
Citation: Chen, Z.; Ma, X.; Fu, J.; Li, Y.

Ensemble Improved Permutation

Entropy: A New Approach for Time

Series Analysis. Entropy 2023, 25,

1175. https://doi.org/10.3390/

e25081175

Academic Editors: Yong Lv, Weihang

Zhu and Rui Yuan

Received: 30 June 2023

Revised: 26 July 2023

Accepted: 4 August 2023

Published: 7 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Ensemble Improved Permutation Entropy: A New Approach for
Time Series Analysis
Zhe Chen 1,2,*, Xiaodong Ma 1,2, Jielin Fu 1,2 and Yaan Li 3

1 School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China;
mxd1090163110@163.com (X.M.); fujielin@gmail.com (J.F.)

2 Key Lab. of Cognitive Radio & Information Processing, The Ministry of Education, Guilin University of
Electronic Technology, Guilin 541004, China

3 School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China;
liyaan@nwpu.edu.cn

* Correspondence: chenzhe@mail.nwpu.edu.cn

Abstract: Entropy quantification approaches have gained considerable attention in engineering
applications. However, certain limitations persist, including the strong dependence on parameter
selection, limited discriminating power, and low robustness to noise. To alleviate these issues, this
paper introduces two novel algorithms for time series analysis: the ensemble improved permutation
entropy (EIPE) and multiscale EIPE (MEIPE). Our approaches employ a new symbolization process
that considers both permutation relations and amplitude information. Additionally, the ensemble
technique is utilized to reduce the dependence on parameter selection. We performed a compre-
hensive evaluation of the proposed methods using various synthetic and experimental signals. The
results illustrate that EIPE is capable of distinguishing white, pink, and brown noise with a smaller
number of samples compared to traditional entropy algorithms. Furthermore, EIPE displays the
potential to discriminate between regular and non-regular dynamics. Notably, when compared to
permutation entropy, weighted permutation entropy, and dispersion entropy, EIPE exhibits superior
robustness against noise. In practical applications, such as RR interval data classification, bearing
fault diagnosis, marine vessel identification, and electroencephalographic (EEG) signal classifica-
tion, the proposed methods demonstrate better discriminating power compared to conventional
entropy measures. These promising findings validate the effectiveness and potential of the algorithms
proposed in this paper.

Keywords: ensemble improved permutation entropy; feature extraction; data analysis

1. Introduction

It is widely recognized that analyzing time series generated from complex systems is
an effective way to gain insight into underlying dynamics [1,2]. Numerous methods have
been proposed for this purpose, including power spectrum analysis, short-time Fourier
transform, wavelet transform, Lyapunov exponents [3], fractal dimensions [4], and entropy
techniques [5–17]. Among them, entropy techniques have garnered increasing attention
due to their ability to evaluate irregularity (or complexity) within time series and their
potential for system identification.

Typically, entropy quantification approaches are developed through the following
steps: (I) finding events from the data; (II) computing the probability distribution of such
events; and (III) mapping the probability distribution to a single value. Conditional entropy
and Shannon entropy are the most widely used entropy definitions for such a mapping,
while the former provides the rate of information production, and the latter measures the
amount of information. Various entropy algorithms have been proposed in the past years
based on the two definitions mentioned above, such as approximate entropy (ApEn) [8],
sample entropy (SampEn) [9], fuzzy entropy (FuzEn) [10], quadratic sample entropy [11],
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distribution entropy [12], permutation entropy (PE) [13], weighted permutation entropy
(WPE) [14], modified permutation entropy [15], dispersion entropy (DispEn) [16], and
fluctuation dispersion entropy (FDispEn) [17]. The development of new entropy metrics has
shed new light on a wide range of engineering problems, including fault diagnosis [18,19],
underwater target recognition [1,7,20–22], stock market analysis [23,24], and biomedical
signal processing [8,9,15,25], among others.

