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Abstract: The unstable flow of a shaft tubular pump device (STPD) leads to energy loss, thereby
reducing its efficiency. The aim of this study is to investigate the distribution pattern of energy loss
in STPDs. This paper reveals that the two components with the highest proportion of energy loss
are the impeller and the outlet passage. Furthermore, turbulent entropy production is the primary
cause of energy loss. Due to the wall effect, the energy loss in the impeller mainly occurs near the hub
and shroud. Additionally, the presence of a tip leakage vortex near the shroud further contributes to
the energy loss in the region near the shroud. This results in the energy loss proportion exceeding
40% in the region with a volume fraction of 14% near the shroud. In the outlet passage, the energy
loss mainly occurs in the front region, with a volume fraction of 30%, and the energy loss in this part
accounts for more than 65%. Finally, this study reveals the locations of the vortex in the STPD under
different flow-rate conditions, and when the distribution of energy loss is visualized, it is found that
the energy loss occurs high in the vortex regions.

Keywords: entropy production method; energy loss; shaft tubular pump device; model test; numerical
simulation

1. Introduction

Water resources are indispensable for the production and life of human beings; how-
ever, with the occurrence of floods and droughts caused by global climate variation, many
new pumping stations have been built worldwide to meet the continuously increasing
needs of water resource allocation [1,2]. In China, water resources are severely unevenly
distributed in space and time, and to improve the present situation, the government has
invested in the construction of the famous South-to-North Water Transfer Project, of which
the east line project is composed of numerous large-scale pumping stations. These large-
scale pumping stations provide huge amounts of flow and generally operate for more than
3000 h annually [3]. Based on such operating conditions, the pumping device used in these
pumping stations must have excellent efficiency and stability. After being developed for
decades, the shaft tubular pump device (STPD) has become the most widely used type
of pump device in coastal areas of China for its excellent hydraulic performance, and
up to now, the STPD has been adopted in about 100 pumping stations. In the past, the
hydraulic performance and optimized design of the STPD have already been studied [4–6].
Xu et al. [7] optimized the design of the STPD by numerical simulation method and tested
its performance. The results showed that the optimal efficiency of the device exceeded
83%. However, with the acceleration of abnormal climate variation induced by increasing
carbon emissions, China has proposed a national strategy for the peaking of CO2 emis-
sions and carbon neutrality, which requires that pump devices as energy consumers must
operate more efficiently. Therefore, conducting a more in-depth study on the energy loss
mechanism of STPDs is of great significance.

In the past, hydraulic loss in most studies was typically calculated based on the
pressure drop across two sections [8]. This method can only provide the value of the
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hydraulic loss of a domain but cannot determine where the loss occurs, so it has obvious
limitations. Currently, there are a number of research studies that show that it is possible
to calculate the loss by using the entropy production method. The implementation of the
method is conducted by integrating the entropy production rate over the flow domain.
This method is initially applied in simple studies of laminar flow, turbulent flow [9,10]
and boundary layer flow [11,12]. Based on this method, Schmandt et al. [13] obtained the
hydraulic loss coefficients for various conduits and discovered that the majority of the loss
is concentrated downstream of the conduit. Herwig et al. [14] completed a correlation table
between the actual roughness and the equivalent roughness. This method not only provides
the loss value but also allows observation of where the loss occurs, making it a useful tool
for optimizing the design of hydraulic machinery [15,16] and investigating energy loss in
complex flow [17–19]. Gong et al. [20] applied entropy production theory in the study of a
large Francis turbine firstly, and the results showed that the entropy production method
can effectively locate high-loss areas. Li et al. [21] compared the hydraulic loss obtained
by using the entropy production and pressure drop methods. The results showed that
when the entropy production in the wall region (EPW) is taken into account, the difference
between the two methods is small. Zhang et al. [22] found that the energy loss in the
runner and volute of the centrifugal pump accounts for 30% and 60%. Under all working
conditions, the turbulent entropy production (TEP) and EPW are important components
of loss, while the direct entropy production can be ignored. Lu et al. [23] investigated the
relationship between flow pattern and loss. It was found that flow separation in the runner
is the main reason for high energy loss under low-flow-rate conditions, and the distribution
of energy loss in the draft is closely related to the vortex rope.

