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Abstract: The general delay Hopfield neural network is studied. We consider the case of time-
varying delay, continuously distributed delays, time-varying coefficients, and a special type of a
Riemann–Liouville fractional derivative (GRLFD) with an exponential kernel. The kernels of the
fractional integral and the fractional derivative in this paper are Sonine kernels and satisfy the first
and the second fundamental theorems in calculus. The presence of delays and GRLFD in the model
require a special type of initial condition. The applied GRLFD also requires a special definition of the
equilibrium of the model. A constant equilibrium of the model is defined. An inequality for Lyapunov
type of convex functions with the applied GRLFD is proved. It is combined with the Razumikhin
method to study stability properties of the equilibrium of the model. As a partial case we apply
quadratic Lyapunov functions. We prove some comparison results for Lyapunov function connected
deeply with the applied GRLFD and use them to obtain exponential bounds of the solutions. These
bounds are satisfied for intervals excluding the initial time. Also, the convergence of any solution
of the model to the equilibrium at infinity is proved. An example illustrating the importance of our
theoretical results is also included.

Keywords: Hopfield neural networks; delays; Riemann–Liouville type fractional derivative; Lyapunov
functions; Razumikhin method

1. Introduction

Stability properties of Hopfield neural networks modeled by various types of deriva-
tives have been studied in the literature. The applied different types of derivatives and their
properties could adequately describe different behavior of the dynamics of the neurons.
For example, the fractional derivatives have typical memory properties, the Riemann–
Liouville type of fractional derivatives have a singularity at the initial time point, and
they can model some abnormalities in the behavior of the neurons. We can refer to [1] for
Caputo fractional derivative, [2] for conformable fractional derivative, ref. [3] for ordinary
derivatives and time-varying delays, and refs. [4,5] for Caputo fractional derivative and
delays. In the case when Riemann–Liouville fractional derivative is applied also, several
results about the study of stability are published (see, for example, refs. [6–9] for delays,
ref. [10] for random impulses). A good review of the neural networks with applied classical
fractional derivatives is given in [11].

In the last few decades, many different definitions of fractional integrals and deriva-
tives have been proposed. One of the ways to generalize the classical ones is to use
Sonine kernels (see, for example [12]). The general fractional integrals and derivatives of
Riemann–Liouville type were introduced and studied by Luchko [13]. Applying Sonine
kernel hα(t) = tα−1

Γ(α) , the classical Riemann–Liouville integral (RLI) and Riemann–Liouville
fractional derivative ( RLFD) could be written in the following form:
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IRL f (t) =
∫ t

0
hα(t− s) f (s)ds, t > 0,

DRL f (t) =
d
dt

∫ t

0
h1−α(t− s) f (s)ds.

Note that the kernel hα(t) satisfies the classical Sonine condition

(hα ∗ h1−α)(t) = {1}, t > 0, α ∈ (0, 1).

Recently, in [14,15], an integral and two types of derivatives of Caputo and of Riemann–
Liouville type, respectively, were introduced and they were called generalized proportional
fractional integral and derivatives. The main characteristic of this derivatives is the ex-
ponential kernel in the corresponding integrals. The main disadvantage of these type of
integrals and derivatives is the absence of mutually inversebility. For these derivatives, the
first and the second fundamental theorem is not satisfied. In this paper, based on the ideas
of the fractional integrals and derivatives with Sonine kernels, given and studied in [12],
we will define a couple of exponential Sonine kernels. These kernels are a partial case of the
studied ones in [16] (see Formulas (7.5) and (7.6)). We will use them to define generalized
fractional integral and derivative of Riemann–Liouville type. The main advantage of these
types of integrals and derivatives is that they satisfy the first and the second fundamental
theorems (see Theorems 4 and 5 [17]); therefore, they form a general fractional calculus.
One of their advantages is that as partial cases the classical Caputo and Riemann–Liouville
fractional derivatives are obtained. We will prove an inequality for the defined general
fractional derivative of complex Lyapunov functions. This inequality will be applied
to study stability properties of the delays differential equations. An appropriate initial
value problem for a model of neural networks with time-variable delays and distributed
delays has dynamics which are modeled by the defined general fractional derivative of
Riemann–Liouville type.

We consider Hopfield neural networks with both time-variable delays and distributed
delays, and variable in time coefficients and external inputs. The dynamics of the units are
modeled by GRLFD. Two types of initial conditions are set up. These initial conditions are
connected with the singularity of the applied derivatives at the initial time point which
coincides with the lower limit of the integral. The equilibrium of the model is defined in
an appropriate way and its stability properties are studied. This equilibrium is deeply
connected with the applied derivative.

By employing Razumikhin method and appropriate Lyapunov functions, we obtain
several upper exponential bounds of the solutions. The obtained results are valid on
intervals excluding the initial time which is a singular point for the solutions. We prove the
convergence of the solutions to the equilibrium at infinity. The applied derivative gives us as
a partial case the classical Riemann–Liouville fractional derivative, so all obtained results in
this paper are a generalization of the Hopfield model with the classical fractional derivative.

The innovations of this article can be described as follows:

- We define generalized fractional integral and generalized Riemann–Liouville fractional
derivative based on exponential Sonine kernels which satisfy the first and the second
fundamental theorems;

- We prove an inequality for general convex Lyapunov functions with generalized
Riemann–Liouville fractional derivative;

- We propose a generalized Hopfield neural network model with both time-variable
delays and distributed delays. The dynamic of the units are described by the special
generalization of the Riemann–Liouville fractional derivative;

- We define the equilibrium of the studied model. It depends significantly on the delays
and the applied type of the derivative;

- We use modified Razumikhin conditions deeply connected with the presence of the
exponential kernel in the applied derivative;
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- We obtain an exponential bound of the equilibrium of the model. This bound is valid
only for intervals excluding the initial time point;

- We prove sufficient conditions for approaching any solution of the model to the
equilibrium.

The structuring of the rest of the paper pursues the following scheme. The basic
definitions for general fractional integral and derivatives are given in Section 2. The basic
inequality for convex Lyapunov type functions with the generalized fractional derivative
of Riemann–Liouville type is proved in Section 3. Some stability properties of the solutions
of delay differential equations with those defined in the paper fractional derivative are
proved in Section 4. These results are based on the application of the modified Razumikhin
method. Section 5 is devoted to the study of the generalized Riemann–Liouville delay
Hopfield neural network model. The model is defined and initial conditions are set up.
The equilibrium is defined in an appropriate way. It depends significantly on the applied
fractional derivative. Quadratic Lyapunov-like functions and the modified Razumikhin
method are applied to obtain exponential bounds of the solutions of the model. These
bounds are obtained on an interval excluding the initial time point. The convergence of
any solution to the equilibrium is studied. An example illustrating theoretical results is
elaborated in the next section. Some concluding comments are stated in the last section.

