents
the Wasserstein metric in the context of κ-Gaussian statistics.

Naturally, the Wasserstein metric based on Kaniadakis κ-statistics appreciates the
advantages provided by κ-Gaussian statistics. However, this approach in this format is
only valid for comparing probability distributions, which is not interesting for geophysical
applications like the FWI case. This incompatibility is because seismic signals are not
normalized and positive-definite quantities like probability functions.

4. Kaniadakis κ-Graph-Space Optimal Transport FWI
4.1. FWI Based on Kaniadakis κ-Gaussian Distribution

In this section, we present the main elements of FWI based on the Kaniadakis κ-
Gaussian distribution, the metric explained in Section 2. The FWI is a non-linear inverse
problem whose main goal consists of inferring a quantitative physical model by comparing
modeled waveforms (modeled data) with measured waveforms (observed data) [7]. FWI is
often formulated as a gradient-based minimization due to the computational costs, in which
the model parameters are iteratively updated, from an initial model m0, as follows [8]:

mi+1 = mi − αi hκ(mi) for i = 0, 1, 2, · · ·, Niter, (24)

where m represents the model parameter, αi > 0 is the so-called step length [54], Niter
represents the number of FWI iterations, and hκ denotes the descent direction at the i-
th iteration.
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In this work, we employ a non-linear conjugate gradient optimization method based
on the so-called Polak–Ribière–Polyak algorithm. In this regard, the descent direction is
defined by [55,56]:

hκ(mi) =

{
∇mφκ(m0) , if i = 0

∇mφκ(mi) + ζκ(mi)hκ(mi−1), for i = 1, 2, · · · , Niter
(25)

with

ζκ(mi) =
∇mφκ(mi)(∇mφκ(mi)−∇mφκ(mi−1))

∇mφκ(mi−1)∇mφκ(mi−1)
, (26)

where ∇mφκ(m) is the gradient of the κ-objective function.
Thus, it is remarkable that the objective function plays a crucial role in obtaining

models via FWI, which is defined for our problem as (10):

min
m

φκ(m) := −∑
s,r

∫ T

0
ln
{

expκ

[
− βκ

(
Γs,rψs(~x, m, t)− ds,r(~xs,r, t)

)2]}
dt, (27)

where Γs,rψs = dmod
s,r and ds,r = dobs

s,r represent the modeled and observed data generated by
the seismic source s and recorded in the receiver r, while ~x ∈ R2 and t ∈ [0, T] denote the
spatial coordinates and the seismic acquisition time.

It is worth mentioning that the observed data ds,r are registered only in the receiver
positions ~x = ~xs,r, the available and chosen positions during a seismic survey. The seismic
wavefield ψs is computed in the entire physical domain for each seismic source s by solving
a wave equation. Thus, Γs,r represents a sampling operator that acts as a measurement
processor onto the receiver r from the source s. In this work, we consider the acoustic case;
therefore, ψs are the pressure wavefields that satisfy the following model:

1
c2(~x)

∂2ψs(~x, t)
∂t2 −∇2ψs(~x, t) = gs(t)δ(~x−~xs) (28)

where gs represents a seismic source signature at the fixed position ~x = ~xs, c is the P-wave
velocity model of the medium, and ∇2 denotes de Laplacian operator.

Thus, the gradient of the κ-objective function (27) with respect to the model parameters
is given by:

∇mφκ(m) =
∂φκ(m)

∂ml
= 2βκ ∑

s,r

∫ T

0

Js,r(m, t)∆ds,r(m, t)√
1 + κ2β2

κ∆d4
s,r(m, t)

dt, (29)

where ∆ds,r(m, t) = Γs,rψs(~x, m, t)− ds,r(~xs,r, t) represents the error (or residual data) and

Js,r(m, t) =
∂

∂ml

(
Γs,rψs(~x, m, t)

)
(30)

is known as the Fréchet derivative. It is worth emphasizing that FWI problems involve
many elements from the model parameters that typically comprise 106 to 1012 variables
(coefficients of the wave equation). In this context, we need to solve the wave equation once
in the forward modeling process plus at least 106 times in calculating the gradient of the
κ-objective function through Fréchet derivatives, being unfeasible in industrial problems.

4.2. Adjoint-State Method

Since calculating Fréchet derivatives can be computationally prohibitive, we compute
the gradient of the κ-objective function using the adjoint-state method, which was devel-
oped in the 1970s [57]. There are several ways to formulate the state-adjoint approach, such
as in techniques based on the augmented Lagrangian method or Green’s functions. How-



Entropy 2023, 25, 990 9 of 21

ever, in this work we consider the perturbation theory to calculate the gradient efficiently.
We notice that the κ-objective function can be written as:

φκ(m) = f
(

ψ(m), m
)

, (31)

where ψ is a state variable that belongs to the complex space Q; ψ satisfies the following
equation of state:

F
(

ψ(m), m
)
= A(m, t)ψ(m, t)− g(t) = 0, (32)

in which we suppress the subscript s for the sake of a simplified notation. In the latter
equation, A(m, t)ψ(t) = q(t) represents the wave equation written in a compact form,
where A(m, t) = m ∂2

∂t2 −∇2 is the d’Alembert wave operator with m = 1
c2(~x) belonging to

the real spaceM, whilst g(t) = gs(t)δ(~x−~xs).
Suppose we consider an arbitrary variation δm concerning the model parameter m.

