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Abstract: This paper addresses the problem of decentralized safety control (DSC) of constrained
interconnected nonlinear safety-critical systems under reinforcement learning strategies, where
asymmetric input constraints and security constraints are considered. To begin with, improved
performance functions associated with the actuator estimates for each auxiliary subsystem are
constructed. Then, the decentralized control problem with security constraints and asymmetric input
constraints is transformed into an equivalent decentralized control problem with asymmetric input
constraints using the barrier function. This approach ensures that safety-critical systems operate
and learn optimal DSC policies within their safe global domains. Then, the optimal control strategy
is shown to ensure that the entire system is uniformly ultimately bounded (UUB). In addition, all
signals in the closed-loop auxiliary subsystem, based on Lyapunov theory, are uniformly ultimately
bounded, and the effectiveness of the designed method is verified by practical simulation.

Keywords: interconnected nonlinear safety-critical systems; barrier function; asymmetric input
constraints; safety constraints; decentralized control

1. Introduction

Over the past few decades, safety has received increasing attention in autonomous
driving [1], intelligent robots [2], robotic arms [3], adaptive cruise control [4], etc. The
design of these systems and controllers require that the system state trajectories evolve
within a set called the safe set, reflecting the inherent properties of the system [5]. In
practice, many engineering systems must operate within a specific safety range, beyond
which the controlled system may be at risk [6]. Safety-critical systems primarily refer to
systems having control behaviors that prioritize safety. The designed control schemes aim
to reduce the potential for severe consequences, such as personal injury and environmental
pollution, which may arise due to system shutdown or operational errors [7]. To ensure
the safety and reliability of the system, scholars developed many safety control schemes.
The classical approach focused on extending and applying Naguma’s theorem to safe
sets defined by continuously differentiable functions [8]. In particular, barrier functions
have become an effective tool for verifying security and have been widely used in [9–11].
They were used to convert a system with security constraints into an equivalency system
that satisfies security requirements and then a security controller was designed to protect
the system. In [9,10], penalty functions and BF-based state transitions were employed to
merge states into a reinforcement learning framework to solve optimal control problems
with full-state constraints. In [11], a safe non-strategic reinforcement learning method
to solve secure nonlinear systems with dynamic uncertainty was proposed. In [12,13],
a new secure reinforcement learning method was proposed to solve secure nonlinear
systems with symmetric input constraints. However, the results in [9–13], mentioned
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above, were mainly based on studying the optimal safety control in a single continuous-
time/discrete-time nonlinear system. The security control of interconnected systems has
not been fully resolved.

On the other hand, interconnected systems consist of multiple subsystems with inter-
connected characteristics, and designing controllers for them through a concept similar
to that of a single-system approach is difficult [14]. To solve this problem [15–17], the
decentralized control approach, based on local subsystem information, was proposed.
This approach involved using multiple controllers to control the interconnected systems.
In [18,19], the decentralized control approach differed by initially decomposing the entire
system control problem into a series of subproblems that could be solved independently.
The solutions to the subproblems (i.e., independent controllers) were then joined to form
a decentralized controller to stabilize the entire system. In addition, implementing the
decentralized control algorithm used only the local subsystem’s knowledge, not the com-
plete system’s information. Recently, scholars have proposed many schemes or techniques
for designing decentralized controllers, including quantization techniques [20], fuzzy
techniques [21], and optimal control methods [22]. This paper develops decentralized
control strategies from the optimal control perspective. Problems of optimal control are
usually solved via the solution of the Hamilton–Jacobi–Bellman (HJB) partial differentiation
equation [23,24]. However, the HJB equation is generally not solvable analytically due to
its inherent nonlinearity [25,26]. Therefore, adaptive dynamic programming (ADP) and
reinforcement learning (RL) algorithms were proposed to obtain numerical solutions to
the HJB equation and were widely applied to nonlinear interconnected systems [27–30].
In [31,32], the two previously mentioned algorithms could be deemed closely related, as
they exhibited similar characteristics in addressing optimal control problems. For example,
in [27,28], the distributed optimal controller was designed using robust ADP for nonlinear
interconnected systems with unknown dynamics and parameters. In [29], the optimal
decentralized control problem for interconnected nonlinear systems subject to stochastic
dynamics was solved by enhancing the performance function of the auxiliary subsystem
and transforming the original control problem into a set of optimal control strategies sam-
pled in periodic patterns. Furthermore, in [30], the identifier–critic network framework was
used to solve the problem of decentralized event-triggered control based on sliding-mode
surfaces, avoiding the need for knowledge of the system’s internal dynamics. It is worth
noting that the control results provided in [27–30] did not consider input constraints.

Control constraints are commonly encountered in industrial processes, where they
are widespread and have a detrimental impact on the performance of systems [33,34].
Therefore, the study of constrained nonlinear systems is of practical importance. In [35,36],
the RL-based decentralized algorithm was developed for tracking control of constrained
interconnected nonlinear systems. In [37], the problem of decentralized optimal control of
a constrained interconnected nonlinear system was solved by introducing a nonquadratic
performance function to overcome the symmetric input constraint. The results in [35–37],
mentioned above, mainly addressed the symmetric input constraint. However, the problem
of asymmetric input constraints was identified in several project cases [38,39]. In [40],
the optimal decentralized control problem with asymmetric input constraints was solved
by designing a new non-quadratic performance function. In [41], a new performance
function was proposed for interconnected nonlinear systems to successfully overcome the
asymmetric input constraint and to solve the decentralized fault-tolerant control problem.
However, none of the above studies considered the safety of the system. The optimal
decentralized safety control (DSC) for constrained interconnected nonlinear safety-critical
systems has not been thoroughly investigated thus far, which inspired our current study.

Motivated by previous discussions, this paper proposes an RL-based decentralized
DSC strategy for constrained interconnected nonlinear safety-critical systems. The primary
achievements are concluded below:

1. The reinforcement learning algorithm is used to solve the optimal DSC problem
for restricted interconnected nonlinear safety-critical systems, and the asymmetric
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input constraint is successfully solved. The method optimizes the control strategy by
minimizing the performance function, ensuring the safety of the system’s state, while
considering the asymmetric input constraints.