2. Some Basic Definitions and Preliminaries

The most classical fractional integrals and derivatives as well as their basic properties
are well presented in the the classical books; see, for example [18–20]. In the last decades,
many generalizations of these fractional derivatives have been proposed. Some of them are
equivalent to the classical ones, whereas others are generalizations. One of the methods is
the exponential factor included in the kernel of the derivative and the integral, and they
are called tempered fractional integral and derivative (see, for example, their applications
to stochastic process [21]).

Recall that the pair of functions M, K (Sonine kernels) satisfies the relation

(M ∗ K)(t) =
∫ t

0
K(s)M(t− s)ds = {1}, t > 0, (1)

where {1} is the function that is identically equal to 1 for t ≥ 0 (for more details, see [16,17]).
If the functions (M, K) are Sonine kernels then the generalized fractional integral is

defined by

IRL
(M) f =

∫ 0
M(t− s) f (s)ds (2)

and the generalized fractional derivative of Riemann–Liouville type is defined by

DRL
(K) f =

d
dt

∫ 0
K(t− s) f (s)ds. (3)

Consider the following pair of functions:

M(t) =
(λt)α−1

Γ(α)
e−|λ−1| t =

λα−1

Γ(α)
tα−1e−|λ−1| t (4)

and

K(t) =
λ1−α

Γ(1− α)

(
t−αe−|λ−1|t + |λ− 1|

∫ t

0
u−αe−|λ−1|udu

)
(5)

where α ∈ (0, 1), λ > 0.
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Both functions M, K are Sonine kernels. Indeed, we have

K(t− s) =
λ1−α

Γ(1− α)

(
(t− s)−αe−|λ−1|(t−s) + |λ− 1|

∫ t−s

0
u−αe−|λ−1|udu

)
=

λ1−α

Γ(1− α)

(
(t− s)−αe−|λ−1|(t−s) + |λ− 1|

∫ t

s
(v− s)−αe−|λ−1|(v−s)dv

)
, 0 < s ≤ t,

(6)

and applying that
∫ t

0 sα−1(t− s)−αds = Γ(α)Γ(1− α), we obtain

∫ t

0
M(s)K(t− s)ds =

1
Γ(α)Γ(1− α)

( ∫ t

0
sα−1e−|λ−1|t(t− s)−αds

+ |λ− 1|
∫ t

0
sα−1

∫ t

s
(v− s)−αe−|λ−1|vdvds

)
= e−|λ−1|t +

1
Γ(α)Γ(1− α)

|λ− 1|
∫ t

0
e−|λ−1|v

∫ v

0
sα−1(v− s)−αds dv

= e−|λ−1|t + |λ− 1|
∫ t

0
e−|λ−1|vdv = 1, t > 0.

(7)

Also, we obtain

d
dt

∫ t

0
K(t− s)ν(s)ds =

λ1−α

Γ(1− α)

d
dt

( ∫ t

0

[
(t− s)−αe−|λ−1|(t−s)

+ |λ− 1|
∫ t

s
(v− s)−αe−|λ−1|(v−s)dv

]
ν(s)ds

)
=

λ1−α

Γ(1− α)

d
dt

( ∫ t

0
(t− s)−αe−|λ−1|(t−s)ν(s)ds

+ |λ− 1|
∫ t

0

∫ t

s
(v− s)−αe−|λ−1|(v−s)ν(s)dvds

)
=

λ1−α

Γ(1− α)

d
dt

( ∫ t

0
(t− s)−αe−|λ−1|(t−s)ν(s)ds

+ |λ− 1|
∫ t

0

∫ v

0
(v− s)−αe−|λ−1|(v−s)ν(s)dsdv

)
=

λ1−α

Γ(1− α)

( d
dt

∫ t

0
(t− s)−αe−|λ−1|(t−s)ν(s)ds

+ |λ− 1|
∫ t

0
(t− s)−αe−|λ−1|(t−s)ν(s)ds

)
, t > 0.

(8)

Now, we will define the generalized fractional integral (GFI) and generalized Riemann–
Liouville fractional derivative (GRLFD) applying the Sonine kernels M, K given by (4)
and (5) and using Equation (8).

Definition 1. The generalized fractional integral (GFI) of a function υ : [0, A] → R, A ≤ ∞,
and λ > 0, α ≥ 0, is defined by

0Iα,λ
t υ(t) =

∫ t

0
M(t− s)ν(s)ds =

λα−1

Γ(α)

∫ t

0
(t− s)α−1e−|λ−1| (t−s)υ(s) ds, t ∈ (0, A]. (9)
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Definition 2. The generalized Riemann–Liouville fractional derivative (GRLFD) of a function
υ : [0, A]→ R, A ≤ ∞, and λ > 0, α ∈ (0, 1) is defined by

RL
0 D

α,λ
t υ(t) =

d
dt

∫ t

0
K(t− s)ν(s)ds

=
λ1−α

Γ(1− α)

( d
dt

∫ t

0
(t− s)−αe−|λ−1|(t−s)ν(s)ds

+ |λ− 1|
∫ t

0
(t− s)−αe−|λ−1|(t−s)ν(s)ds

)
, t ∈ (0, A].

(10)

Remark 1. From Equations (9) and (10) in the partial case λ = 1, we obtain the classical Riemann frac-
tional integral (RLFI) and Riemann–Liouville fractional derivative (RLFD) (see, for example, [18–20]).

Remark 2. The defined and applied above kernels are a partial case of Sonine kernels studied in [17];
therefore, the defined GFI and GRLFD by Definitions 1 and 2, respectively, satisfy the first and the
second fundamental theorems (see Theorem 4 and Theorem 5 [17]), i.e.,

RL
0 D

q,ρ
t

(
0Iα,λ

t

)
υ(t) = υ(t), t > 0,

and
0Iα,λ

t

(
RL
0 D

q,ρ
t

)
υ(t) = υ(t), t > 0.

Remark 3. In [14,15], the authors defined another type of integrals and derivatives with exponential
kernels. The above-defined GFI and GRLFD are similar to the ones in the above papers but GFI and
GRLFD, defined by Definitions 1 and 2, according to Remark 2, are a part of the fractional calculus
(which is not true for the ones defined in [14,15]).