In that case, the state variable ψ will be disturbed by a variation δψ; consequently, the κ-
objective function in Equation (31) will also be disturbed. In this way, we have to:

δφκ =
∂ f (ψ, m)

∂m
δm +

〈
∂ f (ψ, m)

∂ψj
, δψ

〉
Q

, (33)

where we only consider the first-order terms in δm and δψ. Furthermore, ψj is any element
of the space Q, and 〈, 〉Q is the inner product in Q.

It is worth emphasizing that the perturbations δm and δψ also induce variations in the
equation of state (32). Moreover, assuming that there is a unique solution ψ for any model
parameter m, we can state that ψ + δψ is the unique solution of F(ψ + δψ, m + δm) = 0.
In other words, for a physical realization ψ (that is, F(ψ, m) = 0), we have the following
first-order development in δm and δψ:

F(ψ + δψ, m + δm) = F(ψ, m) +

(
∂F(ψ, m)

∂m

)
δm +

(
∂F(ψ, m)

∂ψj

)
δψ = 0. (34)

From the latter equation, we have that the perturbation in the state variable ψ is given by:

δψ = −
(

∂F(ψ, m)

∂ψj

)−1(
∂F(ψ, m)

∂m

)
δm, (35)

where a−1 denotes the inverse of a. So, replacing the resulting from Equation (35) in
Equation (33), we have an efficient way to compute the gradient of the κ-objective function
without the Fréchet derivatives:

δφκ =
∂ f (ψ, m)

∂m
δm−

〈
∂ f (ψ, m)

∂ψj
,

(
∂F(ψ, m)

∂ψj

)−1(
∂F(ψ, m)

∂m

)
δm
〉
Q

. (36)

On the other hand, to obtain an intuitive way to calculate the gradient, Equation (36)
can be rewritten so that in the inner product in Q, one of the terms varies only with ψ and
the other with m. For this, we consider the following adjoint operator property for any x
and y variables:

〈x,Ry〉 = 〈R†x, y〉 (37)
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where R† is the adjoint operator of R, while the superscript † represents the adjoint
operation (complex-conjugate transpose). Applying the property (37) to the second term of
Equation (36), we obtain:

δφκ =
∂ f (ψ, m)

∂m
δm−

〈[(
∂F(ψ, m)

∂ψj

)−1]†
∂ f (ψ, m)

∂uj
,

(
∂F(ψ, m)

∂m

)
δm
〉
Q

. (38)

Furthermore, if we consider a new state variable v belonging to the complex space V ,
given by:

v =

[(
∂F(ψ, m)

∂ψj

)−1]†
∂ f (ψ, m)

∂ψj
, (39)

where v is the first term of the inner product in Equation (38), we have the following
equation of state: (

∂F(ψ, m)

∂ψj

)†

v =
∂ f (ψ, m)

∂ψj
, (40)

which is known as the adjoint-state equation [58,59], and therefore v is called the adjoint-
state variable.

In summary, the calculation of the gradient of the κ-objective function through the
state-adjoint method is given by:

∇mφκ(m) =
∂φκ(m)

∂m
=

∂ f (ψ, m)

∂m
−
〈

v,
∂F(ψ, m)

∂m

〉
Q

, (41)

where the state-adjoint variable v is calculated from the state-adjoint equation in (40). In this
way, for our problem we have:

f
(

ψs(m, t), m
)
= −∑

r
ln
{

expκ

[
− βκ

(
Γs,rψs(m, t)− ds,r(t)

)2]}
, (42)

where φκ(m) = ∑s f
(

ψs(m, t), m
)

. In addition, for any model parameter m, let ψs be a
solution of the equation of state given in (32), that is, a physical realization. We obtain:

F(ψs(t), m) = A(m, t)ψs(t)− gs(t) = 0 (43)

and

f
(

ψs(t), m
)
= −∑

r
ln
{

expκ

[
− βκ

(
Γs,rψs(t)− ds,r(t)

)2]}
= f

(
ψs(t)

)
. (44)

Therefore, we obtain the following derivatives of the equation of state:

∂F(ψs(t), m)

∂m
=

∂A(m, t)
∂m

ψs(t) and
∂F(ψs(t), m)

∂ψsj

= A(m, t), (45)

and the following for the κ-objective function:

∂ f (ψs(t), m)

∂m
= 0 and

∂ f (ψs(t), m)

∂ψsj

= ∑
r

2βκΓ†
s,r

(
Γs,rψs(t)− ds,r(t)

)
√

1 + κ2β2
κ

(
Γs,rψs(t)− ds,r(t)

)4
. (46)
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Thus, the gradient of the κ-objective function via the state-adjoint method is given by
substituting the derivatives calculated in Equations (45) and (46) in Equations (40) and (41),
as follows:

∇mφκ(m) = −∑
s

∫ T

0

〈
vs(~x, t; κ),

∂2ψs(~x, t)
∂t2

〉
~x

dt (47)

with vs being the solution of the adjoint-wave equation given by

m(~x)
∂2vs(~x, t)

∂t2 −∇2vs(~x, t) = ∑
r

2βκΓ†
s,r

(
Γs,rψs(t)− ds,r(t)

)
√

1 + κ2β2
κ

(
Γs,rψs(t)− ds,r(t)

)4
(48)

where m(~x) = 1
c2(~x) .