2. Nonlinear interconnected safety-critical systems with asymmetric input constraints
and safety constraints are converted to equivalent systems that satisfy user-defined
safety constraints using barrier functions. Unlike the nonlinear safety-critical systems
[3,9,10,13], this paper solves the security constraint problem of the interconnection
term through the potential barrier function, which ensures the interconnected nonlin-
ear safety-critical system satisfies the security constraint.

3. The asymmetric input constraints are solved by utilizing a single CNN architecture
for online approximation of the performance function. Theoretical demonstrations
show that the optimal DSC method can achieve uniformly ultimately bounded (UUB)
system states and neural network weight estimation errors. In addition, a simulation
example verified the feasibility and effectiveness of the developed DSC method.

The remainder of this article is structured as follows. In Section 2, the issue formulation
and conversion are presented. In Section 3, the decentralized optimal safety DSC design
scheme is presented. The design scheme for the critical neural network is presented
in Section 4. In Section 5, the analyses of system stability are presented. In Section 6,
the simulation sample demonstrates the effectiveness of the presented approach. Lastly,
conclusions are given in Section 7.

2. Preliminaries
2.1. Problem Descriptions

Consider a constrained interconnected nonlinear safety-critical system composed of n
subsystems and the formula below:{

ẋi(t) = fi(xi(t)) + gi(xi(t))ui(t) +4hi(x(t)),
xi(0) = xi0, i = 1, 2, . . . , n,

(1)

where xi(t) ∈ Rni is the ith subsystem’s state vector and xi(0) represents the initial

state, x =
[
xT

1 , xT
2 , . . . , xT

n
]
∈ R∑n

i=1ni represents the overall state vector of the con-
strained interconnected nonlinear safety-critical system, ui = [ui,1, ui,2, . . . ui,j]

T ∈ ki
represents the control input, and the set of asymmetric constraints is represented as
ki =

{
ui,mi ∈ Rmi , hi min ≤ |ui,j| ≤ hi max, j = 1, 2, . . . , mi

}
with hi min and hi max being the

asymmetric saturating minimum and maximum bounds, fi(·) ∈ Rni and gi(·) ∈ Rni×mi

represent the drift system dynamics and input dynamics of the ith subsystem, respectively,
and are Lipschitz continuous, and4hi ∈ Rni represents the unknown interconnected term.

To simplify the design of the controller, let us introduce some assumptions. For
i = 1, 2, . . . , n, we suppose the equilibrium of the ith subsystem’s state is xi = 0.

Assumption 1. For i = 1, 2, . . . , n, the4hi(x) satisfies the below unmatched condition:

4hi = ηi(xi)Pi(x),

where ηi(xi) is a known function with ηi(xi) ∈ Rni×qi 6= gi(xi), and Pi(x) is a bounded vector
function that satisfies

‖Pi(x)‖ ≤
n

∑
j=1

bi,jβi,j(xj), (2)

where bi,j > 0 is a constant, and βi,j(xj) are normal definite functions. Furthermore, βi,j(0) = 0
and Pi(0) = 0. Then, assuming β j

(
xj
)
= max1≤i≤n

{
βi,j
(
xj
)}

, the unequal Equation (2) is
denoted as:

‖Pi(x)‖ ≤
n

∑
j=1

Ci,jβ j(xj), (3)
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where Ci,j ≥
(
bi,jβi,j

(
xj
))

/β j
(
xj
)

is a positive constant, and j = 1, 2, . . . , n.

Remark 1. It is noted that constraints (2) and (3) specified by Assumption 1 are strict restrictions
on specific interrelated nonlinear systems. Nevertheless, when we consider the function Pi(x) that
satisfies no constraints (2) and (3), we discover that the calculational costs to address the stability of
the closed-loop system are high. In fact, in real-world applications, constraints like inequalities (2)
and (3) impose on the mismatched interconnection terms of the system (1) [40,42].

Assumption 2. For i = 1, 2, . . . , n, the known function gi(xi) is bounded as ‖gi(xi)‖ ≤ gi,m,
where gi,m is a known constant. Furthermore, rank(gi(xi)) = mi and gT

i (xi)ηi(xi) = 0.

Based on the ith subsystem (1) described, the ith auxiliary subsystem is designed as:

ẋi = fi(xi) + gi(xi)ui +
(

Ini − gi(xi)g+i (xi)
)
ηi(xi)vi, (4)

where vi ∈ Rqi is used to compensate for mismatched interconnections and stands for aux-
iliary control, g+i (xi) ∈ Rmi×ni is Moore–Penrose pseudo-reverse. According to Assump-

tion 2, it can be found that the matrix g+i (xi) =
(

gT
i (xi)gi(xi)

)−1gT
i (xi) and g+i (xi)ηi(xi) =(

gT
i (xi)gi(xi)

)−1gT
i (xi)ηi(xi) = 0. Then, we rewrite the auxiliary subsystem (4) as:

ẋi = fi(xi) + gi(xi)ui + ηi(xi)vi. (5)

2.2. Security Conversion Issues

For the ith subsystem in the system (1), its state xi = [xi,1, xi,2, . . . , xi,k]
T satisfies the

following security constraints: 

xi,1 ∈ (ai,1, Ai,1),
xi,2 ∈ (ai,2, Ai,2),

.

.

.
xi,k ∈ (ai,k, Ai,k).

(6)

For nonlinear interconnect safety-critical systems with asymmetric input constraints and
security constraints, we need to define the performance function as:

Ji(xi) =
∫ ∞

t
e−αi(τ−t)(ιi + Θ(xi, ui, vi))dτ, (7)

where αi is the discount factor, ιi(xi) = hiβ
2
j (xi) and Θ(xi, ui, vi) = xT

i Hixi +Wi(ui) +

ξivT
i vi with Hi and Wi(ui) are positive definite functions, where hi and ξi are positive

design parameters.

Remark 2. Due to accounting for safety constraints and asymmetric input constraints in (7), the
optimal control law does not converge to zero while the system state achieves the stable phase [43].
The discount factor αi = 0, Ji(xi) may be unbounded, so it is necessary to consider the discount
factor.

Problem 1. (Decentralized control problems with security constraints and asymmetric input
constraints) Consider the safety-critical system (1) and find the policy ui(.) and auxiliary control
strategy vi(.) : Rni → Rmi in the ith subsystem. The performance function is given by (7) with
the ith subsystem state xi = [xi,1, . . . , xi,k]

T and the control input ui satisfying the following
conditions:

ui,min ≤ ui,j ≤ ui,max, |ui,min| 6= |ui,max|, (8)
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xi,k ∈ (ai,k, Ai,k), ∀k = 1, . . . , ni. (9)

Ensure that the security-critical system state is consistently within the security con-
straints. Further, the definitions of some barrier functions are given.