Despite the great success that entropy algorithms have achieved in practical applica-
tions, they continue to face certain limitations that require further refinement. For instance,
both ApEn and SampEn are sensitive to tolerance r, a parameter that decides the level
of similarity between two vectors in the phase space [1,5,10]. If the value of tolerance is
set too low, very few vectors are regarded as similar, leading to unreliable or undefined
conditional entropy estimates. The situation can be worse if the data length is short. By
contrast, a larger value of tolerance may result in a loss of information. FuzEn has been pro-
posed as a solution to this issue by using the exponential function instead of the Heaviside
function to obtain a fuzzy measurement of two vectors’ similarity [10]. However, FuzEn
still requires pairwise similarity checks between vectors in the phase space; its computation
cost increases quadratically with data length. An alternative approach, PE [13], uses the
Bandt–Pompe procedure to symbolize the vectors based on the order of amplitudes, result-
ing in ordinal patterns (or permutation patterns). Despite its simplicity and computational
efficiency, absolute amplitude information is overlooked in this process [14,26]. Some
researchers also claimed that PE is liable to be affected by noise because the permutation
relations can be varied by a small change in amplitude values [5,16]. Additionally, there are
studies that have proved that PE is susceptible to the equal values in time series [15,27,28].
Typically, ranking the equal values according to their temporal order or breaking them
by adding random perturbations are common ways to circumvent this problem [1,13].
Unluckily, a recent study pointed out that these solutions can lead to misinterpretations of
the underlying nature of the electroencephalogram records [28]. Many efforts have been
made by researchers to tackle the above-mentioned defects of PE. Fadlallah et al. proposed
WPE [14], in which the amplitude information is considered by weighting the ordinal
patterns. Bian et al. invented mPE [15], where the same symbols are assigned to the ties.
Because of that, mPE can provide more potential motifs to represent the sub-series, and its
ability to recognize the heart rate variability (HRV) signal is thus improved. Notably, both
WPE and mPE have been shown to be insufficient in completely addressing the limitations
inherent to PE, highlighting the need for further research and development in this area.
Recently, DispEn [16] and its extension FDispEn [17] were devised by Hamed Azami and
the coauthors, whose main idea is to represent the univariate time series with a small set
of symbols. Then, entropy estimation of the original data can be equivalent to studying
the probability distribution of symbol sequences and calculating the corresponding en-
tropy value. Since the data are transformed into a new time series based on symbolic
dynamics, some detailed information might be lost. Moreover, how to determine the num-
ber of symbols remains a problem. Therefore, each entropy approach has its advantages
and limitations.

To enhance the performance of traditional entropy algorithms, a novel entropy mea-
sure called ensemble improved permutation entropy (EIPE) is proposed in this paper. We
start by presenting a new data symbolization method that uses a symbol set composed
of L elements to represent vectors in the phase space, resulting in symbolic patterns. It is
imperative to note that the obtained symbolic patterns take both permutation relation and
amplitude information into account. Then, like what is performed in the PE algorithm,
the probability distribution of the symbolic patterns is mapped to an entropy value based
on the Shannon entropy. However, one needs to artificially pre-define the discretization
factor in the symbolization process, and determining this parameter remains a challenge.
We addressed this issue by drawing inspiration from the ensemble technique presented in
reference [5], where we varied the discretization factor and averaged the corresponding
entropy results, resulting in the EIPE. To facilitate the analysis of signals over multiple
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temporal scales, a multiscale EIPE (MEIPE) algorithm is further introduced, where the
coarse-graining technique is applied prior to the EIPE calculation. The effectiveness of the
proposed methods is evaluated using various synthetic and experimental data, including
RR interval data, bearing fault signals, underwater acoustic signals, and EEG signals.

The remainder of this paper is organized as follows: the proposed EIPE and MEIPE
algorithms are described in Section 2; simulation and experimental results are provided in
Sections 3 and 4, respectively; and the paper is concluded in Section 5.