In search of a physical meaning for Equations (47) and (48), let us consider a new state
variable given by λs(~x, t) = vs(~x, T − t). So, the latter equation becomes:

m(~x)
∂2λs(~x, t)

∂t2 −∇2λs(~x, t) = ∑
r

2βκΓ†
s,r

(
Γs,rψs(T − t)− ds,r(T − t)

)
√

1 + κ2β2
κ

(
Γs,rψs(T − t)− ds,r(T − t)

)4
. (49)

We notice that the adjoint-state variable λs is calculated in reverse time from Equation (49),
i.e., starting the wave propagation from the final time T to the initial time 0. For this
reason, this state-adjoint variable is commonly called the backpropagated wavefield, while
Equation (49) is called the adjoint-wave equation, in which the right-hand term is named
the adjoint source [59]. In this way, the κ-objective function gradient is calculated efficiently
from the cross-correlation of the forward wavefield with the backpropagated wavefield.

In this context, computing the gradient via the state-adjoint method for each seismic
source requires solving the wave equation only twice, first in the forward modeling and
second in backpropagation modeling. We also point out that the robustness properties of
the objective function discussed in Section 2 are indispensable in calculating the gradient.
Indeed, the influence function (18) gives the adjoint source used in the inversion process.
The particular classical case κ → 0 provides the residual data as the adjoint source.

4.3. κ-Graph-Space Optimal Transport FWI

From a statistical point of view, non-Gaussian criteria are critical to handle noisy
datasets in FWI analysis [9]. In this sense, we also consider the κ-Gaussian-based metric
to deal with a challenging issue in FWI called cycle skipping [7]. Cycle skipping occurs
when the initial model used in the FWI process is not kinematically accurate or lacks
low-frequency contents in the analyzed dataset [34]. So, we consider the criterion based
on κ-Gaussian statistics in the context of OT metric to mitigate the effects of non-Gaussian
errors and cycle-skipping issues. However, let us remind the reader that the OT metric
measures the distance between probability distributions, incompatible with a comparison
between seismic signals, as discussed earlier. Thus, to work around this incompatibility,
in this work we represent the non-normalized and oscillatory waveforms in the graph
space [47]. Graphs are mathematical structures formed by ordered pairs of disjoint sets
(V, E), where V denotes the so-called vertices and E represents an edge that connects paired
vertices [60].

Hence, we discretize the waveforms d(t) as an ensemble of ordered pairs of the form
{(ti, di) ∈ R2; i = 1, 2, · · ·, N} with di = d(ti). So, the graph-transformed representation of
a discretized waveform d = {di; i = 1, 2, · · ·, N} is defined as:

G : d→ G(d) = dG(y, t)
RN → D(R2),

(50)
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where G denotes the graph transformation, dG(y, t) is the graph-transformed waveform,
and D(R2) is a probability space on R2. The graph-transformed waveform is defined as:

dG(y, t) =
1
N

N

∑
i=1

δ(t− ti)δ(y− di), (51)

where y is associated with the waveform amplitude. In this way, waveforms are represented
by normalized and positive quantities.

However, in many contexts like FWI, one needs to calculate the derivative of wave-
forms on some occasions (as explained in the previous sections); the Dirac delta function
is not differentiable. Due to this, we consider a smoothed graph transformation by repre-
senting Dirac functions using κ-Gaussian distributions (10). Thus, the κ-graph-transformed
representation of a discretized waveform is given by [61]:

Gκ : d → Gκ(d) = dGκ (y, t)
RN → C∞(R,R+

∗ )
(52)

with

dGκ (y, t) =
1

Zκ

N

∑
i=1

expκ

(
− βκ(t− ti)

2
)

expκ

(
− βκ(y− di)

2
)

, (53)

where C∞(R,R+
∗ ) represents a set of strictly positive and infinitely differentiable functions.

In this context, the graph-space κ-OT objective function is defined as:

φWGκ
κ
(m) := ∑

s,r
Cκ

(
dmod

s,r (m), dobs
s,r

)
, (54)

where dGκ
mod,i = (ti, dmod,i) and dGκ

obs,i = (ti, dobs,i), and Cκ

(
dmod, dobs

)
= WGκ

κ

(
dGκ

mod, dGκ
obs

)
represents the κ-Wasserstein criterion applied to the graph-transformed seismic data. The κ-

Wasserstein distance WGκ
κ

(
dGκ

mod, dGκ
obs

)
= WGκ

κ is then computed via the following mini-
mization task:

WGκ
κ = min

σ∈S(N)
−

Nt

∑
i=1

ln

{
expκ

[
− βκ

(
tσ(i) − ti)

)2
]

expκ

[
− βκ

(
dmod

σ(i) − dobs
i )
)2
]}

. (55)

where Nt denotes the number of time samples for each waveform, while σ is the permuta-
tion solution for the linear sum assignment problem in (21) related with a transport map T ,
and S(N) = {1, 2, · · ·, N} is an ensemble of permutations. For simplicity, we multiply the
κ-Wasserstein distance (23) by the scalar N in the latter equation. Indeed, optimizingWκ is
equivalent to optimizing the product N ×Wκ . Equation (55) represents the FWI objective
function based on κ-OT, namely, the κ-GSOT-FWI, for short, in reference to κ-Graph-Space
Optimal Transport FWI.