Definition 1 (Barrier function [9,10]). The function B(·) : R→ R defined on interval (a, A) is
referred to as the barrier function if

B(z; a, A) = log
A(a− z)
a(A− z)

, ∀z ∈ (a, A), (10)

where a and A are two constants satisfying a < A. Moreover, the potential function is
invertible on the interval (a, A), i.e.,

B−1(y; a, A) =
aA
(

e
y
2 − e−

y
2

)
ae

y
2 − Ae−

y
2

, ∀y ∈ R. (11)

Furthermore, the derivative of (11) is

dB−1(y; a, A)

dy
=

Aa2 − aA2

a2ey − 2aA + A2e−y . (12)

Based on Definition 1, we consider the state transition based on the potential barrier
function as follows:

si,k = B(xi,k; ai,k, Ai,k), (13)

xi,k = B−1(si,k; ai,k, Ai,k), (14)

where k = 1, 2, . . . , ni. So, the xi,k’s derivative concerning t is dxi,k
dt =

dxi,k
dsi,k

dsi,k
dt , and after

using Definition 1, we obtain:

ṡi,k =
ai,k+1 Ai,k+1

(
e

si,k+1
2 − e−

si,k+1
2

)
ai,k+1e si,k+1

2 − Ai,k+1e− si,k+1
2

×
A2

i,ke−si,k − 2ai,k Ai,k + a2
i,kesi,k

Ai,ka2
i,k − ai,k A2

i,k

= Fik(si,k, si,k+1), k = 1, . . . , ni − 1,

ṡi,ni = ẋi ×
A2

i,ke−si,k − 2ai,k Ai,k + a2
i,kesi,k

Ai,ka2
i,k − ai,k A2

i,k

= Fi,ni

(
si,ni

)
+ Gi,ni

(
si,ni

)
ui,ni + Yi,ni (si,ni ),

where

Fi,ni (si) =
a2

i,ni
esi

i,ni
− 2ai,ni Ai,n + Ai,ni e

−si,ni

Ai,ni a
2
i,ni
− ai,ni A

2
i,ni

× fi([B−1
i,1 (si,1) . . . B−1

i,ni
(si,ni )]),

Gi,ni (si) =
a2

i,ni
esi

i,ni
− 2ai,ni Ai,ni + Ai,ni e

−si,ni

Ai,a2
i,ni
− ai,ni A

2
i,ni

× gi([B−1
i,1 (si,1) . . . B−1

i,ni
(si,ni )]),

and Yi,ni (si,ni ) is the interconnection term of the nith term in the ith subsystem.
Then, the interconnected nonlinear safety-critical system (1) can be rewritten as:

ṡi = Fi(si) + Gi(si)ui(t) + Yi(si), (15)
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where Fi(si) = [Fi1(si,1, si,2), . . . , Fi,ni (si)]
T , Gi(si) = [0, . . . , Gi,ni (si)]

T and Yi(si) is the un-
known interconnected term.

Based on Assumption 1, we define the unknown interconnection term after the system
transformation as:

Yi(si) = ℘i(si)Ui(s), (16)

where ℘i(si) = [℘1,n1(s1), 0, . . . , 0]T , and

℘1,n1(s1) =
a2

i,2esi,2 − 2ai,2 Ai,2 + Ai,2e−si,2

Ai,2a2
i,2 − a2 A2

i,2
× η1,n1(x1),

and Ui(si) is a bounded vector function that satisfies

‖Ui(s)‖ ≤
n

∑
j=1

bi,jϑi,j(sj), (17)

where ϑi,j(sj) is a positive definite function. Then, assuming ϑj
(
sj
)
= max1≤i≤n

{
ϑi,j
(
sj
)}

and ϑj(sj) = [ϑj,1(sj,1, sj,2), . . . , ϑj,ni (sj)]
T , where

ϑj,ni (sj) =
a2

j,ni
e

sj
j,ni
− 2aj,ni Aj,ni + Aj,ni e

−sj,ni

Aj,ni a
2
j,ni
− aj,nj A

2
j,ni

× β j([B−1
j,1 (x1) . . . B−1

j,ni
(xj)]). (18)

According to (3) and (18), the inequality (17) is expressed as:

‖Ui(s)‖ ≤
n

∑
j=1

Si,jϑj(sj), (19)

where Si,j ≥
(
bi,jϑi,j

(
sj
))

/ϑj
(
sj
)

is a positive constant, and i, j = 1, 2, . . . , n.

Assumption 3. Fi(si) is Lipschitz continuous with Fi(0) = 0, Pi(0) = 0, Gi(si) and ℘i(si) are
upper-bounded, then ‖Fi(si)‖ ≤ fi,mi‖si‖, ‖Gi(si)‖ ≤ gi,mi , and ‖℘i(si)‖ ≤ ηi,mi , ‖Ui(si)‖ ≤
Pi,mi‖si‖, where fi,mi , gi,mi , ηi,mi , Pi,mi are positive constants. rank(Gi(si)) = mi and
GT

i (si)℘i(si) = 0. Moreover, the modified system (15) is within the manageable range, and
si = 0 is the balance point for (15).

Lemma 1 ([32]). ∀(s1, s2) ∈ R2, we have the following condition,

s1s2 ≤
ε1

p1

p1
|s1|p1 +

1
p2ε1

p2 |s2|p2 ,

where ε1 > 0, (p1 − 1)(p2 − 1) = 1 and p1, p2 > 1.

Remark 3. The barrier function in Definition 1, which has the following characteristics, ensures
that the safety-critical system (15) always satisfies the safety constraints [9,10].

1. The state si of the system is restricted to be bounded, so the system state xi satisfies con-
straints (8) and (9), i.e.,

|B(zi; ai, Ai)| < +∞, ∀zi ∈ (ai, Ai).

2. When the system’s state approaches the boundary of the safety area, the barrier function
changes as follows:

lim
zi→a+i

B(zi; ai, Ai) = −∞,
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lim
zi→A−i

B(zi; ai, Ai) = +∞.