Although the entropy production method has been proven to be a reliable research
method in the field of rotating machinery in many studies, it has not been applied in
the analysis of energy loss characteristics of STPDs. In this paper, numerical simulations
under multiple operation conditions are conducted by CFX software and the accuracy of
the simulations is validated through a model test. The energy loss of the STPD and its
components are obtained by using both the entropy production and pressure drop methods,
and the distribution characteristics and variation laws under different flow conditions are
explored. By combining the flow field with the distribution of entropy production rate,
the relationship between the internal flow and energy loss in STPDs can be verified. The
results can provide a theoretical basis for further optimization of STPDs.

This article consists of the following sections. Section 2 describes the research object
and the numerical simulation method. Section 3 provides the detailed information related
to the model test. In Section 4, two methods for evaluating energy loss are introduced. The
detailed discussion and results about this study are presented in Section 5. Finally, the
conclusions are proposed in Section 6.

2. Numerical Simulation
2.1. Settings and Turbulence Model

The STPD consists of four parts, and the three-dimensional model is shown in Figure 1.
The basic parameters of the STPD are shown in Table 1. The dynamic–static interface is set
as a frozen rotor in steady simulation and a transient rotor stator in the transient simulation.
The common settings are shown in Table 2. In this study, the SST (shear stress transport)
k-ω turbulence model proposed by Menter [24,25] is chosen for the simulation.

2.2. Grid Division and Scheme Selection

In this study, the parts of an STPD are divided into structured meshes. ICEM software
is used for the mesh generation of two passages, and Turbo-Grid software is used for the
grid division of the impeller and guide vanes. The grid diagram is shown in Figure 2.
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Figure 1. 3D model of an STPD.

Table 1. Parameters of an STPD.

Parameters Values

Diameter of pump 300 mm
Impeller blade number 3

Guide vanes blade number 6
Tip clearance 0.2

Rotational speed 1450 r/min

Table 2. Common settings.

Parameters Values

Inlet Total pressure (1 atm)
Outlet Mass flow rate
Wall No-slip

Convergence accuracy 1 × 10−4

Time step 3.45 × 10−4 (s)
Total time 0.828 (s)
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Numerous studies have shown that the grid division of the simulation domains has
an important influence on the results [26,27]. Therefore, in this study, the efficiency of
STPDs is used as the control index for grid independence analysis. Five grid schemes are
simulated in this study. Table 3 indicates that the simulation results are stable when the
number of grid cells reaches 8.6 million, with an efficiency change of only 0.01%, which can
be considered negligible.
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Table 3. Grid independence analysis.

Scheme Number of Grid/106 Efficiency/%

1 1.7 81.87
2 3.9 81.64
3 7.1 81.49
4 8.6 81.40
5 8.8 81.39

The grid convergence index (GCI) proposed by Roache is a commonly applied method
to verify the reliability of the mesh, and the validity of the GCI has been verified by many
scholars [28–30]. The procedure of GCI calculation in this study is shown in Table 4. As
shown in the table, the GCI is less than 2%, which indicates that the dispersion error of
the simulation is small. Considering the grid independence and GCI, the 8.6 million grid
scheme is used for numerical simulation.

Table 4. The calculation of GCI.

Parameters Values

N1, N2, N3 8.6 M, 3.9 M, 1.7 M
r21, r32 1.302, 1.319

Φ1, Φ2, Φ3 81.40%, 81.64%, 81.87%
p 2.28

Φ21
ext, Φ32

ext 1.22, 1.21
e21

a , e32
a 0.29%, 0.17%

GC121 0.44%
GCI32 0.24%

The distribution of Yplus in the four components of the STPD is shown in Figure 3,
and the average Yplus values are 29.33, 16.61, 23.37 and 24.87, respectively. According to
the Yplus values in the numerical simulations in refs. [15,31], the mesh scheme in this study
can be used.
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3. Model Test