The gradient of the κ-GSOT-objective function (55), that is, the derivative ofWGκ
κ with

respect to the model parameters, is given by:

∇mWGκ
κ (m) =

∂WGκ
κ (m)

∂m
=

Ns

∑
s=1

Nr

∑
r=1

Nt

∑
i=1
Js,r,i(m)Us,r,i(m; κ), (56)

in which

Us,r,i(m; κ) =
2βκ

(
dmod

s,r,σ(i)(m)− dobs
s,r,i

)
√

1 + κ2β2
κ

(
dmod

s,r,σ(i)(m)− dobs
s,r,i

)4
. (57)
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is the adjoint-source related with the κ-GSOT-FWI framework, while Ns, Nr and Nt repre-
sent the number of seismic sources, receivers, and time samples used in the acquisition of
seismic data.

The statistical interpretation of the residual data (error) associated with the κ-Gaussian
statistics is preserved in the κ-GSOT-FWI case. The critical difference is that in the approach
without OT, the waveforms are compared sample by sample. In contrast, in the κ-GSOT-
FWI approach, the waveforms are analyzed more completely, comparing each time sample
of the observed data with all the time samples of the modeled data in according to an
optimal assignment using the permutation solution σ.

Figure 3 shows a flow chart of the FWI algorithm, which is an iterative process, which
means that model updates are computed concerning the previous model as described
by Equation (24). The first step, called Initial Setup, consists of introducing the input
variables, i.e., the initial model, the parameters of the seismic acquisition (the positions of
the sources and receivers, the seismic source signature, acquisition time). After configuring
and organizing all the input variables of the FWI algorithm, modeled wavefields are
obtained in the forward problem through the numerical solution of the wave Equation (28)
by employing the finite difference method [62]. Then, a sampling operation (Γs,r) is carried
out from the modeled wavefields ψs to obtain the modeled data (dmod

s,r = Γs,rψs), extracting
the wavefields in the positions of the seismic acquisition receivers. After, the objective
function gradient is obtained through the adjoint-state method described in Section 4.2
and used to update the model following Equation (24). Finally, the FWI algorithm checks
whether the optimization process reached the pre-defined stopping criteria (which, in our
case, was the maximum number of iterations equal to 50). As long as the criteria are not
met, the cycle is repeated. If so, the iterative process is interrupted, and the resulting model
is the one that minimizes the difference between modeled and observed data.

Figure 3. Flow chart of the full-waveform inversion (FWI) process.

5. Numerical Experiments

To demonstrate how the κ-GSOT-FWI deals with non-Gaussian noise and cycle-
skipping issues, we carried out numerical examples involving a 2D acoustic time-domain
FWI to estimate a P-wave velocity model in a typical Brazilian pre-salt oil region. Such
an Earth model, namely, Chalda, represents a region with approximate dimensions 16 by
7 km in lateral distance and depth, respectively, as depicted in Figure 4a. Our problem
has 720,484 unknown variables because we discretize the Chalda model in a regular grid
with 12.5 m spacing, generating 562 and 1282 grid cells in the vertical and horizontal
directions, respectively.
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(a) (b) (c)

Figure 4. (a) Chalda model representing the Brazilian pre-salt oil region, used as the true model.
Initial models used in the (b) first and (c) second scenarios.

In all numerical experiments, we consider a seismic survey comprising 161 seismic
sources equally spaced every 75 m at 12.5 m in-depth. We employ a Ricker wavelet as a seis-
mic source, which is mathematically described by: f (t) =

(
1− 2π2µ2

pt2) exp
(
− π2µ2

pt2),
in which µp represents the peak frequency (maximum energy in the spectrum of frequen-
cies). Moreover, to simulate a sparse node acquisition, named the ocean bottom nodes
survey, we take into account 21 receivers implanted on the ocean floor at 400 m intervals.
We consider the Chalda model depicted in Figure 4a as a benchmark (or true model). Thus,
we generate a seismic dataset by considering the true model, the acquisition geometry,
and the finite difference method with second and eighth order approximations for time
and space. In order to simulate an infinite medium, we implement the perfectly matched
layer [63] absorbing boundaries for spatial discretization. We consider 7 s as the seismic
acquisition time at a sampling rate of 2 ms. In addition, to simulate a realistic case, we also
employ a high-pass filter on the seismic dataset to remove energy less than 2.5 Hz.

In the FWI experiments, we consider two scenarios involving different initial models
to confirm the significance of our proposal. In the first one, we consider an initial model
similar to the true model, which is depicted in Figure 4b. We produce such a velocity
model by weakly smoothing the true model by applying a Gaussian filter with a standard
deviation of 250 m. This scenario’s idea is to simulate a seismic imaging process starting
from a kinetically accurate model. We call this model the Good Model. In contrast, we
produce the second initial model, referring to the second scenario, by applying a more
severe Gaussian filter with a standard deviation of 750 m. We call this model the Bad Model.
We notice that the Bad Model lacks the main structures of the true model, particularly in the
pre-salt oil region, as depicted in Figure 4c. Since the Bad Model is kinematically inaccurate,
it generates cycle-skipped data [34].