3. The barrier function fails to function when the system state reaches equilibrium, i.e.,

B(0; ai, Ai) = 0, ∀ai < Ai.

3. Decentralized Optimal DSC Design

This section consists of two main subsections to establish the decentralized optimal
DSC method. First, the security constraint problem is dealt with through the systematic
transformation of the barrier function and the HJB equation for the ith auxiliary subsystem
without security constraints is developed by introducing the improved performance func-
tion. Finally, the decentralized safety controller is constructed by solving the HJB equation
for the auxiliary subsystem.

3.1. Barrier Function Conversion

According to the ith subsystem (15) described, the ith auxiliary subsystem is de-
signed as:

ṡi = Fi(si) + Gi(si)ui +
(

Ini − Gi(si)G+
i (si)

)
℘i(si)vi, (20)

where G+
i (si) ∈ Rmi×ni is Moore–Penrose pseudo-reverse. According to Assumptions 2

and 3, the matrix if found to be G+
i (si) =

(
GT

i (si)Gi(si)
)−1GT

i (si) and G+
i (si)℘i(si) =(

GT
i (si)Gi(si)

)−1GT
i (si)℘i(si) = 0. Then, the auxiliary subsystem (20) is rewritten as:

ṡi = Fi(si) + Gi(si)ui + ℘i(si)vi. (21)

Regarding the converted system (15), analogous to (7), the performance function below
is introduced:

Vi(si) =
∫ ∞

t
e−αi(τ−t)(πi + γ(si, ui, vi))dτ, (22)

where πi(si) = hiϑ
2
j (si) and γ(si, ui, vi) = sT

i Qisi +Wi(ui) + ξivT
i vi, Qi is the positive

definition matrix. Furthermore, si0 = si(0) denotes the initial state, and Wi(ui) is a non-
quadratic utility function that solves the asymmetric input constraint. Then, Wi(ui) is
defined in the following form:

Wi(ui) =
mi

∑
j=1

2λi

∫ ui,j

ci

Ψ−1((vi − ci)/λi)dvi, (23)

where λi = (hi max − hi min)/2 and ci = (hi max + hi min)/2, and Ψi(.) represent the mono-
tonic odd function, where Ψi(0) = 0. In this paper, without sacrificing generality,
Ψi(si) = (esi − e−si )/(esi + e−si ).

Remark 4. Unlike the traditional form of symmetric input constraints [35], this article considered
asymmetric constraints on the controlling inputs [44]. The revised hyperbolic tangent function
presented in (22) effectively transforms the asymmetric constrained control problem into an uncon-
strained control problem by devising different maximum and minimum bounds.

Problem 2. (Optimal decentralized control problems with asymmetric input constraints) Finding
the control policy ui and auxiliary control strategy vi in the ith subsystem, the performance function
becomes (22).

Based on the subsystem (21), as well as the performance function (22), the correspond-
ing Hamiltonian is given by:

H(si, ui, vi,∇Vi(si)) = (∇Vi(si))
T(Fi(si) + Gi(si)ui(t) + ℘i(si)vi)
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+ πi + γ(si, ui, vi)− αiVi, (24)

with ∇Vi(si) =
∂Vi(si)

∂si
.

The optimal performance function is

V∗i (si) = min
ui ,vi∈Ψ(Ωi)

Vi(si), (25)

where Ψ(Ωi) is a collection of all acceptable control policies and auxiliary control strategies
for Ωi.

Based on Bellman’s optimality principle [31], V∗i (si) in (25) satisfies the HJB

min
ui ,vi∈Ψ(Ωi)

H(si, ui, vi,∇V∗i (si)) = 0, (26)

where ∇V∗i (si) =
∂V∗i (si)

∂si
. Then, the optimal control policy and the auxiliary control policy

can be derived as follows:

u∗i (si) = −λi tanh(
1

2λi
GT

i (si)∇V∗i (si)) + ci, (27)

v∗i (si) = −
1

2ξi
℘T

i ∇V∗i (si), (28)

where ci = [c1, . . . , cmi ].
Substituting u∗i (si) and v∗i (si) into (26), the HJB equation is rewritten as:

(∇V∗i (si))
T Fi(si) + (∇V∗i (si))

TGi(si)u∗i (si)−ξi‖v∗i (si)‖2

−αiV∗i + πi(si) + sT
i Qisi +Wi(u∗i (si)) = 0, (29)

with V∗i (0) = 0.
Through the BF-based system transformation, the decentralized control problem 1 with

asymmetric input constraints and security constraints is transformed into an unconstrained
optimization problem, i.e., the decentralized control problem 2. Next, the following lemma
is discussed to ensure the equivalence between the decentralized control problems 1 and 2.

Lemma 2. Assume that Assumptions 1 to 3 are met and that control policy ui(·) and auxiliary
control strategy vi(·) solve the decentralized control problem 2 of (21). It follows, then, that the
below holds:

1. If the initial state x0 of the interconnected nonlinear safety-critical system (1) is in the range
(ai,k, Ai,k), ∀k = 1, 2, . . . , ni, then the closed-loop system satisfies (6).

2. If the functions Hi(x) and Qi(x) satisfies the condition Hi(xi) = Qi(Bi(xi)) = Qi(si), the
performance described in (22) is equivalent to the one in (7).

Proof. Both the performance function and Assumption 3 satisfy the observability of zero
states, guaranteeing the presence of the safety-optimal performance function V∗i (si). From
(24), we obtain ∇V∗i (t) ≤ 0, which allows us to obtain V∗i (si(t)) ≤ V∗i (si(0)) for all t ≥ 0.
Consequently, as stated in Remark 3, if the initial state xi(0) of the system (21) satisfies
the security constraint (6), and V∗i (si(0)) is bounded, then the V∗i (si(t)) is also bounded.
Finally, we obtain

xi,k(t) ∈ (ai,k, Ai,k), k = 1, 2, . . . , ni. (30)

Therefore, the given u∗i and v∗i satisfy the constraints of the decentralized control problem 1.
Now, consider the state transition based on the barrier function described in (13) and

(14). Since xi satisfies the constraints given in (8), each element of the state
si = [Bi,1(xi,1), . . . , Bi,k(xi,k)]

T is finite. By comparing the performance functions (7) and (22),
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the equivalence relation Ji(xi(0)) = Vi(si(0)) is obtained, provided that Hi(xi) = Qi(si).
This completes the proof.