Proposition 1. For λ > 0, α ∈ (0, 1) we have

RL
0 D

α,λ
t (e−|λ−1|ttα−1) = 0, t > 0, (11)

and

RL
0 D

α,λ
t (1) =

λ

Γ(1− α)

(
e|λ−1|t(

1
λt

)α + |λ− 1
λ
|αγ(1− α, |λ− 1|t,

)
, t > 0. (12)

Proof. From Definition 2 we obtain

RL
0 D

α,λ
t (e−|λ−1|ttα−1) =

λ1−α

Γ(1− α)

( d
dt

∫ t

0
(t− s)−αe−|λ−1|(t−s)e−|λ−1|ssα−1ds

+ |λ− 1|
∫ t

0
(t− s)−αe−|λ−1|(t−s)e−|λ−1|ssα−1ds

)
=

λ1−α

Γ(1− α)

( d
dt

e−|λ−1|t
∫ t

0
(t− s)−αsα−1ds + |λ− 1|e−|λ−1|t

∫ t

0
(t− s)−αsα−1ds

)
=

λ1−α

Γ(1− α)

( d
dt

e−|λ−1|tΓ(α)Γ(1− α) + |λ− 1|e−|λ−1|tΓ(α)Γ(1− α)
)
= 0, t ∈ (0, A].

(13)

We use the equalities∫ T

a
e|λ−1|(T−s)(T − s)−αds = |λ− 1|α−1γ(1− α, |λ− 1|(T − a)), 0 ≤ a ≤ T ≤ ∞, (14)

with the incomplete lower gamma function γ(β, z),

d
dT

∫ T

a
e|λ−1|(T−s)(T − s)−αds = e|λ−1|(T−a)(T − a)−α 0 ≤ a ≤ T ≤ ∞, (15)
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and we obtain

RL
0 D

α,λ
t (1) =

λ1−α

Γ(1− α)

( d
dt

∫ t

0
(t− s)−αe−|λ−1|(t−s)ds + |λ− 1|

∫ t

0
(t− s)−αe−|λ−1|(t−s)ds

)
=

λ1−α

Γ(1− α)

(
e|λ−1|tt−α + |λ− 1|αγ(1− α, |λ− 1|t,

)
, t ∈ (0, A].

(16)

3. Inequalities for Generalized Proportional Riemann–Liouville Fractional Derivatives

We will use the following class of multivariable functions:

Ω = {V ∈ C2(Rn,R) : V(0) = 0, V(γx + (1− γ)y) ≤ γV(x) + (1− γ)V(y)

for γ ∈ [0, 1], x, y ∈ Rn}.

Remark 4. The function V ∈ Ω iff V ∈ C2(Rn,R) and V(y) ≥ V(x) + ∑n
i=1

∂V(x)
∂xi

(yi − xi)

for all x, y ∈ Rn, x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn).

Define the set of functions:

Cα,λ([0, A],Rn
) = {υ : [0, A]→ Rn : ∀t ∈ (0, A] ∃ RL

0 D
α,λ
t υ(t) < ∞}.

Lemma 1. Suppose the functions V ∈ Ω, x ∈ Cα,λ([0, b],Rn), b ≤ ∞, x = (x1, x2, . . . , xn), and
V(x(.)) ∈ Cq,ρ([t0, b], [0, ∞)). Then, the inequality

(
RL
t0
Dq,ρ

t V(x(t)
)
≤

n

∑
k=1

(
RL
t0
Dq,ρ

t xk(t)
) ∂V(x(t))

∂xk
, t ∈ (0, b] (17)

holds.

Proof. Fix an arbitrary point T ∈ (0, b]. The inequality (17) is equivalent to

RL
0 D

q,ρ
t V(y(t))|t=T −

n

∑
k=1

(
RL
0 D

q,ρ
t yk(t)

)
|t=T

∂V(y(T))
∂yk

≤ 0. (18)

We have
xk(s) = xk(0) +

∫ s

0

d
dξ

xk(ξ)dξ, k = 1, 2, . . . , n, s ∈ [0, T], (19)

and

V(x(s)) = V(x(0)) +
n

∑
k=1

∫ s

0

∂V(x(ξ))
∂xk

x′k(ξ)dξ, s ∈ [0, T]. (20)

From Definition 2 and equalities (19) and (20), we obtain
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Γ(1− α)

λ1−α

(
RL
0 D

q,ρ
t V(x(t))|t=T −

n

∑
k=1

∂V(x(T))
∂xk

RL
0 D

q,ρ
t xk(t)|t=T

)

=
d

dT

∫ T

0
(T − s)−αe−|λ−1|(T−s)

(
V(x(0)) +

n

∑
k=1

∫ s

0

∂V(x(ξ))
∂xk

x′k(ξ)dξ

)
ds

+ |λ− 1|
∫ T

0
(T − s)−αe−|λ−1|(T−s)

(
V(x(0)) +

n

∑
k=1

∫ s

0

∂V(x(ξ))
∂xk

x′k(ξ)dξ

)
ds

−
n

∑
k=1

∂V(x(T))
∂xk

d
dT

∫ T

0
(T − s)−αe−|λ−1|(T−s)

(
xk(0) +

∫ s

0
x′k(ξ)dξ

)
ds

− |λ− 1|
n

∑
k=1

∂V(x(T))
∂xk

∫ T

0
(T − s)−αe−|λ−1|(T−s)

(
xk(0) +

∫ s

0
x′k(ξ)dξ

)
ds

=

(
V(x(0))− ∂V(x(T))

∂xk
xk(0)

)
d

dT

∫ T

0
(T − s)−αe−|λ−1|(T−s)ds

+
d

dT

∫ T

0
(T − s)−αe−|λ−1|(T−s)

n

∑
k=1

∫ s

0

∂V(x(ξ))
∂xk

x′k(ξ)dξds

−
n

∑
k=1

∂V(x(T))
∂xk

d
dT

∫ T

0
(T − s)−αe−|λ−1|(T−s))

∫ s

0
x′k(ξ)dξds

+ |λ− 1|
(

V(x(0))− ∂V(x(T))
∂xk

xk(0)
) ∫ T

0
(T − s)−αe−|λ−1|(T−s)ds

+ |λ− 1|
∫ T

0
(T − s)−αe−|λ−1|(T−s)

n

∑
k=1

∫ s

0

∂V(x(ξ))
∂xk

x′k(ξ)dξds

− |λ− 1|
n

∑
k=1

∂V(x(T))
∂xk

∫ T

0
(T − s)−αe−|λ−1|(T−s)

∫ s

0
x′k(ξ)dξds.