The high-precision test rig is located at the China Water Resources Beifang Co., Ltd.
located in Tianjing, China, as shown in Figure 4. The measurement uncertainty of the
V15712-HD1A1D7D electromagnetic flow meter is ±0.2%. The LDG-500s differential
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pressure transmitter is used to test the head, and the measurement uncertainty is ±0.1%.
The measurement uncertainty of the JCZL2-500 torque and speed sensor is ±0.1%. Based
on the measurement uncertainty of the instruments mentioned above, the uncertainty
of the system can be determined as ±0.24%. This model test meets the requirements of
IEC standards. This model test tested the hydraulic performance of the STPD at multiple
blade angles. Table 5 shows the 10 times repeatability test results for the highest-efficiency
point with blade angle of −2 degrees, from which the random uncertainty of 0.2% can be
deduced; finally, the comprehensive uncertainty of this experiment is obtained as 0.5%.
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Table 5. Results of repeatability tests.

Number 1 2 3 4 5 6 7 8 9 10

Efficiency/% 82.12 82.18 82.04 82.26 82.09 82.15 82.27 82.20 82.19 82.22

4. Analysis Method
4.1. Traditional Pressure Drop Method

In order to evaluate the energy conversion performance of each domain in the STPD,
the hydraulic loss can be calculated using total pressure drop between the inlet and outlet
of each part. In the past, the calculations of hydraulic loss in most studies were based
on this method [32,33]. The hydraulic loss ∆hs in the stationary domain (inlet and outlet
passage, guide vanes) and ∆hr in the rotating domain (impeller) can be calculated by
Equations (1) and (2), respectively. The above hydraulic loss can be converted into the
energy loss by Equation (3).

∆hs =
p1 − p2

ρg
(1)

∆hr =
P

ρgQ
− p2 − p1

ρg
(2)

P∆h = ρgQ∆h (3)

where p1 and p2 represent the total pressure of inlet and outlet sections, Pa; and P is the
input shaft power, kW.
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4.2. Entropy Production Method

Near the wall region, the viscous force leads the kinetic and pressure energy to be
converted into internal energy, thus leading to the increase in entropy. In the high Reynolds
number region, the unstable flow causes an increase in entropy production. Therefore, the
entropy production method can be used to calculate the energy loss in the STPD, and the
equations involved in the entropy production method can be referred to Ref. [21]. The
turbulence kinetic energy equations for a Newtonian fluid in Cartesian coordinates could
be expressed as follows:

D
Dt

(
1
2

uiui

)
= uiFxi +

1
ρ

∂
(
mjiui

)
∂xj

− 1
ρ

∂(pui)

∂xj
δij +

p
ρ

∂ui
∂xj

δij −
mji

ρ

∂ui
∂xj

(4)

mji = µ

(
∂ui
∂xj

+
∂uj

∂xi

)
− 2

3
µδij

∂uk
∂xk

(5)

Using the velocity components u1, u2 and u3, the Φ can be expanded to Equation (6):

Φ = mji
∂ui
∂xj

(6)

The incompressible fluid satisfies the following continuity equation:

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
= 0 (7)

Therefore, Equation (6) can be simplified to Equation (8).

Φ = 2µ

[(
∂u1
∂x1

)2
+
(

∂u2
∂x2

)2
+
(

∂u3
∂x3

)2
]

+µ

[(
∂u2
∂x1

+ ∂u1
∂x2

)2
+
(

∂u3
∂x1

+ ∂u1
∂x3

)2
+
(

∂u2
∂x3

+ ∂u3
∂x2

)2
] (8)

The local entropy production rate (LEPR) can be calculated by using Equation (9).

.
S
′′′
D =

.
Q
T

(9)

In the turbulent flow, the LEPR includes the direct entropy production rate induced
by time-averaged motion and turbulent entropy production rate (TEPR) due to turbulent
dissipation.

.
S
′′′
D =

.
S
′′′
D +

.
S
′′′
D′ (10)

The direct entropy production rate can be obtained by using Equation (11).