2. Methodology
2.1. Ensemble Improved Permutation Entropy

The EIPE algorithm is calculated through the following steps:
Step 1. As shown in Equation (1), given a univariate time series x = {x1, x2, · · · , xN},

the cumulative distribution function is utilized for data normalization:

yi =
1

σ
√

2π

∫ xi

−∞
e
−(t−µ)2

2σ2 dt, (1)

where yi represents ith element of the normalized sequence y and µ and σ2 denote the
mean and variance of x, respectively.

Step 2. With embedding dimension m and time delay τ given, the reconstructed phase
space is denoted by

Y(j, :) =
[
yj, yj+τ , · · · yj+(m−1)τ

]
(2)

where Y(j, :) is the jth row of Y, and j = 1, 2, · · ·N − (m− 1)τ.
Step 3. Let ymax and ymin represent the maximum and minimum values of y, respec-

tively, and L be the discretization factor (an artificially pre-defined parameter); the uniform
partition function (UPF) is defined as follows:

UPF(u) =


0 ymin ≤ u < ∆ + ymin
1 ymin + ∆ ≤ u < 2∆ + ymin
...

...
L− 1 ymax − ∆ < u ≤ ymax

(3)

where ∆ = (ymax − ymin)/L. Obviously, for arbitrary input u ∈ (ymin, ymax), UPF converts
it into an integer symbol ranging from 0 to L− 1. Let the first column of Y be the input of
UPF; Y(:, 1) is then transformed into a symbol sequence, represented as S(:, 1).

Step 4. For the kth column of Y, indicated as Y(:, k), 2 ≤ k ≤ m, its corresponding
symbolization result S(:, k) is achieved by Equation (4):

S(j, k) = S(j, 1) + b(Y(j, k)−Y(j, 1))/∆c (4)

where 1 ≤ j ≤ N − (m− 1)τ, and bc represents a function that rounds the elements in it to
the nearest integers towards zero. Upon completion of the symbolization process for all
components within the phase space Y, the resulting entity, expressed as the symbolic phase
space S, is obtained. Further, each row of S is referred to as a symbolic pattern (SP), which
incorporates both permutation relation and amplitude information.

Step 5. As shown in Equation (5), the probability distribution of SP is computed
and then mapped to an entropy value based on the definition of Shannon entropy. This
resulting entropy value is referred to as the improved permutation entropy (IPE). Since
each symbolic pattern comprises m elements, and each element can take L possible states,
the total number of symbolic patterns is thus given by Lm. It is apparent that the IPE attains
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its maximum value only when SP follows a uniform distribution. To optimize the IPE, a
normalization technique can be applied using Equation (6).

IPE(m, L, τ) = −
Lm

∑
l=1

pl ln(pl) (5)

IPE(m, L, τ) = −
Lm

∑
l=1

pl ln(pl)

/
ln(Lm) (6)

The above description indicates that the discretization factor L has a significant impact
on the calculation of the IPE, because it plays a pivotal role in the symbolization process, as
depicted in Equations (3) and (4). Evidently, a higher value of L leads to a comparatively
lesser loss of time series’ information during the symbolization process, while a smaller
L value offers better noise resistance, albeit at the cost of losing some information. The
selection of an appropriate discretization factor L depends on the characteristics of the
signal, including its signal-to-noise ratio (SNR). Unfortunately, this a priori information
is usually unknown. The ensemble technique, which involves the integration of multiple
methods to improve overall prediction performance, can address this issue. Motivated by
this idea, we propose the EIPE. As can be seen in Equation (7), EIPE is calculated as the
mean of the IPE results derived from varying values of L.

EIPE(m, τ) =
1

b− a + 1

b

∑
i=a

IPE(m, i, τ) (7)

where a and b are the minimum and maximum value of L, respectively.