(21)

We apply (19), (20), (14), (15), and the equalities∫ T

0

∫ s

0
f (s, ξ)dξds =

∫ T

0

∫ T

ξ
f (s, ξ)dsdξ

for f (s, ξ) = e−|λ−1|(T−s)(T − s)−α ∂V(x(ξ))
∂xk

x′k(ξ) or f (s, ξ) = e−|λ−1|(T−s)(T − s)−αx′k(ξ) to
equality (21) and we obtain

Γ(1− α)

λ1−α

(
RL
0 D

q,ρ
t V(x(t))|t=T −

n

∑
k=1

∂V(x(T))
∂xk

RL
0 D

q,ρ
t xk(t)|t=T

)
=

(
V(x(0))− ∂V(x(T))

∂xk
xk(0)

)
e−|λ−1|TT−α

+
n

∑
k=1

d
dT

∫ T

0

∫ T

ξ
(T − s)−αe−|λ−1|(T−s) ∂V(x(ξ))

∂xk
x′k(ξ)dsdξ

−
n

∑
k=1

∂V(x(T))
∂xk

d
dT

∫ T

0

∫ T

ξ
(T − s)−αe−|λ−1|(T−s))x′k(ξ)dsdξ

+ |λ− 1|
(

V(x(0))− ∂V(x(T))
∂xk

xk(0)
) ∫ T

0
(T − s)−αe−|λ−1|(T−s)ds

+ |λ− 1|
∫ T

0

n

∑
k=1

(∂V(x(ξ))
∂xk

− ∂V(x(T))
∂xk

)
x′k(ξ)

∫ T

ξ
(T − s)−αe−|λ−1|(T−s)dsdξ.

(22)
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Note that we have

d
dT

∫ T

0

∫ T

ξ

∂V(x(ξ))
∂xk

x′k(ξ)e
−|λ−1|(T−s)(T − s)−αds dξ

=
∫ T

0

∂V(x(ξ))
∂xk

x′k(ξ)
d

dT

∫ T

ξ
e−|λ−1|(T−s)(T − s)−αds dξ

=
∫ T

0

∂V(x(ξ))
∂xk

x′k(ξ)e
−|λ−1|(T−ξ)(T − ξ)−α dξ

(23)

and

d
dT

∫ T

0
x′k(ξ)

∫ T

ξ
e−|λ−1|(T−s)(T − s)−αds dξ =

∫ T

0
x′k(ξ)e

−|λ−1|(T−ξ)(T − ξ)−α dξ. (24)

We substitute (23) and (24) in (22) and we obtain

Γ(1− α)

λ1−α

(
RL
0 D

q,ρ
t V(x(t))|t=T −

n

∑
k=1

∂V(x(T))
∂xk

RL
0 D

q,ρ
t xk(t)|t=T

)
=

(
V(x(0))− ∂V(x(T))

∂xk
xk(0)

)
e−|λ−1|TT−α

+
∫ T

0

n

∑
k=1

(∂V(x(ξ))
∂xk

− ∂V(x(T))
∂xk

)
x′k(ξ)e

−|λ−1|(T−ξ)(T − ξ)−α dξ

+ |λ− 1|
(

V(x(0))− ∂V(x(T))
∂xk

xk(0)
) ∫ T

0
(T − s)−αe−(λ−1)(T−s)ds

+ |λ− 1|
∫ T

0

n

∑
k=1

(∂V(x(ξ))
∂xk

− ∂V(x(T))
∂xk

)
x′k(ξ)

∫ T

ξ
(T − s)−αe−|λ−1|(T−s)dsdξ.

(25)

We define the function P(s) = V(x(s))−V(x(T))−∑n
k=1

∂V(x(T))
∂xk

)[xk(s)− xk(T)] for s ∈
[0, T]. From V ∈ Ω it follows that P(s) ≥ 0 for all s ∈ [0, T], P(T) = 0 and dP(s)

ds =

∑n
k=1

(
∂V(x(s))

∂xk
− ∂V(x(T))

∂xk

)
x′k(s).

We integrate by parts and use the equalities lims→T−
P(s)

(T−s)q = lims→T−
P′′(s)

q(q−1) (T −

s)2−α = 0 and d
ds

(
e−|λ−1|(T−s)(T − s)−α

)
= e|λ−1|(T−s)(T − s)−α(−|λ− 1|+ α(T − s)−1)

and we obtain∫ T

0
P′(ξ)

∫ T

ξ
(T − s)−αe−|λ−1|(T−s)dsdξ

= P(ξ)
∫ T

ξ
(T − s)−αe−|λ−1|(T−s)ds

∣∣∣ξ=T

ξ=0
−
∫ T

0
P(ξ)

d
dξ

∫ T

ξ
(T − s)−αe−|λ−1|(T−s)ds

= −P(0)
∫ T

0
(T − s)−αe−|λ−1|(T−s)ds−

∫ T

0
P(ξ)(T − ξ)−αe−|λ−1|(T−ξ)dξ

≤ −P(0)
∫ T

0
(T − s)−αe−|λ−1|(T−s)ds,

(26)
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and ∫ T

0
P′(ξ)(T − ξ)−αe−|λ−1|(T−ξ)dξ

= P(ξ)(T − ξ)−αe−|λ−1|(T−ξ)dξ
∣∣∣ξ=T

ξ=0
−
∫ T

0
P(ξ)

d
dξ

(T − ξ)−αe−|λ−1|(T−ξ)

= −P(0)T−αe−|λ−1|T

−
∫ T

0
P(ξ)

(
α(T − ξ)α−1e−|λ−1|(T−ξ) + |λ− 1|(T − ξ)−αe−|λ−1|(T−ξ)

)
dξ

≤ −P(0)T−αe−|λ−1|Tds.

(27)

From V ∈ Ω and Remark 4 with y = 0, it follows that−V(x(T))+∑n
k=1

∂V(x(T))
∂xk

xk(T) ≥
0; thus, from (25), (27), and (26) we obtain

Γ(1− α)

λ1−α

(
RL
0 D

q,ρ
t V(x(t))|t=T −

n

∑
k=1

∂V(x(T))
∂xk

RL
0 D

q,ρ
t xk(t)|t=T

)

= P(0)e−|λ−1|TT−α −
(
−V(x(T)) +

n

∑
k=1

∂V(x(T))
∂xk

xk(T)

)
e−|λ−1|TT−α

+
∫ T

0
P′(ξ)e−|λ−1|(T−ξ)(T − ξ)−α dξ

+ |λ− 1|P(0)
∫ T

0
(T − s)−αe−(λ−1)(T−s)ds

+ |λ− 1|
(
−V(x(T))− ∂V(x(T))

∂xk
xk(T)

) ∫ T

0
(T − s)−αe−(λ−1)(T−s)ds

+ |λ− 1|
∫ T

0
P′(ξ)

∫ T

ξ
(T − s)−αe−|λ−1|(T−s)dsdξ

≤ P(0)e−|λ−1|TT−α −
(
−V(x(T)) +

n

∑
k=1

∂V(x(T))
∂xk

xk(T)

)
e−|λ−1|TT−α

− P(0)e−|λ−1|TT−α + |λ− 1|P(0)
∫ T

0
(T − s)−αe−(λ−1)(T−s)ds

− |λ− 1|
(
−V(x(T)) +

∂V(x(T))
∂xk

xk(T)
) ∫ T

0
(T − s)−αe−(λ−1)(T−s)ds

− |λ− 1|P(0)
∫ T

0
(T − s)−αe−|λ−1|(T−s)ds ≤ 0.