.
S
′′′
D = 2µ

T

[(
∂u1
∂x1

)2
+
(

∂u2
∂x2

)2
+
(

∂u3
∂x3

)2
]

+ µ
T

[(
∂u2
∂x1

+ ∂u1
∂x2

)2
+
(

∂u3
∂x1

+ ∂u1
∂x3

)2
+
(

∂u2
∂x3

+ ∂u3
∂x2

)2
] (11)

Mathieu and Scott proposed a method to obtain the TEPR in the k-ω model. The
formula is as follows [34]:

.
S
′′′
D′ = β

ρωk
T

(12)

The local entropy production (LEP) includes direct entropy production and TEP:

PSD= PSD + PSD′ =
∫

V

.
S
′′′
D dV·T +

∫
V

.
S
′′′
D′dV·T (13)
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In this study, the EPW can be calculated by using Equation (14).

PSW =
∫

A

τ·v
T

dA·T (14)

The total entropy production can be calculated by using Equation (15).

Ps = PSD + PSW= PSD + PSD′ + PSW (15)

5. Results and Analysis
5.1. Validation of Simulation and Comparison of Energy Analysis Methods

The test results showed that the variation pattern of hydraulic performance under
different angles is basically the same, so the STPD with a blade angle of 0 degrees is selected
for detailed analysis. The energy performance curves of the STPD obtained by the model
test and numerical simulation are shown in Figure 5. At 0.8 Qd~1.2 Qd, the head and the
shaft power curves of the STPD decrease with the increase in flow rate. The efficiency
curve of the STPD increases with the increasing flow rate, reaching a maximum at 1.0 Qd
and then decreasing at 1.0 Qd. The relative errors of head, shaft power and efficiency
between the model test and numerical simulation are 2.49%, 2.69% and 0.62%, respectively.
The maximum error of the shaft power and efficiency occurs at 0.8 Qd, and the relative
errors are 4.95% and 1.80%, respectively. The relative error at low-flow-rate conditions is
mainly due to the flow separation at the blades. The maximum error of the head occurs
at 1.2 Qd with a relative error of 5.2%, which is caused by the low absolute value of the
head at high-flow-rate conditions. Although there are still some uncertainties in numerical
simulations that may cause slight deviations from experimental results, overall, the results
are reliable.
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As shown in Figure 6, although the energy loss obtained by the entropy production
method is slightly smaller than that obtained by the pressure drop method at each condition,
the two methods still exhibit good uniformity. The variation trend of energy loss obtained
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by the two methods is the same; the energy loss decreases first and then increases in the
flow range of 0.8 Qd~1.2 Qd. The results obtained by the entropy production method are
proved to be reliable according to the traditional pressure drop method; hence, this study
can be conducted based on the entropy production method.
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5.2. Analysis of Energy Loss in the STPD

As shown in Figure 7, the variation trend of energy loss in each component obtained
by the two methods is consistent. In the inlet passage, the energy loss is very small and
increases monotonically, which is due to the increasing flow velocity. In the remaining three
parts, the energy loss decreases first and then increases, and the energy loss is minimal
at the design flow condition. In the range of 0.8 Qd~1.1 Qd, the loss proportion of each
component from the largest to the smallest is impeller, outlet passage, guide vanes and
inlet passage; however, the loss proportion of the outlet passage at 1.2 Qd is more than the
impeller. According to Figure 7a, in the flow range of 0.8 Qd~1.2 Qd, the loss in the inlet
passage accounts for 3.0~8.2% of the loss in the STPD, the loss in the impeller accounts
for 30.9~47.7%, the loss in the guide vanes accounts for 10.2~26.2% and the loss in the
outlet passage accounts for 31.5~41.4%. As shown in Figure 7b, the percentage of energy
loss in each component is basically consistent with the results obtained by the traditional
pressure drop method. In addition, the proportions of different types of entropy production
are shown in Figure 7b. It is obvious that the DEP in each component is small and can
be neglected, while the TEP is the main contributor to energy loss in STPDs, which is
consistent with the conclusions of previous research [31,35].
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5.3. Analysis of TEP Distribution

According to the analysis in Section 5.2, the energy loss in STPDs is mainly concen-
trated in the impeller, guide vane and outlet passage, and the main source of energy loss is
TEP. This section will further analyze the distribution of TEP in these three components.
The impeller and the guide vanes are evenly divided into 10 subdomains along the axial
and radial directions. The subdomains of the impeller along the axial direction are named
IA1~IA10, the subdomains along the radial direction are named IR1~IR10, the subdomains
of the guide vanes along the axial direction are named GA1~IA10 and the subdomains
along the radial direction are named GR1~IR10, as shown in Figure 8.
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guide vanes.