For each initial-model scenario, we conduct time-domain FWI by applying the classical
FWI based on Gaussian statistics, and the κ-GSOT objective function (55) in the classical
limit κ → 0 and for κ = 0.1, 0.3, 0.5 and 0.6. We consider 50 FWI iterations in all numerical
experiments. To evade the so-called inversion crime, we perform the forward modeling
using a different algorithm than the one used to generate the observed dataset. In this
regard, our algorithm solves the forward problem using a finite difference scheme with
second and fourth order approximations for time and space in a regular grid with 25 m
spacing. In addition, we consider two different circumstances concerning the type of noise
in the seismic dataset. First, we consider a dataset contaminated by Gaussian noise with a
signal-to-noise ratio (SNR) of 20. In contrast, in the second circumstance, we consider a
non-Gaussian noise from which the dataset is polluted by Gaussian noise with an SNR of 20
and a collection of spikes (erratic data or outliers) with different amplitudes. In this regard,
10% of the time samples were contaminated by outliers, where locations were randomly
drawn. The spikes have intensities that range from 5 P to 15 P multiplied by the original
waveform amplitude, where P is a standard normal random variable.

We perform our numerical simulations using a computer hosting a quad-core processor
at 3.50 GHz and 256 GB RAM. Each FWI iteration takes approximately 6 min; 71.4% is
associated with calculating the gradient of the objective function using the state-adjoint
method described in Section 4.2, 26.7% is related to the forward modeling process (i.e.,
in generating the modeled data by numerically solving Equation (28)), 1.3% of this time is
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dedicated to solving the combinatorial optimization problem in (55), and 0.6% is spent on
the rest of the algorithm in I/O initialization and initial set-ups loading.

Figures 5 and 6 show the FWI resulting P-wave models starting from the Good Model
for the Gaussian and non-Gaussian noise cases, respectively. From a visual inspection,
when only Gaussian noise is considered, all resulting models are satisfactory (Figure 5)
since they are very similar to the true model (Figure 4a), regardless of the κ-value. Such
successful results are due to the weak Gaussian noise in the observed data simultaneously
with a kinetically accurate initial model (Figure 4b).

(a) (b) (c)

(d) (e) (f)

Figure 5. The resulting models starting from the Good Model for the Gaussian noise case, by em-
ploying the (a) classical FWI approach, and the κ-GSOT-FWI framework with (b) κ → 0, (c) κ = 0.1,
(d) κ = 0.3, (e) κ = 0.5, and (f) κ = 0.6.

Furthermore, we quantitatively compare our FWI resulting models with the true model
by employing Pearson’s correlation coefficient (R) and the normalized root-mean-square
(NRMS), defined as

R =
cov
(
ctrue, cinv)

std(ctrue) std
(
cinv
) and NRMS =

[
∑i
(
ctrue

i − cinv
i
)2

∑i
(
ctrue

i
)2

]1/2

, (58)

where ctrue and cinv are the true and the resulting models, while cov(·) and std(·) denote
covariance and standard deviation, respectively. The R-value ranges from −1 to 1, with −1
representing, in this context, a wrong resulting model, while 1 represents a perfect resulting
model. The NRMS-value range from 0 (perfect resulting model) to ∞ (wrong resulting model).

Table 1 summarizes the comparative metrics between the true model and the P-wave
velocity models resulting from the first scenario by analyzing data contaminated only by
Gaussian noise. In this table, we can see that all resulting models have a low error and are
strongly correlated with the true model (R ≥ 0.8, following the strength-scale suggested by
ref. [64]).

Table 1. The comparative metrics between the true model and the resulting models, depicted in
Figure 1, from the first scenario in the Gaussian noise case. R represents the Pearson’s correlation
coefficient, while NRMS represents the normalized root-mean-square.

Strategy κ NRMS R

Classical FWI - 0.0256 0.9982

0.0 0.0272 0.9979
0.1 0.0278 0.9979

κ-GSOT-FWI 0.3 0.0288 0.9977
0.5 0.0293 0.9976
0.6 0.0277 0.9979
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However, when non-Gaussian noise is considered, the classical approach fails as
expected (Figure 6a). Such a wrong model is due to the classical approach being based on
Gaussian statistics and sensitive to cycle-skipping issues. Figure 6b shows the resulting
model from the classical GSOT-FWI, which is also based on Gaussian statistics. However,
the Wasserstein metric was able to mitigate the effects of the outliers, building a satisfactory
model. Nevertheless, as the κ-value increases (which means a more significant deviation
from Gaussian behaviors), the κ-GSOT-FWI models present a better resolution (Figure 6c–f),
especially in the deeper regions of the analyzed area. Although all κ-GSOT-FWI models are
strongly correlated with the true model, the case κ = 0.6 has a higher Pearson’s coefficient
and a smaller NRMS error, as summarized in Table 2.

(a) (b) (c)

(d) (e) (f)

Figure 6. The resulting models starting from the Good Model for the non-Gaussian noise case,
by employing the (a) classical FWI approach, and the κ-GSOT-FWI framework with (b) κ → 0,
(c) κ = 0.1, (d) κ = 0.3, (e) κ = 0.5, and (f) κ = 0.6.