(28)

In the case V(x) = ∑n
k=1 x2

k for x ∈ Rn : x = (x1, x2, dots, xn), we obtain as a partial
case of Lemma 1 the following result.

Corollary 1. Let the function ν ∈ Cα,λ([0, A],Rn
), 0 < A ≤ ∞, and νTν ∈ Cα,λ([0, A],R).

Then, the inequality RL
0 D

α,λ
t νTν(t) ≤ 2νT(t)RL

0 D
α,λ
t ν(t) for t ∈ (0, A] holds.

In our further study we will use the following result, for which the proof is very
similar to the one in [22] and we omit it.

Lemma 2. Let the function υ ∈ C([0, A],R), 0 < A < ∞ be Lipshitz, and there exists a point
T ∈ (0, A] such that υ(T) = 0, and υ(t) < 0, for 0 ≤ t < T. Then, if the GRLFD of υ exists for
t = T with α ∈ (0, 1), λ > 0, then the inequality ( RL

0 Dα,λυ)(t)|t=T ≥ 0 holds.

Remark 5. Note that a similar result to the one in Lemma 2 is proved in [23] for Riemann–Liouville
fractional derivatives.
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4. Some Results for Delay Differential Equations with GRLFD

Consider the delay nonlinear differential equation with GRLFD

RL
0 D

α,λ
t y(t) = f (t, yt) for t > 0, (29)

with initial conditions

y(t) = φ(t), for t ∈ [−τ, 0),

0I1−α,λ
t y(t)|t=0+ = φ(0),

(30)

where α ∈ (0, 1), λ > 0, yt(σ) = y(t + σ) for σ ∈ [−τ, 0], the initial function φ : [−τ, 0]→
Rn and f : R+ ×Rn → Rn.

We will assume that the initial value problem problem (29), (30) has a solution y(t; φ) ∈
Cα,λ([0, ∞),Rn

) for any initial function φ ∈ C([−τ, 0],Rn
)).

For any vector ξ = (ξ1, ξ2, . . . , ξn), we will use the norm ||ξ|| =
√

∑n
i=1 ξ2

i .

We will use the norm in C([−τ, 0],Rn
), defined by ||φ||0 = maxt∈[−τ,0] ||φ(t)||.

Theorem 1. Let there exist a continuous locally Lipschitz function V : Rn → [0, ∞) such that

(i) There exists an increasing function a ∈ C([0, ∞), [0, ∞)) : a(0) = 0, such that a(||ξ||) ≤
V(ξ) for ξ ∈ Rn;

(ii) For any solution y ∈ Cα,λ([0, ∞),Rn
) of (29), (30), the following conditions are satisfied:

- There exists an increasing function g ∈ C([0, ∞),R) : g(0) = 0 such that the inequality

lim
t→0+

e−|λ−1|tt1−αV(y(t)) ≤ g(||φ(0)||)

holds;
- For any point, T > 0 such that

e−|λ−1|(T+σ)(T + σ)1−αV(y(T + σ)) < e−|λ−1|tT1−αV(y(T)) for σ ∈ (−min{T, τ}, 0),

the GRLFD RL
0 D

α,λ
t V(y(t))

∣∣∣
t=T

exists, and the inequality

RL
0 D

α,λ
t V(y(t))

∣∣∣
t=T

< 0

holds.

Then, there exists a point Tα > 0 such that for any solution of (29), (30), the inequality

||x(t)|| < a−1
(

g(||φ||0)e−|λ−1|t
)

for t > Tα

holds.

Proof. Let x(t) be a solution of (29), (30) with the initial function φ ∈ C([−τ, 0],Rn
).

From condition (ii), we obtain

lim
σ→0+

e−|λ−1|σσ1−αV(x(σ)) ≤ g(||φ(0)||) ≤ g(||φ||0). (31)

Therefore, there exists a number δ > 0 such that

V(x(t)) ≤ g(||φ||0) < e−|λ−1|ttα−1g(||φ||0), for t ∈ (0, δ). (32)
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We define the function H(t) = g(||φ||0)e−|λ−1|ttα−1 ∈ Cα,λ([0, ∞),R+) and limt→∞ H(t)
= 0. Then, there exists Tα > 0 such that tα−1 < 1 for t > Tα, and, thus,

H(t) < g(||φ||0)e−|λ−1|t for t > Tα. (33)

Consider the function m(t) = V(x(t)) ∈ Cα,λ([0, ∞),R+).
We will prove that

m(t) < H(t), t > 0. (34)

Assume inequality (34) is not true for all t > 0. Then, there exists a point η ≥ δ > 0
such that

m(η) = H(η), and m(t) < H(t), t ∈ (0, η). (35)

Thus, m(t) − H(t) ∈ Cα,λ([0, η],R). According to Lemma 2 with T = η, ν(t) ≡
m(t)− H(t), the inequality RL

0 D
α,λ
t

(
m(t)− H(t)

)
|t=η ≥ 0 holds. From Proposition 1, we

obtain RL
0 Dα,λ(e−|λ−1|ttα−1) = 0 and, therefore,

RL
0 D

α,λ
t m(t)|t=η = RL

0 D
α,λ
t

(
m(t)− H(t)

)
|t=η ≥ 0. (36)

Case 1. Let η > τ. Then, min{η, τ} = τ. From (35), it follows that

e−|λ−1|tt1−αm(t) < ε = e−|λ−1|ηη1−αm(η), t ∈ (0, η)

or

e−|λ−1|(η+σ)(η + σ)1−αV(ξ + σ, x(η + σ)) < e−|λ−1|ηη1−αV(η, x(η)), σ ∈ (−τ, 0).

According to condition 2(iii), the inequality

RL
0 D

α,λ
t V(t, x(t))|t=η < 0 (37)

holds.
The inequality (37) contradicts (36).
Case 2. Let η ≤ τ. Then, min{η, τ} = ξ. From (35), it follows that

e−|λ−1|ηη1−αm(η) = ε > e−|λ−1|tt1−αm(t), t ∈ (0, η),

or

e−|λ−1|(η+σ)(η + σ)1−αV(η + σ, x(η + σ)) < e−|λ−1|ηη1−αm(η) = e−|λ−1|ηη1−αV(η, x(η))

for σ ∈ (−ξ, 0). Similar to Case 1, we obtain a contradiction.
From inequalities (33), (34) and condition (i), it follows that

a(||x(t)||) ≤ V(x(t)) = m(t) < H(t) < g(||φ||0)e−|λ−1|t for t > Tα. (38)

It proves the claim of Theorem 1.