2.2. Multiscale Ensemble Improved Permutation Entropy

Complex time series often have intricate structures across multiple temporal scales,
which conventional entropy measures that rely on a single-scale analysis fail to account for.
To remedy this, multiscale ensemble improved permutation entropy (MEIPE) is proposed
in this section, where a coarse-graining process [25] is conducted prior to a comprehensive
analysis with EIPE. The coarse-graining process of a time series x = {x1, x2, · · · , xN} is
given by Equation (8), where rs represents the output sequence under scale s. Applying
EIPE to process the subsequence rs, the obtained result EIPEs is the entropy of the original
sequence under scale s. This process is repeated for all scale factors, resulting in an entropy
vector, namely the MEIPE. In other words, MEIPE is essentially a plot of EIPE versus
scale factors.

rs
i =

1
s

js

∑
i=(j−1)s+1

xi (8)

3. Synthetic Data Analysis

In this section, the effectiveness of the proposed EIPE algorithm is verified through
several synthetic signals. As can be seen in Equation (6), embedding dimension, time
lag, and discretization factor need to be properly set to implement the EIPE algorithm.
According to the conclusions in [1,5,13], 3 ≤ m ≤ 7 and τ = 1 are recommended. In what
follows, unless otherwise specified, we varied the discretization factor L from 2 to 8 and set
m = 4 and τ = 1.

3.1. Noise Signals

Noise is ubiquitous in various systems and applications. White, pink, and brown
noise are the most frequently used random signals for model analysis [5,29]. White noise
is a type of noise that contains equal energy or power across all frequencies; its power
spectrum density can be represented as Sw( f ) = Cw, where Cw is a constant. Pink noise,
also known as 1/f noise, is a type of noise where the power of the signal decreases by
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3 decibels per octave as the frequency increases. Compared with pink noise, brown noise
has a lower intensity at higher frequencies. The power spectrum density of pink and brown
noise can be denoted by Sp( f ) = Cp/ f and Sb( f ) = Cb/ f 2, respectively, where Cp and Cb
are constants.

The comparative results of diverse entropy algorithms in terms of their ability to
discriminate between three types of noise are presented in Figure 1. The average entropy
values, along with their error bars representing the standard deviation (SD), are plotted
against the varying data length. The data length was changed from 40 to 700, with an
increment of 20. For each data length, 40 independent realizations were generated for
each type of noise. As can be seen, no matter which algorithm is utilized, white noise
attains the highest entropy values, followed by pink and brown noise. This result is
consistent with the reality that white noise is the most complex, succeeded by pink and
brown noise [5,29]. It can also be observed that EIPE requires fewer samples than the other
methods to discriminate between the three types of noise, implying that our method has a
low dependency on data length and can extract effective features of the noises even with
limited samples.
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Figure 1. Comparative results of diverse entropy algorithms regarding their discriminative capability
among white, pink, and brown noise. (a) PE analysis result; (b) WPE analysis result; (c) DispEn
analysis result; and (d) EIPE analysis result.

3.2. Logistic Map

The logistic map can be described as xn+1 = µxn(1− xn), where µ is a parameter that
controls the dynamic behavior of the model. According to previous studies [30–32], when
µ increases from 3.5 to 3.99, the model exhibits a period-doubling bifurcation. In particular,
for 3.57 ≤ µ ≤ 3.99, the system is chaotic, except for rare exceptions like µ ≈ 3.84.

To evaluate the ability of the EIPE algorithm to detect periodicity and nonlinearity,
we varied µ from 3.5 to 3.99 with a step size of ∆µ = 0.001. For each µ, we generated a
time series with 10,000 sampling points and computed its entropy. Figure 2 shows how
the entropy values obtained by different algorithms change with µ. When µ ≈ 3.57, the
EIPE exhibits a positive correlation with the augmentation of µ, affirming that the system
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progressively grows in complexity. This phenomenon agrees with the fact that the system
undergoes a transition from periodic to chaotic behavior [32]. Remarkably, the values
of the other three entropy algorithms remain unaltered in this context. When µ ≈ 3.84,
both DispEn and EIPE exhibit a significant decline in this region, whereas PE and WPE
initially decrease but quickly rebound afterward. It is noteworthy to mention that the
profile obtained by the EIPE algorithm is consistent with the result depicted in Figure 1 of
reference [32], signifying the potential of the proposed method in discriminating between
regular and non-regular dynamics.
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specific region where the behavior of the system transitions from chaotic to periodic.