Table 2. The comparative metrics between the true model and the resulting models, depicted in
Figure 6, from the first scenario in the non-Gaussian noise case. R represents the Pearson’s correlation
coefficient, while NRMS represents the normalized root-mean-square.

Strategy κ NRMS R

Classical FWI - 0.3009 0.7627

0.0 0.0306 0.9974
0.1 0.0296 0.9976

κ-GSOT-FWI 0.3 0.0293 0.9976
0.5 0.0293 0.9976
0.6 0.0277 0.9979

Figures 7 and 8 show the FWI resulting P-wave models starting from the Bad Model
for the Gaussian and non-Gaussian noise cases, respectively. From a visual inspection,
it is noticeable that the classical FWI approach fails when the initial model is kinetically
inaccurate, regardless of whether the data are polluted by Gaussian or non-Gaussian noise,
as depicted in Figures 7a and 8a. In contrast, the FWI based on the κ-GSOT approach
generates satisfactory models when Gaussian noise is considered, regardless of the κ-value
(Figure 7b–f). Again, as the κ-value increases, the resulting models (Figure 7) are closer to
the true model (Figure 4a), as endorsed by the statistical metrics summarized in Table 3.

Finally, in the second scenario with non-Gaussian noise, the resulting models are dras-
tically affected by the outliers and poverty from the initial model, as depicted in Figure 8.
However, when the κ-GSOT-based objective function is applied, the large geological struc-
tures of the true model are reconstructed regardless of the κ-value. However, the case
κ = 0.6 reveals a P-wave velocity model (Figure 8f) that is quite accurate and comparable
to the true model (Figure 4a). Likewise, the case κ = 0.6 generated a model closer to the
true model, as summarized in Table 4. Indeed, in all numerical tests, the κ-GSOT-FWI for
κ = 0.6 generated accurate velocity models, leading to accurate parameter estimations.
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(a) (b) (c)

(d) (e) (f)

Figure 7. The resulting models starting from the Bad Model for the Gaussian noise case, by employing
the (a) classical FWI approach, and the κ-GSOT-FWI framework with (b) κ → 0, (c) κ = 0.1, (d) κ = 0.3,
(e) κ = 0.5, and (f) κ = 0.6.

Table 3. The comparative metrics between the true model and the resulting models, depicted in
Figure 7, from the second scenario in the Gaussian noise case. R represents the Pearson’s correlation
coefficient, while NRMS represents the normalized root-mean-square.

Strategy κ NRMS R

Classical FWI - 0.2947 0.7982

0.0 0.0362 0.9964
0.1 0.0333 0.9970

κ-GSOT-FWI 0.3 0.0363 0.9964
0.5 0.0372 0.9962
0.6 0.0341 0.9968

(a) (b) (c)

(d) (e) (f)

Figure 8. The resulting models starting from the Bad Model for the non-Gaussian noise case, by em-
ploying the (a) classical FWI approach, and the κ-GSOT-FWI framework with (b) κ → 0, (c) κ = 0.1,
(d) κ = 0.3, (e) κ = 0.5, and (f) κ = 0.6.

Table 4. The comparative metrics between the true model and the resulting models, depicted in
Figure 8, from the second scenario in the non-Gaussian noise case. R represents the Pearson’s
correlation coefficient, while NRMS represents the normalized root-mean-square.

Strategy κ NRMS R

Classical FWI - 0.2715 0.7192

0.0 0.0610 0.9899
0.1 0.0673 0.9874

κ-GSOT-FWI 0.3 0.0564 0.9913
0.5 0.0578 0.9908
0.6 0.0509 0.9928
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Figure 9 shows the normalized κ-GSOT-objective function decay for all numerical tests,
in which panels (a) and (b) refer to the first scenario, while panels (c) and (d) correspond to
the second scenario. In this regard, the left column refers to the case in which Gaussian
noise is considered, and the right column is the non-Gaussian noise case. The convergence
curve of the classical objective is represented by the solid black line in Figure 9. We notice
that the classical objective function monotonically decays only in the most straightforward
situation, where the initial model is the Good Model, and the data is contaminated by
Gaussian noise (Figure 9a). In this case, the classical approach is the most indicated because
the convergence rate is higher than our proposal, in addition to generating more accurate
models (as summarized in Table 1). In cases where the noise is non-Gaussian or when
the inversion process starts from the Bad Model, our proposal with κ = 0.6 exhibits a
higher objective function decay rate (see red curves in Figure 9b–d), reconstructing P-wave
velocity models closer to the true model, as summarized in Tables 2–4.

(a) (b)

(c) (d)

Figure 9. Convergence curves for the first scenario with (a) Gaussian noise, (b) non-Gaussian noise,
and for the second scenario with (c) Gaussian noise, (d) non-Gaussian noise.

6. Final Remarks

In this work, we have examined the portability of the objective function based on the
graph-space optimal transport and Kaniadakis κ-Gaussian statistics in the FWI context.
In particular, we have analyzed the robustness of our proposal in mitigating two critical
problems in seismic imaging via FWI, which are associated with cycle-skipping issues and
the non-Gaussian nature of the errors. We have set up an objective function by employing
the probabilistic maximum likelihood method for computing the most probable state using
a κ-Gaussian distribution. Furthermore, we have formulated the FWI in a relaxed version of
the optimal transport problem, known as the Kantorovich–Rubinstein metric or Wasserstein
distance. So, we have considered the graph of the seismic data rather than the original
data because the optimal transport framework is predicated on the idea that the compared
entities adhere to the probability axioms. We named our proposal the κ-Graph-Space
Optimal Transport FWI (or κ-GSOT-FWI, for short).