Using that for any fixed T ≥ 0 the function Q(σ) = e−|λ−1|(T+σ)(T + σ)1−α is an
increasing function for σ ∈ (−min{T, τ}, 0) we obtain the following result.

Corollary 2. Assume the condition (i) of Theorem 1:

(ii)∗ For any solution y ∈ Cα,λ([0, ∞),Rn
) of (29), (30), the following conditions are satisfied:

- There exists an increasing function g ∈ C([0, ∞),R) : g(0) = 0 such that the inequality

e−|λ−1|tt1−αV(y(t))|t=0+ = lim
t→0+

e−|λ−1|tt1−qV(y(t)) ≤ g(||φ(0)||)
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holds;
- For any point T > 0 such that

V(y(T + σ)) < V(y(T)) for σ ∈ (−min{T, τ}, 0),

the GRLFD RL
0 D

α,λ
t V(y(t))

∣∣∣
t=T

exists and the inequality

RL
0 D

α,λ
t V(y(t))

∣∣∣
t=T

< 0

holds.

Then, any solution of (29), (30) satisfies the inequality

||x(t)|| < a−1
(

g(||φ||0)e−|λ−1|t
)

for t > Tα.

In the case that the Lyapunov function is a quadratic one, we obtain the following
result.

Corollary 3. Let, for any solution y ∈ Cα,λ([0, ∞),Rn
) of (29), (30), yTy ∈ Cα,λ([0, ∞),Rn

)
holds and

- There exists an increasing function g ∈ C([0, ∞),R) : g(0) = 0 such that the inequality

lim
t→0+

e−|λ−1|tt1−αyT(t)y(t) ≤ g(||φ(0)||2)

holds;
- For any point T > 0 such that

yT(T + σ)y(T + σ) < yT(T )y(T ) for σ ∈ (−min{T , τ}, 0), (39)

the GRLFD RL
0 D

α,gl
t yT(t)y(t)

∣∣∣
t=T

exists and the inequality

RL
0 D

α,λ
t yT(t)y(t)

∣∣∣
t=T

< 0

holds.

Then, there exists Tα > 0 such that

||y(t)|| <
√

g
(

max
t∈[−τ,0]

||φ||2
)

e−0.5|λ−1|t for t > Tα.

The proof follows from Theorem 1 by taking the Lyapunov function V(x) = ∑n
i=1 x2

i
and using a(u) ≡ u2.

5. Delayed Model of Neural Networks by GRLFD
5.1. Model Description

We will consider the general model of Hopfield neural network with the GRLFD and
time-varying delays and distributed delays:

RL
0 D

α,λ
t ui(t) = −Ai(t)ui(t) +

n

∑
k=1

ai,k(t) fk(uk(t))

+
n

∑
k=1

bi,k(t)gk(uk(t− κ(t))) +
n

∑
k=1

ci,k(t)
∫ t

t−Θ(t)
hk(uk(s))ds + Ii(t), t > 0, i = 1, 2, . . . , n,

(40)

where ui(t), i = 1, 2, . . . , n are the state variables of the i-th neuron at time t > 0, aij(t), bij(t), cij(t)
represent the strengths of the neuron interconnection at time t (assuming they are time
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changeable), n is the number of units in the neural network, α ∈ (0, 1), λ > 0, f j(u), gj(u)
and hj(u) are the activation functions of the j-th neuron, κ(t) is the time-varying delay, and
Θ(t) is the length of interval of the distributed delay with 0 ≤ κ(t) ≤ κ, 0 ≤ Θ(t) ≤ Θ,
and τ = max{κ, Θ}, Ii(t) are the external inputs at time t.

The initial time interval is [−τ, 0]. The applied GRLFD leads to a singularity of the
solutions at the initial time 0. It requires appropriate definition of the initial conditions.
Some authors (see, for example, [24] for RLFD) used the integral of the type 0I1−α

t u(t) for
t ∈ [−τ, 0] in the initial condition but this integral is defined for t greater than the lower
limit, which is 0 in our case.

We will use the initial conditions (30).
We use the assumptions:

A1. The function Ai ∈ C(R, [µi, ∞)) where µi, i = 1, 2, . . . , n, are positive constants.
A2. The activation functions fi, gi, hi ∈ C(R,R) are Lipschitz with constants αi, βi, γi, i =

1, 2, . . . , n, respectively, i.e.,

| fi(x)− fi(y)| ≤ αi|x− y|, |gi(x)− gi(y)| ≤ βi|x− y|, |hi(x)− hi(y)| ≤ γi|x− y|, x, y ∈ R.

A3. The functions aij, bij, cij ∈ C([0, ∞),R), i, j = 1, 2, . . . , n.

5.2. Equilibrium of the Model

We define the equilibrium as a constant vector.
We also need to use the equality (16).

Definition 3. The constant vector V∗ = (C1, C2, . . . , Cn) is called an equilibrium of (40) if
the equalities

Ci
λ1−α

Γ(1− α)

(
e|λ−1|tt−α + |λ− 1|αγ(1− α, |λ− 1|t)

)
= −Ai(t)Ci +

n

∑
k=1

(
ai,k(t) fk(Ck) + bi,k(t)gk(Ck) + ci,k(t)Θ(t)hk(Ck)

)
+ Ii(t)

for t ≥ 0, i = 1, 2 . . . , n

(41)

hold.

Remark 6. The equilibrium V∗ satisfies the initial condition

0I1−α,λ
t Ck =

λα−1Ck
Γ(α)

∫ t

0
(t− s)α−1e−|λ−1| (t−s)ds =

λα−1Ck
Γ(α)

|λ− 1|α−1γ(1− α, |λ− 1|t)|t=0+ = 0.

Remark 7. If fi(0) = gi(0) = hi(0) = 0, i = 1, 2, . . . , n and there is no external input, then the
model (40) has a zero equilibrium.

Remark 8. In most cases in the literature, the Hopfield neural networks are studied with constant
coefficients aik, bik, cik and constant external inputs Ii. In the case when RLFD or GRLFD is applied
and all coefficients are constants, the only equilibrium is zero. It is not the case when at least one of
the coefficients is variable in time.