Figure 9 shows the TEP distribution of each subdomain of the impeller. At 0.8 Qd~1.0 Qd,
the TEP gradually decreases, while in the flow range of 1.0 Qd~1.2 Qd, the TEP increases,
and the trend of variation of the energy loss is consistent with Figure 7. As shown in
Figure 9a, it can be found that the TEP in the impeller firstly increases and then decreases
along the axial direction at each condition. In IA3, the flow separation at the leading edge
of the impeller leads to a surge of TEP. At 0.8 Qd, the TEP in IA3 is the largest, which is due
to the decrease in the attack angle; the flow separation is more serious, as is the formation
of backflow and vortex [36]. It can be found from Figure 9b that the TEP in the middle
subdomains of the impeller is relatively stable, which indicates that the flow state in this
region is stable. As it is influenced by the frictional resistance of the wall and the viscous
resistance of the liquid, thus the flow in the axial direction near the wall is weakened and
the loss increases [37]. Therefore, the TEP in IR1 and IR10 are clearly higher than that in the
adjacent subdomains. Additionally, the presence of the tip leakage vortex near the shroud
further promotes the TEP in IR10. This results in the TEP proportion exceeding 40% in IR10
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with a volume fraction of 14%. Furthermore, the range of TLV increases as the flow velocity
decreases [38], hence the TEP in IR10 is large at a small flow rate.
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Figure 9. The distribution of TEP in the impeller: (a) axial direction; and (b) radial direction.

The guide vanes are positioned downstream of the impeller to reduce the circulation
of the flow out of the impeller, and they enable the water to enter the outlet channel more
smoothly. The distribution of TEP in the guide vanes is shown in Figure 10. According to
Figure 10a, it can be found that at 0.9 Qd~1.2 Qd, the LEP in subdomains decreases along
the axial direction, which indicates that the guide vanes reduce the circulation velocity of
the flow out of the impeller, and finally the flow in the subdomains at the exit is stable and
the TEP is lower. At 0.8 Qd, there is a vortex at the back of the guide vanes near the outlet
section, therefore the TEP in GA10 increases. According to Figure 10b, along the radial
direction, the TEP in GR1 and GR10 is clearly higher than that in the adjacent subdomains
due to the wall effect. At 0.9 Qd~1.1 Qd, the TEP in the guide vanes is stable, which indicates
that the flow is stable. At 0.8 Qd and 1.2 Qd, the distribution of TEP has no clear regularity
due to the large deviation from the design flow rate, which also indicates the internal flow
of guide vanes is chaotic.
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Considering that the outlet passage is a leafless region, the distribution characteristics
of TEP will be discussed only along the axial direction. According to Figure 11, the outlet
passage is divided into 10 subdomains and named OA1~OA10 along the axial direction.
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The TEP in each subdomain of the outlet passage is shown in Figure 12. At 0.9 Qd~1.1 Qd,
the distribution characteristics of TEP along the axial direction are consistent. The TEP
increases first, with the maximum in the OA3 and OA4, and then decreases gradually. The
volume of OA1~OA4 accounts for 30%; however, the TEP accounts for more than 65%.
In the rear part, the energy loss is very small because the velocity and circulation have
decreased due to the completion of the flow diffusion. At 0.8 Qd, the TEP value in the OA1
is the largest, which is due to the effect of the velocity circulation and guide vanes’ wake
vortex (GWV). At 1.2 Qd, due to the larger flow velocity, the TEP values in OA2~OA10 are
larger than those at other flow-rate conditions.
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5.4. Visualization Analysis

Three typical operation conditions are selected for visualization and analysis. Figures 13 and 14
show the distribution of TEPR and the flow characteristics in the impeller at the typical
span of 0.03, 0.5 and 0.97. The location of the high TEPR region can be verified by the
flow structure, and the TEPR is higher in the region of poor flow characteristics. At all
conditions, there is an impeller wake vortex (IWV) at the trailing edge of the blade resulting