3.2. Designing the Optimal DSC Strategy by Solving n HJB Equations

Throughout this section, we show that the optimal DSC strategies for interconnected
nonlinear systems can be constructed by solving the n HJB equations.

Theorem 1. Consider n subsystems under Assumptions 1 to 3 with DSC policies u∗i (si) and
auxiliary control strategies v∗i (si), having the corresponding conditions as below:

‖v∗i (si)‖2 < sT
i Qisi , t ≥ t0. (31)

Next, consider n positive constants h∗i , i = 1, 2, . . . , n, so that for anything hi ≥ h∗i , the optimal
DSC policies u∗1(s1), u∗2(s2), . . . , u∗n(sn) guarantee that the interconnected nonlinear system (15)
with security constraints is UUB.

Proof. The Lyapunov candidacy function Li,1(s) below was selected:

Li,1(s) =
n

∑
i=1

V∗i (si), (32)

where the V∗i (si) is defined in the same way as (22), and we denote the time derivative
along the trajectory ṡi = Fi(si) + Gi(si)ui(t) + Yi(si) as:

L̇i,1(s) =
n

∑
i=1

(∇V∗i )
T(Gi(si)u∗i + Fi(si) + Yi(s)). (33)

By using (27) and (28), we obtain:

(∇V∗i (si))
TGi(si) = −2λi tanh−T(

u∗i − ci

λi
), (34)

(∇V∗i (si))
T℘i(si) = −2ξi(v∗i (si))

T . (35)

Inserting (29), (34) and (35) into (33), we have

L̇i,1(s) =
n

∑
i=1

[αiV∗i − πi(si)− sT
i Qisi −Wi(u∗i ) + ξi‖v∗i (si)‖2 − 2ξi(v∗i (si))

TUi(s)]. (36)

According to the optimal DSC policy (27), the term Wi(u∗i ) becomes

Wi(u∗i (si)) = 2λi

mj

∑
j=1

∫ u∗i,j−ci

0
tanh−1(

ui − ci
λi

)d(ui − ci). (37)

By appealing to the proof in [44], Equation (37) can be further reduced to

Wi(u∗i (si)) = λ2
i

mi

∑
i=1

(tanh−1(
u∗i,j − ci

λi
))︸ ︷︷ ︸

β1

− 2λ2
i

mi

∑
j=1

∫ tanh−1(
u∗i,j−ci

λi
)

0
(ui − ci) tanh2(ui − ci)d(ui − ci)︸ ︷︷ ︸

β2

, (38)



Entropy 2023, 25, 1158 10 of 23

replacing (38) into (36), one has

L̇i,1(s) ≤−
n

∑
i=1

(2ξi(sT
i Qisi − ‖v∗i (si)‖2))−

n

∑
i=1

(1− 2ξi)(sT
i Qisi)−

n

∑
i=1

(πi(si)

− 2ξi

mi

∑
j=1
‖v∗i (si)‖bi,jϑi,j(sj) + ξ2‖v∗i (si)‖2) + αiV∗i − β1 + β2. (39)

It is known from [45] that there is a positive constant δi,M such that 0 ≤
∥∥∇V∗i (si)

∥∥ ≤
δi,M. Therefore, using Lemma 1, Assumption 1, (17), (19), and (27), we obtain

2β1 ≤ 2λ2
i tanh−T(

u∗i,j − ci

λi
) tanh−1(

u∗i,j − ci

λi
)

=
1
2
(∇V∗i (si))

TGi(si)GT
i (si)(∇V∗i (si))

≤ 1
2

G2
i,mδ2

i,m, (40)

Utilizing the integral median theorem [46] and the inequality (40), the β2 (38) can be
deduced as:

β2 = 2λ2
i

mi

∑
j=1

tanh−1(
u∗i,j − ci

λi
)vi tanh−2 vi

≤ 2λ2
i

mi

∑
j=1

tanh−1(
u∗i,j − ci

λi
)vi

≤ 2λ2
i tanh−T(

u∗i,j − ci

λi
) tanh−1(

u∗i,j − ci

λi
)

≤ 1
2

G2
i,mδ2

i,m, (41)

where vi ∈ (0, tanh−1(
u∗i,j−ci

λi
)) .

From [27], we conclude that
∥∥αiV∗i (si)

∥∥ ≤ $i,m, where $i,m is a positive constant. Then,
plugging (40) and (41) into (39), and taking into consideration the conclusion mentioned
above, we can rephrase inequality (39) as follows:

L̇i,1(s) ≤ −
n

∑
i=1

(2ξi(sT
i Qisi − ‖v∗i (si)‖2))−

n

∑
i=1

(1− 2ξi)(sT
i Qisi)

−
n

∑
i=1

(hiϑi(sj)
2 − 2ξi

mi

∑
j=1
‖v∗i (si)‖bi,jϑi,j(sj) + ξ2‖v∗i (si)‖2) + $i +

1
4

n

∑
i=1

G2
i,mδ2

i,m, (42)

by denoting Λ = diag{h1, h2, . . . , hn} and Z = [ϑ1(s1), . . . , ϑn(sn), ξ1
∥∥v∗1(s1)

∥∥, . . . ,
ξn‖v∗n(sn)‖]. Let the condition (31) be satisfied, so we have

L̇i,1(s) ≤ −
n

∑
i=1

(1− 2ξi)(sT
i Qisi)− ZTXZ + $i +

1
4

n

∑
i=1

G2
i,mδ2

i,m, (43)

with X =

[
Λ AT

A In

]
and A =

b11 · · · b1n
...

. . .
...

bn1 · · · bnn

.
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From the matrix X expression, positive definiteness is maintained by choosing a
sufficiently large Λ. In other words, there is h∗i > 0, such that hi > h∗i , ensuring ZTXZ > 0.
Thus, the inequality (43) is further deduced as:

L̇i,1(s) ≤ −
n

∑
i=1

(1− 2ξi)λmin(Qi)‖si‖2 + $i +
1
4

n

∑
i=1

G2
i,mδ2

i,m. (44)

The inequality (44) means that L̇i,1(s) < 0 whenever si(t) lies outside the following
set Nsi :

Nsi =

si : ‖si‖ ≤

√
1
4 G2

i,Mδ2
i,M + $i

λmin(Qi)(1− 2ξi)

. (45)

Based on Lyapunov’s extension theorem [47], it is shown that the optimal performance
functions V∗i (si) guarantee that the interconnected nonlinear system (15) with asymmetric
input constraints is UUB. Since the performance function (7) and (22) yield the same
results, it can be shown that the optimal performance function J∗i (xi) guarantees that the
interconnected nonlinear safety-critical system (1) with security constraints and asymmetric
input constraints is UUB.