Let V∗ be an equilibrium of (40). We change the variables νi(t) = ui(t)− Ci, t ≥ 0,
in system (40). Then, applying (41), we obtain

RL
0 D

q,ρ
t νi(t) = −Ai(t)νi(t) +

n

∑
k=1

ai,k(t)Fk(νk(t)) +
n

∑
k=1

bi,k(t)Gk(νk(t− ξ(t)))

+
n

∑
k=1

ci,k(t)
∫ t

t−Θ(t)
Hk(νk(s))ds, t > 0, i = 1, 2, . . . , n,

(42)
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with initial conditions (30), where

Fi(x) = fi(x + Ci)− fi(Ci), Gi(x) = gi(x + Ci)− gi(Ci), , Hi(x) = hi(x + Ci)− hi(Ci).

Note that the system (42) has a zero solution (with zero initial function).

Remark 9. If assumption A2 is satisfied, then

|Fi(x)| ≤ αi|x|, |Gi(x)| ≤ βi|x|, |Hi(x)| ≤ γi|x|, x, y ∈ R.

5.3. Stability of the Model by Lyapunov Functions and Razumikhin Method

Note that the singularity of the solutions of the differential equations with GRLFD
and RLFD at the initial time requires this point to be excluded and for some stability
properties to be obtained on an interval without the initial time. It is totally different than
the case of Caputo type fractional derivative or derivative with an integer order. Some
authors apply RLFD but do not exclude the initial time and fact that for order α ∈ (0, 1).
The expressions t−α and tα−1 are not bounded for points enough close to the initial time 0
(see, for example, [6,25,26]). The main concepts of stability for differential equations with
RLFD are discussed and studied in [27].

In connection with the applied GRLFD, we need to define the exponential stability of
the equilibrium on an interval excluding the initial time 0.

Definition 4. The constant equilibrium V∗ of (40) is called exponentially stable in time if there
exist a number C > 0, a point T > 0, and an increasing function Ξ ∈ C(R+,R+) such that any
solution y(t)) of (40), (30) satisfies

‖y(t)−V∗‖ ≤ Ξ(‖φ‖0)e
−C|λ−1|t, t ≥ T.

Note that if a function is RL integrable (or generalized proportional RL integrable),
it is not necessarily to be squared RL integrable (or squared generalized proportional RL
integrable).

Example 1. Let ρ = 0.5, q = 0.3, and ν(t) = t0.8. Then, the integrals
∫ 1

0 e−(1−s)(1− s)−0.3s−0.8 ds
and

∫ 1
0 (1− s)−0.3s−0.8 ds exist but the corresponding integrals of the squared function u2(t) =

t−1.6, i.e.,
∫ 1

0 e−(1−s)(1− s)−0.3s−1.6 ds and
∫ 1

0 (1− s)−0.3s−1.6 ds, do not exist.

It is necessary, in the application of the squared Lyapunov function as well the product
uT(t)u(t) for the solution u(t) of the model (40), to assume that any solution is squared RL
integrable (or squared generalized proportional RL integrable) on the whole time interval of
consideration. This is a huge restriction regarding the solutions of the model (for example,
see Theorems 3.1 and 3.2 [24] where Lyapunov functional V1 is used without assuming
squared integrability of the solution).

Now we will apply quadratic Lyapunov functions to study the stability properties of
the model (40), (30).

Theorem 2. Let the assumptions A1–A4 be satisfied and

1. The fractional neural model (40) has an equilibrium V∗ = (C1, C2, . . . , Cn).
2. Any solution u ∈ Cα,λ([0, ∞),Rn

) is squared fractional integrable, i.e., uTu ∈ Cα,λ([0, ∞),Rn
).

3. For all t ≥ 0, the inequalities

n

∑
k=1

{(
max

i=1,2,...,n
|ai,k(t)|+ max

i=1,2,...,n
|ak,i(t)|

)
α +

(
max

i=1,2,...,n
|bi,k(t)|+ max

i=1,2,...,n
|bk,i(t)|

)
β

+

(
max

i=1,2,...,n
|ci,k(t)|+ max

i=1,2,...,n
|ck,i(t)|

)
τγ

}
< 2 min{µi, i = 1, 2, . . . , n}
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hold, where α = maxi=1,2,...,n αi, β = maxi=1,2,...,n βi, and γ = maxi=1,2,...,n γi.

Then, the equilibrium V∗ is exponentially stable in time, i.e., there exists a point Tα > 0 such that
any solution u ∈ Cα,λ([0, ∞),Rn

) of (40), (30) satisfies the inequality

||u(t)−V∗|| <
∑n

i=1 maxt∈[τ,0] |φi(t)| ρ1−α

Γ(q)
e−|λ−1|t for t > Tα.

Proof. Consider the Lyapunov function V(x) = 0.5xTx = 0.5 ∑n
i=1 x2

i , x ∈ Rn, x =
(x1, x2, . . . , xn).

Let u(t) ∈ Cα,λ([0, ∞),Rn
) be a solution of (40), (30). Consider the system (10) with

initial conditions (30). We will study the stability of its zero solution. Let νi(t) = ui(t)−
Ci, i = 1, 2, . . . , n. Then, ν ∈ Cα,λ([0, ∞),Rn

) is a solution of (10), (30) and RL
0 D

α,λ
t V(ν(t)) =

0.5 ∑n
i=1

RL
0 D

α,λ
t ν2

i (t), t > 0.
Let point t > 0 be such that ∑n

i=1 ν2
i (t + σ) < ∑n

i=1 ν2
i (t) for σ ∈ [−min{τ, t}, 0],

i = 1, 2, . . . , n.
Apply Corollary 1, assumptions A1–A3, inequality ab ≤ 0.5a2 + 0.5b2, and we obtain

RL
0 D

α,λ
t V(ν(t)) ≤ −

n

∑
i=1

µiν
2
i (t) + 0.5

n

∑
i=1

ν2
i (t)

n

∑
k=1
|ai,k(t)|αk + 0.5

n

∑
i=1

n

∑
k=1
|ai,k(t)|αkν2

k (t)

+ 0.5
n

∑
i=1

ν2
i (t)

n

∑
k=1
|bi,k(t)|βk + 0.5

n

∑
i=1

n

∑
k=1
|bi,k(t)|βkν2

k (t− ξ(t))