3.3. Noisy Lorenz Signal

To evaluate the performance of the proposed algorithm under noisy conditions, we
added white Gaussian noise into the Lorenz time series to generate signals at different SNR
levels. A fourth-order Runge–Kutta scheme with a time step of ∆t = 0.001 was applied to
solve the Lorenz system depicted in Equation (9), and 50,000 data points were recorded.
For each SNR condition, 40 trials were independently conducted, and their multiscale
entropies were calculated through various approaches. The average multiscale entropy
values with their SD error bars are demonstrated in Figure 3. For all entropy algorithms,
the multiscale entropy curve increases as the SNR decreases. Notably, from the results
depicted in Figure 3a, it Is evident that the MEIPE curve at −10 dB remains close to that
of the clean signal, suggesting the minimal influence of noise on the performance of the
MEIPE algorithm. Conversely, the other three approaches display larger deviations in
entropy values under low SNR conditions, especially for lower-scale factors. The findings
in Figure 3 illustrate the robustness of the MEIPE algorithm against the noise.

.
x = 10(y− x)
.
y = x(28− z)− y
.
z = xy− 8

3 z
(9)
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Figure 3. Multiscale entropy analysis of Lorenz time series under different SNR conditions. (a) MEIPE
analysis result; (b) multiscale PE analysis result; (c) multiscale WPE analysis result; and (d) multiscale
DispEn analysis result.

4. Experimental Data Analysis

In this section, the proposed EIPE and MEIPE algorithms are applied to process three
kinds of experimental data: RR intervals, bearing fault signals, underwater acoustic signals,
and EEG signals. All these data are regarded as complex time series.

4.1. RR Intervals

The RR interval data used in this paper originate from the Fantasia dataset [33]. This
collection comprises RR interval data from 20 young and 20 elderly healthy participants,
with their ages ranging from 21 to 34 and 68 to 85, respectively. Both the DispEn and EIPE
analysis results, as shown in Figure 4c and d, respectively, illustrate that the RR intervals of
healthy young subjects exhibit greater irregularity in comparison to those of healthy elderly
individuals. However, the PE and WPE analysis results show insignificant differences
between the two groups.

To quantitatively assess the differences between entropy values for young and elderly
individuals, the non-parametric Mann–Whitney U-test is utilized. The significance of
inter-group differences can be determined through the p-values, with lower p-values
indicating more significant distinctions. In Figure 4, p-values smaller than 0.01 and 0.001
are represented by ** and ***, respectively. The calculated p-values corroborate the visual
observations from the boxplots, where the p-values for PE and WPE are greater than 0.05
(0.2792 and 0.8498). On the other hand, DispEn and EIPE yield p-values of 0.0038 and
0.000437, respectively, providing strong evidence for their exceptional discriminability in
distinguishing between the two types of signals.
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Figure 4. Boxplots of distinct entropy approaches computed from the RR intervals of healthy young
and healthy elderly participants. (a) PE analysis result; (b) WPE analysis result; (c) DispEn analysis
result; and (d) EIPE analysis result. p-values smaller than 0.01 and 0.001 are represented by ** and
***, respectively.

4.2. Bearing Fault Signals

In this subsection, a collection of bearing fault signals originating from the Case
Western Reserve University Bearing Data Center is analyzed. The collection contains four
categories of signals that are normal, ball fault (BF), inner race fault (IRF), and outer race
fault (ORF) [34]. The motor speed is about 1730 r/min, and the fault diameter is 0.1778 mm.