4. Critic Network for Approximation

The critic neural network is introduced in this section, with the aim of approximating
the optimal performance function. Then, the evaluation network of the auxiliary subsystem
(21) is used to construct the estimated optimal control strategy. According to [48], V∗i (si) is
expressed as:

V∗i (si) = WT
ci

σci (si) + εci (si), (46)

where σci (si) =
[
σci ,1(si), σci ,2(si), . . . , σci ,Ni (si)

]
∈ RNi denotes the activation function,

Wci ∈ RNi denotes the ideal weight vector, Ni denotes the number of neurons, and
εci (si) ∈ RNi is the reconstruction error of NN. The vector activation function σci ,p(si)
is denoted as a continuously differentiable function, where p = 1, 2, . . . , Ni. For si 6= 0,{

σci ,p(si)
}Ni

p=1 is linearly independent. Then, the derivative of V∗i (si) can be expressed as:

∇V∗i (si) = ∇σT
ci
(si)Wci +∇εci (si), (47)

where ∇σci (si) =
∂σci (si)

∂si
and ∇εci (si) =

∂εci (si)

∂si
.

From Equations (27), (28) and (47), the optimal safety control policy u∗i (si) and the
auxiliary control strategy v∗i (si) are rephrased as:

u∗i (si) = −λi tanh(
1

2λi
GT

i (si)∇σT
ci
(si)Wci) + cdi

+ εui (si), (48)

v∗i (si) = −
1

2ξi
℘T

i (si)∇σT
ci
(si)Wci + εvi (si), (49)

where

εui (si) = −
1
2
(Imi − tanh2(ζ))GT

i (si)∇εci (si),

εvi (si) = −
1

2ξi
℘T

i (si)∇εci (si),

with Imi = [1, 1, . . . , 1]T ∈ Rmi . The seclected value of ζ is between 1
2λi

GT
i (si)∇σT

ci
(si)Wci

and 1
2λi

GT
i (si)(∇σT

ci
(si)Wci +∇εci (si)).



Entropy 2023, 25, 1158 12 of 23

The ideal weight vector Wci is not available and the optimal control strategy u∗i (si) is
not directly applicable. Therefore, the estimated weight vector Ŵci is constructed to replace
Wci as:

V̂∗i (si) = ŴT
ci

σci (si). (50)

The estimation error W̃ci = Wci − Ŵci is defined. Similarly, according to (50), the (49)
and (48) are further developed as:

ûi(si) = −λi tanh(
1

2λi
GT

i (si)∇σT
ci
(si)Ŵci) + cdi

, (51)

v̂i(si) = −
1

2ξi
℘T

i (si)∇σT
ci
(si)Ŵci . (52)

Combining (50), (51) and (52), the Hamiltonian is re-expressed as:

H(si, ûi, v̂i,∇V̂i(si)) =(∇V̂i(si))
T(GT

i (si)ûi + Fi(si) + ℘i(si)v̂i)

+ πi(si) + γi(si, ûi, v̂i)− αiV̂i. (53)

According to (53), the error of the Hamiltonian is given by:

ei = H(si, ûi, v̂i,∇V̂i(si))− H(si, u∗i , v∗i ,∇V∗i (si))

= πi(si) + sT
i Qisi +Wi(ûi) + ξi v̂T

i v̂i + ŴT
ci

$i, (54)

with $i = ∇σci(xi)(GT
i (si)ûi + Fi(si) + ℘i(si)v̂i) − αiσci(si). In order to make ui(si) →

u∗i (si), the error ei should be guaranteed to be sufficiently small. To solve this issue, a critic
weight adjustment law Ŵci is proposed to minimize the objective function φi =

1
2 eT

i ei. Next,
the critic updating law is developed as:

Ŵci = −
αci $iei

(1 + $T
i $i)2

, (55)

where the constant αci is the positive learning rate.

Remark 5. To minimize the Hamiltonian error ei, it is necessary to maintain the derivative of φi as
φ̇i < 0. Therefore, the critic weight adjustment law is derived by employing the normalization term
(1 + $T

i $i)
−2 and applying the gradient descent method with respect to Ŵci [49].

By considering the definition of W̃ci , we obtain

˙̃Wci = −αci`i`
T
i W̃ci +

αci`ieHi

ıi
, (56)

where `i = $i
1+$T

i $i
and ıi = 1 + $T

i $i. eHi denotes the residual error, defined as eHi =

∇σci(xi)(GT
i (si)ûi + Fi(si) + ℘i(si)v̂i).

The proposed decentralized DSC strategy for the ith subsystem with a single critic-NN
is illustrated in Figure 1.
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Figure 1. The block diagram of the developed optimal DSC scheme.

5. Stability Analysis

This section focuses on the stability of the n-auxiliary subsystem for the given control
scheme. We need to make some Assumptions to satisfy the theorem.

Assumption 4. For si ∈ Ωi, i = 1, . . . , n, there exist some positive constants Dεui
, ηi,M, Dσci

, Dεvi
and DeHi

satisfying ‖εui (si)‖ ≤ Dεui
, ‖℘i(si)‖ ≤ ℘i,M, ‖∇σci (si)‖ ≤ Dσci

, ‖εvi (si)‖ ≤ Dεvi

and
∥∥eHi

∥∥ ≤ DeHi
.

Assumption 5. Consider the time period [t, t + tk] and tk > 0. Then, the term `i`
T
i fulfills the

following condition:
εi INi ≤ `i`

T
i ≤ si INi , (57)

where εi and si are positive constants.