The Brazilian pre-salt case study disclosed how the κ-GSOT-FWI could be employed to
deal with flawed initial models and non-Gaussian noise. The findings have demonstrated
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that the classical approach is ineffective in producing accurate physical models when the
initial model is crude or if the observed waveforms are contaminated by non-Gaussian
errors. However, when the initial model is kinetically precise and the data well-behaved,
the classical approach is the best alternative in terms of computational cost. The results also
revealed that the κ-GSOT-FWI lessens the impact of phase ambiguity and non-Gaussian
errors on the waveform inversion, demonstrating that our proposal is a powerful way
to deal with non-linear inverse problems related to wave propagation. Moreover, we
notice that the κ-GSOT-FWI produces more accurate models than those produced by
classical approaches, leading to a notable improvement in objective function convergence.
Additionally, our numerical experiments demonstrated that a more significant deviation
from a Gaussian behavior (which in our applications was typified by the κ = 0.6 case)
results in a more authentic P-wave velocity model. However, our proposal depends on the
choice of a hyperparameter, which demands special investigations on how to obtain it in a
real setting application. This issue should be examined in future applications.

From a practical point of view, extensive and arduous data processing is required to
engineer a good initial model to alleviate phase-ambiguity issues and eliminate erratic
data points. In this context, the κ-GSOT-FWI decreases the requirement of human sub-
jectivity, which is appealing for automated techniques to analyze, for instance, recent big
datasets. Thus, the κ-OT-based approach has enormous potential for dealing with modern
data-centric problems. As a perspective, we intend to test our proposed methodology to
analyze field data and evaluate its robustness from several initial conditions. Finally, we
underline how readily our concept may be applied to a wide variety of inverse problems,
ranging from estimating critical exponents of power-law distributions to modern artificial
intelligence applications.

Author Contributions: Conceptualization, S.L.E.F.d.S., J.M.d.A., E.d.l.B. and G.C.; Methodology,
S.L.E.F.d.S., J.M.d.A., E.d.l.B. and G.C.; Software, S.L.E.F.d.S.; Validation, S.L.E.F.d.S., J.M.d.A., E.d.l.B.
and G.C.; Formal analysis, S.L.E.F.d.S., J.M.d.A., E.d.l.B. and G.C.; Investigation, S.L.E.F.d.S.; Re-
sources, J.M.d.A. and G.C.; Data curation, S.L.E.F.d.S.; Writing—original draft, S.L.E.F.d.S., J.M.d.A.,
E.d.l.B. and G.C.; Supervision, G.C.; Project administration, J.M.d.A. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

FWI Full-Waveform Inversion
GSOT Graph-Space Optimal Transport
OT Optimal Transport
MLE Maximum Likelihood Estimation
NRMS Normalized Root-Mean-Square

References
1. Razavy, M. An Introduction to Inverse Problems in Physics, 1st ed.; World Scientific: Hackensack, NJ, USA, 2020; pp. 1–388.
2. Menke, W. Geophysical Data Analysis: Discrete Inverse Theory, 4th ed.; Academic Press: London, UK, 2018; pp. 1–352.
3. Hanasoge, S.M.; Tromp, J. Full waveform inversion for time-distance helioseismology. APJ 2014, 784, 69. [CrossRef]
4. Guasch, L.; Calderón Agudo, O.; Tang, M.X.; Nachev, P.; Warner, M. Full-waveform inversion imaging of the human brain. NPJ

Digit. Med. 2020, 3, 28. [CrossRef] [PubMed]
5. Robins, T.; Camacho, J.; Calderón Agudo, O.; Herraiz, J.L.; Guasch, L. Deep-Learning-Driven Full-Waveform Inversion for

Ultrasound Breast Imaging. Sensors 2021, 21, 4570. [CrossRef] [PubMed]
6. Cao, J.; Brossier, R.; Górszczyk, A.; Métivier, L.; Virieux, J. 3-D multiparameter full-waveform inversion for ocean-bottom seismic

data using an efficient fluid–solid coupled spectral-element solver. Geophys. J. Int. 2022, 229, 671–703. [CrossRef]

http://doi.org/10.1088/0004-637X/784/1/69
http://dx.doi.org/10.1038/s41746-020-0240-8
http://www.ncbi.nlm.nih.gov/pubmed/32195363
http://dx.doi.org/10.3390/s21134570
http://www.ncbi.nlm.nih.gov/pubmed/34283105
http://dx.doi.org/10.1093/gji/ggab484


Entropy 2023, 25, 990 20 of 21

7. Virieux, J.; Operto, S. An overview of full-waveform inversion in exploration geophysics. Geophysics 2009, 74, WCC1–WCC26.
[CrossRef]

8. Fichtner, A. Full Seismic Waveform Modelling and Inversion, 1st ed.; Springer: Berlin/Heidelberg, Germay, 2011; pp. 1–343.
9. Brossier, R.; Operto, S.; Virieux, J. Which data residual norm for robust elastic frequency-domain full waveform inversion?