Entropy 2023, 25, 995 12 of 20

in a small high TEPR region. Near the hub (span = 0.03), there is a high TEPR region at
the leading edge of the impeller due to the vortex at the leading edge of impeller (ILV)
at 0.8 Qd. The ILV is the flow separation caused by the large attack angle at a small flow
rate. There is also a high TEPR region in the impeller passage, which is caused by the hub
vortex of the impeller (IHV). At 1.0 Qd and 1.2 Qd, the attack angle decreases and the ILV
disappears, hence the TEPR is significantly lower. In the middle passage (span = 0.5), the
flow moves along the blade airfoil, hence the TEPR is obviously lower than that near the
hub and shroud. Near the shroud region (span = 0.97), the TLV leads to the high TEPR
region, and as the flow rate increases; the head and the pressure difference between the
pressure side (PS) and suction side (SS) decrease, which leads to a reduction of the area of
the TLV and high TEPR region.
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Figures 15 and 16 show the distribution of TEPR and the flow characteristics in the
guide vanes at a typical span of 0.03, 0.5 and 0.97. Due to the presence of GWV at three
operating conditions, there is a small high TEPR region at the trailing edge of the guide
vanes. In addition, there is the guide vanes hub vortex (GHV) near the hub, which results in
high TEPR at corresponding locations. As the flow rate increases, the GHV first decreases
and then increases, and the high TEPR region shows the same variation. The matching
relationship between the flow direction and the guide vanes placement angle is shown in
Figure 17. At 0.8 Qd, because of the misfit of flow direction and the guide vanes placement
angle, there is a guide vanes separation vortex (GSV) in the SS side near the outlet, and the
TEPR is high in this region. At 1.0 Qd, the flow in the guide vanes is stable without flow
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separation, hence the TEPR is low. At 1.2 Qd, the location of GSV shifts to the PS of the
guide vanes near the inlet and results in a high TEPR region.
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Figure 17. Matching relationship between the flow direction and the guide vanes placement angle:
(a) 0.8 Qd; (b) 1.0 Qd; and (c) 1.2 Qd.

In order to further investigate the distribution of the TEPR in the impeller and guide
vanes, six monitoring sections are set up along the axial direction, as shown in Figure 18.
Figure 19 shows the distribution of TEPR and flow characteristics in the monitoring sections
of the impeller; from left to right, they are S1, S2 and S3. The distribution of TEPR and flow
characteristics can verify each other, and the TEPR is high in the region with disordered
flow. At each of the flow-rate conditions, the high TEPR regions are mainly distributed on
the blade surfaces and near the hub and shroud regions due to the influence of IHV and
TLV. As the IHV gradually increases along the axial direction, the area of the high TEPR
region near the hub also increases.
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Figure 19. The distribution of TEPR and flow characteristics in the monitoring sections of the impeller:
(a) 0.8 Qd; (b) 1.0 Qd; and (c) 1.2 Qd.