Theorem 2. For the nonlinear interconnected safety-critical system (15), we design the estimated
optimal safety policies and auxiliary control strategies as (51) and (52), respectively. Assume that
Assumptions 1–5 hold. If Ŵci is updated by (55), then si and Ŵci are UUB if αci in (55) satisfies

αci >
℘2

i,MD2
σci

ξiλmin(`i`
T
i )

. (58)

Proof. The candidate Lyapunov function is considered to be:

Li(t) =
n

∑
i=1

(V∗i (si) +
1
2

W̃T
ci

W̃ci ). (59)

Then, defining Li,1(t) = V∗i (si) and Li,2(t) = 1
2 W̃T

ci
W̃ci , the time derivative by Li,1(t) is

L̇i,1(t) = (∇V∗i (si))
T(GT

i (si)ûi + Fi(si) + ℘i(si)v̂i)

= (∇V∗i (si))
T(GT

i (si)u∗i + Fi(si) + ℘i(si)v∗i )

+ (∇V∗i (si))
TGT

i (si)(ûi − u∗i )︸ ︷︷ ︸
β3

+ (∇V∗i (si))
T℘i(si)(v̂i − v∗i )︸ ︷︷ ︸

β4

. (60)

Combining (29), (34) and (35). The (60) is further deduced as:

L̇i,1(t) = αiV∗i − πi(si)− sT
i Qisi −Wi(u∗i ) + ξi‖v∗i (si)‖2 + β3 + β4. (61)



Entropy 2023, 25, 1158 14 of 23

According to Lemma 1, and taking into account (40), (48), (51), we observe that the β3
term in (61) is satisfied by

β3 ≤ λ2
i

∥∥∥∥tanh−1(
u∗i (si)− cdi

λi
)

∥∥∥∥+ ‖ûi − u∗i ‖
2

≤ β1 + ‖λi(tanh(Yi,1(si))− tanh(Yi,2(si)))− εui (si)‖2︸ ︷︷ ︸
β5

≤ 1
4

G2
i,Mδ2

i,M + β5, (62)

where Yi(si) = 1
2λi

GT
i (si)∇V∗i (si). Then, based on the fact ‖tanh(Yi,k(si))‖ ≤

√
mi,

k = 1, 2 in [44], according to Assumption 5, β5 is derived as:

β5 ≤ 2λ2
i ‖tanh(Yi,1(si))− tanh(Yi,2(si))‖2 + 2‖εui (si)‖2

≤ 4λ2
i (‖tanh(Yi,1(si))‖2 + ‖tanh(Yi,2(si))‖2) + 2‖εui (si)‖2

≤ 8λ2
i mi + 2D2

εui
. (63)

Similarly, the last term of (61) is deduced from (35), (49) and (52) as:

β4 ≤ −ξi‖v∗i ‖
2 − ξi‖v̂i − v∗i ‖

2

≤ −ξi‖v∗i ‖
2 + 2ξi(‖v̂i‖2 − ‖v∗i ‖

2) + 2ξi‖εvi‖
2

≤ −ξi‖v∗i ‖
2 +

1
2ξi

℘2
i,MD2

σci

∥∥W̃ci

∥∥2
+ 2ξiD2

εvi
. (64)

By using (38), (62)–(64) and the fact that
∥∥αiV∗i (si)

∥∥ ≤ $i,M the following is derived:

L̇i,1(t) ≤ −λmin(Qi)‖si‖
2 +

1
2ξi

℘2
i,MD2

σci

∥∥W̃ci

∥∥2
+ Θi, (65)

with Θi = $i,M + 1
2 G2

i,Mδ2
i,M + 8λ2

i mi + 2D2
εui

+ 2ξiD2
εvi

.

The error weight update law W̃ci . Li,1(t) is considered with the time derivative

L̇i,2(t) = −αci W̃
T
ci
`i`

T
i W̃ci + αci

W̃T
ci
`i

ıi
eHi . (66)

Combining Lemma 1 and Assumption 4, the following conclusion is drawn:

αci

W̃T
ci
`i

ıi
eHi ≤

αci

2
W̃T

ci
`i`

T
i W̃ci +

αci

2
D2

eHi
. (67)

Combining inequalities (66) and (67), we derive the following inequalities:

L̇i,2(t) ≤ −
αci

2
λmin(`i`

T
i )
∥∥W̃ci

∥∥2
+

αci

2
D2

eHi
. (68)

Substituting (65) and (68) into (59), the following inequality is obtained:

L̇i(t) ≤
n

∑
i=1

(−λmin(Qi)‖si‖2 − xi
∥∥W̃ci

∥∥2
+ Θi +

αci

2
D2

eHi
), (69)

where xi =
αci
2 λmin(`i`

T
i )−

1
2ξi

℘2
i,MD2

σci
, λmin(`i`

T
i ) means the minimum eigenvalue of `i`

T
i .
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Therefore, Equations (58) and (69) mean L̇i(t) < 0, provided that the parameters si
and W̃ci are not in the set of

Ni

si : ‖si‖ ≤

√
2Θi + D2

eHi

2λmin(Qi)

, (70)

NW̃ci

W̃ci :
∥∥W̃ci

∥∥ ≤
√

2Θi + D2
eHi

xi

. (71)

Introducing Lyapunov’s extension theorem, ref. [47], ensures the stability of the closed-
loop system. This proof ensures that the weight estimation error W̃ci is UUB. At this point,
this completes the proof process.

Remark 6. In contrast to techniques that aim to achieve input saturation [10,13], this article
proposes an RL technique to solve the optimal DSC problem with safety constraints and asymmetric
input constraints. This approach ensures not only the safety of the system but also minimizes the
input constraints. Therefore, the developed reinforcement learning technique, based on security con-
straints and asymmetric input constraints, is better suited for some project applications, particularly
for systems where the system state must be globally within the security settings.

6. Simulation Example

In this section, we provide a simulation example to verify the effectiveness of the
proposed approach. The simulation involved a dual-linked robotic arm system [42]. The
state space model of the system is defined by

ẋ1,1 = x1,2,

ẋ1,2 = −M1

G̃1
x1,2 −

m1 g̃l̃1
G̃1

sin(x1,1) +
1

G̃1
u1 +4h1,

ẋ2,1 = x2,2,

ẋ2,2 = −M2

G̃2
x2,2 −

m2 g̃l̃2
G̃2

sin(x2,1) +
1

G̃2
u2 +4h2, (72)

where xi,1 and xi,2 (i = 1, 2) indicate the angular location of the robot arm, ui stands
for control input, and the 4hi = ηiPi represents the interconnection terms. The other
parameters of the robotic arm system (72) are depicted in Table 1. The initial system state
was selected as x0 = [2, 2, 2, 2]T . We first defined the state variable xi = [xi,1, xi,2]

T and
constructed the internal dynamics and input gain matrix as follows:

fi(xi) =

[
xi,2

−Mi
G̃i

xi,2 −
mi g̃l̃i

G̃i
sin(xi,1)

]
+

[
0
1
G̃i

]
ui +

[
1
0

]
Pi(xi),

where P1(x1), P2(x2) denote the uncertain interconnection terms of subsystems 1 and
2, i.e.,

P1(x1) = 0.1x1,1 sin(x2,2),

P2(x2) = (x1,2 − 3 sin(0.1x2,1)).