Geophysics 2010, 75, R37–R46. [CrossRef]
10. de Lima, I.P.; da Silva, S.L.E.F.; Corso, G.; de Araújo, J.M. Tsallis Entropy, Likelihood, and the Robust Seismic Inversion. Entropy

2020, 22, 464. [CrossRef]
11. Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation, 1st ed.; Society for Industrial and Applied

Mathematics: Philadelphia, PA, USA, 2005; pp. 1–352.
12. Khokhlov, A.; Hulot, G. On the cause of the non-Gaussian distribution of residuals in geomagnetism. Geophys. J. Int. 2017, 209,

1036–1047. [CrossRef]
13. Elboth, T.; Reif, B.A.; Andreassen, Ø. Flow and swell noise in marine seismic data. Geophysics 2009, 74, Q17–Q25. [CrossRef]
14. Hlebnikov, V.; Elboth, T.; Vinje, V.; Gelius, L.-J. Noise types and their attenuation in towed marine seismic: A tutorial. Geophysics

2021, 86, W1–W19. [CrossRef]
15. Claerbout, J.F.; Muir, F. Robust modeling with erratic data. Geophysics 1973, 38, 826–844. [CrossRef]
16. Crase, E.; Pica, A.; Noble, M.; McDonald, J.; Tarantola, A. Robust elastic nonlinear waveform inversion: Application to real data.

Geophysics 1990, 55, 1942–2156. [CrossRef]
17. Aravkin, A.Y.; Friedlander, M.P.; Herrmann, F.J.; van Leeuwen, T. Robust inversion, dimensionality reduction and randomized

sampling. Math. Program. 2012, 135, 101–125. [CrossRef]
18. Da Silva, S.L.E.F.; da Costa, C.A.N.; Carvalho, P.T.C.; de Araújo, J.M.; dos Santos Lucena, L.; Corso, G. Robust full-waveform

inversion using Q-Statistics. Phys. A 2020, 548, 124473. [CrossRef]
19. Silva, S.A.; da Silva, S.L.E.F.; de Souza, R.F.; Marinho, A.A.; de Araújo, J.M.; Bezerra, C.G. Improving Seismic Inversion Robustness

via Deformed Jackson Gaussian. Entropy 2021, 23, 1081. [CrossRef] [PubMed]
20. Bube, K.P.; Langan, R.T. Hybrid L1/l2 Minimization Appl. Tomography. Geophysics 1997, 62, 1045–1346. [CrossRef]
21. Guitton, A.; Symes, W.W. Robust inversion of seismic data using the Huber norm. Geophysics 2003, 68, 1126–1422. [CrossRef]
22. Da Silva, S.L.E.F.; Silva, R.; dos Santos Lima, G.Z.; de Araújo, J.M.; Corso, G. An outlier-resistant κ-generalized approach for

robust physical parameter estimation. Physica A 2022, 600, 127554. [CrossRef]
23. Kaniadakis, G. Non-linear kinetics underlying generalized statistics. Phys. A 2001, 296, 405–425. [CrossRef]
24. Kaniadakis, G. Statistical mechanics in the context of special relativity. Phys. Rev. E 2002, 66, 056125. [CrossRef]
25. Kaniadakis, G.; Scarfone, A.M. A new one-parameter deformation of the exponential function. Phys. A 2002, 305, 69–75. [CrossRef]
26. Kaniadakis, G. Statistical mechanics in the context of special relativity. II. Phys. Rev. E 2005, 72, 036108. [CrossRef] [PubMed]
27. Kaniadakis, G. Theoretical Foundations and Mathematical Formalism of the Power-Law Tailed Statistical Distributions. Entropy

2013, 15, 3983–4010. [CrossRef]
28. Da Silva, S.L.E.F.; dos Santos Lima, G.Z.; de Araújo, J.M.; Corso, G. Extensive and nonextensive statistics in seismic inversion.

Phys. A 2021, 563, 125496. [CrossRef]
29. Wada, T.; Suyari, H. κ-generalization of Gauss’ law of error. Phys. Lett. A 2006, 348, 89–93. [CrossRef]
30. Da Silva, S.L.E.F.; Carvalho, P.T.C.; de Araújo, J.M.; Corso, G. Full-waveform inversion based on Kaniadakis statistics. Phys. Rev.

E 2020, 101, 053311. [CrossRef]
31. Bunks, C.; Saleck, F.M.; Zaleski, S.; Chavent, G. Multiscale seismic waveform inversion. Geophysics 1995, 60, 1457–1473. [CrossRef]
32. Liu, X.; Zhu, T.; Hayes, J. Critical zone structure by elastic full waveform inversion of seismic refractions in a sandstone catchment,

central Pennsylvania, USA. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023321. [CrossRef]
33. Górszczyk, A.; Brossier, R.; Métivier, L. Graph-space optimal transport concept for time-domain full-waveform inversion of

ocean-bottom seismometer data: Nankai Trough velocity structure reconstructed from a 1D model. J. Geophys. Res. Solid Earth
2021, 126, e2020JB021504. [CrossRef]

34. Hu, W.; Chen, J.; Liu, J.; Abubakar, A. Retrieving Low Wavenumber Information in FWI: An Overview of the Cycle-Skipping
Phenomenon and Solutions. IEEE Signal Process. Mag. 2018, 35, 132–141. [CrossRef]
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