+ 0.5
n

∑
i=1

n

∑
k=1
|ci,k(t)|ν2

i (t)Θ(t)γk + 0.5
n

∑
i=1

n

∑
k=1
|ci,k(t)|

∫ t

t−Θ(t)
γkν2

k (s)ds

≤ −
n

∑
i=1

µiν
2
i (t) + 0.5

n

∑
i=1

ν2
i (t)

n

∑
k=1

max
i=1,2,...,n

|ai,k(t)|α + 0.5
n

∑
i=1

ν2
i (t)

n

∑
k=1

max
i=1,2,...,n

|ak,i(t)|α

+ 0.5
n

∑
i=1

ν2
i (t)

n

∑
k=1

max
i=1,2,...,n

|bi,k(t)|β + 0.5
n

∑
i=1

ν2
i (t− ξ(t))

n

∑
k=1

max
i=1,2,...,n

|bk,i(t)|β

+ 0.5
n

∑
i=1

ν2
i (t)

n

∑
k=1

max
i=1,2,...,n

|ci,k(t)|τγ + 0.5
∫ t

t−Θ(t)

n

∑
i=1

ν2
i (s)ds

n

∑
k=1

max
i=1,2,...,n

|ck,i(t)|γ

≤ 0.5
n

∑
i=1

(
− 2µi +

n

∑
k=1

(
max

i=1,2,...,n
|ai,k(t)|α + max

i=1,2,...,n
|ak,i(t)|α

+ max
i=1,2,...,n

|bi,k(t)|β + max
i=1,2,...,n

|bk,i(t)|β + max
i=1,2,...,n

|ci,k(t)|τγ + τ max
i=1,2,...,n

|ck,i(t)|γ
))

ν2
i (t)

< 0.

From Corollary 3, the claim of Theorem 2 follows.

Corollary 4. Let the conditions of Theorem 2 be satisfied. Then, any solution u ∈ Cα,λ([0, ∞),Rn
)

of (40), (30) satisfies limt→∞ ui(t) = Ci, i = 1, 2, . . . , n, i.e., any solution of the model (40)
approaches the equilibrium at infinity.

6. Applications

Example 2. Consider the following neural networks with three neurons with the GRLFD:

RL
0 D

0.3,0.5
t ui(t) = −Ai(t)ui(t) +

3

∑
k=1

ai,k(t) fk(uk(t))

+
3

∑
k=1

bi,k(t)gk(uk(t− 2)) +
3

∑
k=1

ci,k(t)
∫ t

t−e−t
hk(uk(s))ds + Ii(t), t > 0, i = 1, 2, 3,

(43)
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with λ = 0.5, α = 0.3, ξ(t) = 2, Θ(t) = e−t, τ = 2, coefficients A1(t) = 2, A2(t) =
0.5et, A3(t) = 1 + 0.5et, and, therefore, µ1 = 2, µ2 = 0.5, µ3 = 1.5.

The activation functions f1(x) = g1(x) = h1(x) = x
1+e−x are the Swish functions with

constants α1 = β1 = γ1 = 1.1, f2(x) = g2(x) = h2(x) = ex−e−x

ex+e−x are the tanh functions with
constants α2 = β2 = γ2 = 1, and f3(x) = g3(x) = h3(x) = 0.5(|x + 1| − |x − 1|) with
α3 = β3 = γ3 = 1, the external inputs are given by

I1(t) = 2+
0.50.5

Γ(0.7)

(
e0.5tt−0.3 + 0.50.3γ(0.5, 0.5t),

)
, I2(t) = 0.1e−t e

1 + e
, I3(t) = 0.001

e
1 + e

and the matrices of strengths of interconnections

{ai,k(t)} =

 0.01 0 0.02
0.01e−t 0.01 0

0 0.01t
1+t 0

, {bi,k(t)} =

 −0.01 0.1 0.1
−0.1e−t 0 0.1e−2t

0 0.001 sin(t) 0

,

{ci,k(t)} =

 0 0.01 −0.01e−t

−0.01 0.0022t
1+t 0

−0.001 0 0.005e−t


with ∑3

k=1 maxi=1,2,3 |bk,i(t)| = 0.1+ 0.1e−t + 0.05 sin(t) ≤ 0.25 and ∑3
k=1 maxi=1,2,3 |ck,i(t)| =

0.01 + 0.01 + 0.005e−t ≤ 0.025.
Then, the inequality

3

∑
k=1

{(
max

i=1,2,3
|ai,k(t)|+ max

i=1,2,3
|ak,i(t)|

)
1.1 +

(
max

i=1,2,3
|bi,k(t)|+ max

i=1,2,3
|bk,i(t)|

)
1.1

+

(
max

i=1,2,3
|ci,k(t)|+ max

i=1,2,3
|ck,i(t)|

)
2.2
}

≤ (0.04 + 0.04)1.1 + (0.25 + 0.3)1.1 + (0.025 + 0.025)2.2 = 0.803 < 2 min{µ1, µ2, µ3} = 1

is satisfied, i.e., condition 3 of Theorem 2 is satisfied.
The model (43) has an equilibrium V∗ = (1, 0, 0) because f1(1) = g1(1) = h1(1) = e

1+e ,
f2(0) = g2(0) = h2(0) = 0, f3(0) = g3(0) = h3(0) = 0 and the equalities

0.50.5

Γ(0.7)

(
e0.5tt−0.3 + 0.50.3γ(0.5, 0.5t)

)
= −A1(t) +

(
a1,1(t) + b1,1(t) + c1,1(t)e−t) e

1 + e
+ I1(t),

0 =
(
a2,1(t) + b2,1(t) + c2,1(t)e−t) e

1 + e
+ I2(t)

0 =
(
a3,1(t) + b3,1(t) + c3,1(t)e−t) e

1 + e
+ I3(t) for t ≥ 0

(44)

hold.
According to Theorem 2, the equilibrium of (43) is exponentially stable in time, i.e., every

solution (u1(·), u2(·), u3(·)) of (43) is satisfying the inequality

√
u1(t)− 1)2 + u2

2(t) + u2
3(t) ≤

3

∑
i=1

max
t∈[−2,0]

|φi(t)|
0.50.7e−t

Γ(0.3)
, t > T = 1,

where T : t−0.7 = 1.

7. Conclusions

The main aim of the paper is to study Hopfield neural networks with both the variable
delay and distributed delay. An important aspect of our study is that we consider the
general case of variables in time coefficients and external inputs. The dynamic of the units
are modeled by the appropriately defined generalized fractional derivatives of Riemann–
Liouville type, satisfying the first and the second fundamental theorem in fractional calculus.
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This derivative is applied to adequately model the behavior with anomalies at the initial
time point. An exponential type of stability is defined and this stability excludes the initial
time because of the singularity of the solutions at the initial time. Quadratic Lyapunov
functions and Razumikhin method are applied. Theoretical results are illustrated with an
example. The main inequality for the general convex Lyapunov functions could be applied
to theoretical study of stability behavior of fractional differential equations with the applied
generalized fractional derivative as well to study the stability equilibrium of many models
with this type of fractional derivative.
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