Furthermore, the two robotic arm subsystems were in a state that satisfied the below
security constraints:

x1,1 ∈ (−0.5, 2.9), x1,2 ∈ (−1.5, 2.5),

x2,1 ∈ (−1, 2.5), x2,2 ∈ (−3.5, 3). (73)
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Therefore, to deal with the security constraint, the following system of transformations
without security constraint was obtained, using the BF-based system transformation (13):

si = Fi(si) + Gi(si)ui + ℘i(si)Ui, (74)

where

Fi(si) =


ai,2 Ai,2(e

si,2
2 −e−

si,2
2 )

ai,2e
si,2

2 −Ai,2e−
si,2

2

a2
i,1esi,1−2ai,1 Ai,1+Ai,1e−si,1

Ai,1a2
i,1−a1 A2

i,1

fi(B−1(si))
a2

i,2esi,2−2ai,2 Ai,2+Ai,2e−si,2

Ai,2a2
i,2−ai,2 A2

i,2

,

Gi(si) =

 0
1
G̃

a2
i,2esi,2−2ai,2 Ai,2+Ai,2e−si,2

Ai,2a2
i,2−a2 A2

i,2

, (75)

℘i(si) =

 a2
i,2esi,2−2ai,2 Ai,2+Ai,2e−si,2

Ai,2a2
i,2−a2 A2

i,2

0

.

Table 1. Meanings and values of symbols used in robotic arm systems.

The ith Subsystem Parameter Meaning Value

m1 Mass of payload 5 kg
M1 Viscous friction 2 N

The first subsystem l̃1 Length of the arm 0.5 m
G̃1 Moment of inertia 10 kg
g̃1 Acceleration of gravity 9.81 m/s

m2 Mass of payload 10 kg
M2 Viscous friction 2 N

The second subsystem l̃2 Length of the arm 1 m
G̃2 Moment of inertia 10 kg
g̃2 Acceleration of gravity 9.81 m/s

For the transformed dual-linked robotic arm system (74), the initial state was chosen
by si,0 = [si,0(1), si,0(2)]T = [B(xi,0(1); ai,1, Ai,1), B(xi,0(2); ai,2, Ai,2)]

T . The discount factors
were chosen as α1 = 1 and α2 = 0.1. The matrices were designed as Q1 = 0.5I2 and Q2 = I2,
R1 = 1 and R2 = 1. The upper and lower limits were allocated as below: h1 max = 0.75,
h1 min = −0.25 and h2 max = 1.5, h2 min = −0.5. Let ϑ1 = ‖s1‖ and ϑ2 = ‖s2‖. Additional
design factors were setup as below: ξ1 = 8, ξ2 = 4, ac1 = 2, ac2 = 2. Choose the activation
functions σci(si) = [s2

1,1, s1,1s1,2, s2
1,2]

T and σci(si) = [s2
2,1, s2,1s2,2, s2

2,2]
T .

The simulation outcomes are presented in Figures 2–13. The states of the system are
depicted in Figures 2 and 8, and it can be observed that the closed-loop system stabilized
after 20 s and 35 s, respectively. However, the system failed to meet the specified security
constraints. Figures 3 and 9, shown in comparison with Figures 2 and 8, not only assured
that the system states converged to zero, but also satisfied the given safety constraints.
The evolving states s1(t) and s2(t) are presented in Figures 4 and 10, based on the safe
control method with asymmetric input constraints. The optimal DSC policies are shown in
Figures 5 and 11. We found that the optimal DSC policies were restricted to the asymmetric
set [−0.25, 0.75] and [−0.5, 1.5]. Figures 6 and 12 represent the optimal auxiliary control
strategies for subsystems 1 and 2, respectively. Figures 7 and 13 show the critic updated
laws. It can be observed that the weights converged after 15 s. According to Theorem 3, we
concluded that the proposed optimal safety control policy and the auxiliary control policy
could stabilize the closed-loop nonlinear system and satisfy the safety constraints on the
system state. Moreover, the optimal control policy eventually converged to a predefined
set of constraints. Finally, the results of the simulation showed that the presented optimal



Entropy 2023, 25, 1158 17 of 23

DSC solution for constrained interconnected nonlinear safety-critical systems, affected by
system state constraints, is effective.

Figure 2. Evolution of state x1(t) without using the DSC method.

Figure 3. Evolution of state x1(t) using the DSC method.
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Figure 4. Evolution of state s1(t) using the DSC method.

Figure 5. Control evolution of input u1.

Figure 6. Evolution of the auxiliary control input v1 using the DSC method.
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Figure 7. Evolution of the critic weight vector Wc1 using the DSC method.

Figure 8. Evolution of state x2(t) without using the DSC method.

Figure 9. Evolution of state x2(t) using the DSC method.
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Figure 10. Evolution of state s2(t) using the DSC method.

Figure 11. Control evolution of input u2.

Figure 12. Evolution of the auxiliary control input v2 using the DSC method.
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Figure 13. Evolution of the critic weight vector Wc2 using the DSC method.

7. Conclusions

This article presents an RL-based DSC scheme for interconnected nonlinear safety-
critical systems with security constraints and asymmetric input constraints. The proposed
method transformed an interconnected nonlinear safety-critical system with security and
asymmetric input constraints into an interconnected nonlinear safety-critical system with
only asymmetric input constraints by using the barrier function. The non-quadratic utility
function was added to the performance function to address the asymmetric input constraint.
The critic network was also used to approach the optimal performance function and to
establish the best security policy. Our control scheme stabilizes the closed-loop system
and minimizes the improved performance function. In addition, the simulation results
demonstrated the efficacy of the proposed distributed security solution. Future work will
explore the optimal safety control of stochastic interconnected nonlinear systems with event
triggering.
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