Figure 20 shows the distribution of TEPR and flow characteristics in the monitoring
sections of the guide vanes. In Figure 20, from left to right, they are S4, S5 and S6. The
distribution of TEPR and flow characteristics can verify each other, and the TEPR is high
in the region with disordered flow. At 0.8 Qd, the presence of GHV near the hub leads to
a small high TEPR region. Along the axial direction, GSV appears in the SS of the guide
vanes and gradually increases, hence the area of the high TEPR region also increases. When
the flow rate is 1.0 Qd and the TEPR is small in each section of the guide vanes, there is
only a small high TEPR region that appears near the hub caused by GHV and gradually
increases with the axial direction. At 1.2 Qd, in each monitoring section, there are high
TEPR regions near the hub and the PS of the guide vanes due to the influence of GSV and
GHV. Along the axial direction, the high TEPR region gradually decreases because of the
decrease in the GSV range.
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Figure 21 shows the distribution of TERP in the horizontal and vertical sections of the
outlet passage under each operation condition. According to Figure 21, it is found that the
TEPR in the outlet passage has basically symmetrical distribution and is sensitive to the
change of flow rate. The high TEPR region decreases and then increases with the increase
in flow rate, which is because the energy loss in the outlet passage is influenced by both the
circulation velocity and the flow velocity. The high TEPR region is completely concentrated
in the front part of the outlet passage, which further validates the distribution law of energy
loss in Figure 12. Six monitoring sections are set up along the axial direction; the location
and numbers are shown in Figure 22.
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Figure 23 shows the distribution of TEPR in the monitoring sections of the outflow
passage. The common characteristics can be found that the high TEPR region in the sections
decreases gradually along the axial direction. In S7~S9, the distribution of high TEPR is
clearly influenced by the guide vanes, with six high TEPR regions appearing in each section,
which is consistent with the number of guide vanes. The flow out of the guide vanes still
has circulation, so the flow moves toward the outer wall by centrifugal force; therefore,
there is a high TEPR region near the outer wall surface of each section, and the high TEPR
region near the outer wall surface increases as the flow rate increases. In S11~S12, the
flow has been adjusted by the outlet passage to complete the diffusion and kinetic energy
recovery, so the flow is stable and therefore the TEPR is quite low, which is consistent
with the law in Figure 12. Compared with Figure 20, it is found that the distribution
characteristics of TEPR in S7 are basically the same as those in S6, but the intensity of TEPR
is reduced; this indicates that the flow in the outlet passage is still influenced by GSV, GWV
and GHV, and the influence gradually decreases along the axial direction.
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6. Conclusions

In this study, the flow field and energy loss of an STPD are simulated, and the accuracy
of the numerical simulation is verified by a model test. The energy loss characteristics at
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each working condition are analyzed based on the entropy production and pressure drop
methods. The main achievements of this study are as follows:

1. The energy loss in each part of the STPD is analyzed, and the results show that the
prediction of the energy loss by the above two methods is consistent. The TEP is the
primary cause of energy loss, while the EPW is the secondary source. TEP accounts for
65.40~77.88% of the energy loss in the STPD, whereas EPW accounts for 21.54~33.63%.

2. At 0.8 Qd~1.1 Qd, the component with the largest energy loss in an STPD is the
impeller. Due to the wall effect and TLV, the energy loss in the region near the impeller
shroud accounts for more than 40% of the total loss in the impeller. Therefore, it is
necessary to consider the influence of the tip clearance of the impeller to reduce losses.

3. At 1.2 Qd, the component with the largest energy loss in an STPD is the outlet passage.
The energy loss in the outlet passage is mainly concentrated in the entrance part due
to the wake flow of the guide vanes. Therefore, the adoption of appropriate measures
at the entrance part can be considered to eliminate the influence of the wake flow and
reduce loss.

4. The visualization of the TEPR of the main components of the STPD clearly identify
the vortex regions, which are accurately verified by the flow field structure. The
main vortex structures in the impeller are IWV, IHV and TLV, while the main vortex
structures in the guide vanes are GWV, GHV and GSV. It is clearly found that the
TEPR is significantly higher in the vortex region. The distribution of TEPR in the
outlet passage is clearly influenced by the guide vanes, and the influence gradually
decreases along the axial direction.
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Nomenclature and Abbreviations
∆hs: Total pressure loss in the stationary domain, m
∆hr: Total pressure loss in the stationary domain, m
p1: Total pressure of inlet section, Pa
p2: Total pressure of outlet section, Pa
ρ: Density of fluid, kg/m3

Q: Flow rate, m3/s
.

Q: Energy conversion rate
ui: Velocity with different directions in Cartesian coordinates, m/s
δij: Crowe dick symbol
STPD: Shaft tubular pump device
EPW: Entropy production in the wall region
TEP: Turbulent entropy production
LEP: Local entropy production
LEPR: Local entropy production rate
TEPR: Turbulent entropy production rate
LEP: Local entropy production
GCI: Grid convergence index
TLV: Tip leakage vortex
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IWV: Impeller wake vortex
ILV: Vortex at leading edge of impeller
IHV: Impeller hub vortex
GWV: Guide vanes wake vortex
GHV: Guide vanes hub vortex
GSV: Guide vanes separation vortex
PS: Pressure side
SS: Suction side
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