Each type of signal consists of approximately 120,000 data points. To facilitate analysis,
each datum was divided into 10 equally sized segments, with each segment containing
12,000 sample points. As can be seen in Figure 5d, the EIPE values of BF remain relatively
constant across all scales. In contrast, the EIPE values of IRF increase slightly between
scales 1 and 4 and then decrease persistently. For the normal category, the EIPE values
increase sharply (from 0.65 to 0.8) at lower scales and then show a minor decline. The
MEIPE feature of ORF signals shows a decrease initially, followed by oscillations between
scales 2 and 10. The distinct underlying structures of different bearing fault signals make
their MEIPE curves unique, both in terms of the entropy magnitude and the variation
trend across the scale factors. For comparison, analysis results of other multiscale entropy
approaches are also provided in Figure 5. Obviously, the entropy curve seems closer to
each other in the multiscale PE and multiscale WPE results. For instance, at scale 7, these
algorithms assign high entropy values (≈0.98) to normal and BF signals, making them
indistinguishable. Although multiscale DispEn outperforms multiscale PE and multiscale
WPE, its separability declines under the scales 2, 3, 4, 7, 9, and 10, where entropy features
of distinct types of signals overlap with each other. By contrast, the proposed MEIPE
algorithm can distinguish four types of signals at most scales. This finding suggests that
the MEIPE algorithm has the potential for bearing fault diagnosis.
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Figure 5. Multiscale entropy analysis results of four types of bearing fault signals. (a) Multiscale
PE analysis result; (b) multiscale WPE analysis result; (c) multiscale DispEn analysis result; and
(d) MEIPE analysis result.

4.3. Underwater Acoustic Signals

Identifying targets based on their emitted sound poses a significant challenge in under-
water acoustic signal processing [1,4,7], primarily due to the complex ocean environment
and the presence of high ambient noise levels. In this subsection, we adopted the MEIPE
algorithm to analyze three types of ship-generated noise, namely, from passenger ships,
ocean liners, and motorboats [35]. For the sake of simplicity, the dataset was divided
into various segments, with each segment lasting for 3 s. Given a sampling frequency of
52,734 Hz, each segment consisted of 158,202 sample points. Additional details regarding
the dataset can be found in Table 1. Notably, signals from various distinct marine vessels
were collected for each category.

Table 1. Description of three types of ship-radiated noise.

Categories Ship Name Number of Segments

Passenger

Mar de Cangas 267
Mar de Onza 124

Pirata de Salvora 65
Arrois 103

Ocean liner
MSC Opera 160

Adventure of the sea 89
Costa Voyager 397

Motorboat

Small Yacht 76
Motorboat2 86

High-speed motorboat 36
Zodiac 96
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The MEIPE analysis result is presented in Figure 6a, where the scale factor is set to 40.
The plot displays the average EIPE values versus the scale factor, accompanied by their
corresponding SD error bars. The EIPE value of the ocean liner increases consistently across
all scale factors. On the other hand, the EIPE value of the passenger ship shows a sharp
increase and then remains relatively constant after scale 15. Interestingly, the EIPE value
of the motorboat exhibits an initial increase from scales 1 to 5, followed by a downward
spike from scales 5 to 35. Visually examining the MEIPE curves, it can be observed that the
curves for the three target categories are distinct from each other, indicating the excellent
discriminating power of our proposed method. For comparison, the multiscale DispEn
analysis result is presented in Figure 6b, which shows similar trends as the MEIPE analysis
result. However, there are some subtle differences observed between scales 16 and 25,
where the multiscale DispEn features of three of the ships are closer to each other when
compared to the MEIPE features.
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To further quantify the discriminative capability of the MEIPE features for the three
categories of ships, we employed a probabilistic neural network (PNN) for feature training
and recognition. For testing, 150 randomly selected segments were retained for each target
category, while the remaining segments were used for network training. The recognition
results of the network are presented in Table 2. For comparison, the classification results of
the multiscale DispEn algorithm are given in Table 3.

Table 2. PNN classification results for three types of ships using MEIPE features.

Categories
Recognized as Classification

AccuracyPassenger Ocean Liner Motorboat

Passenger 150 0 0 100%
Ocean liner 23 127 0 84.67%
Motorboat 6 5 139 92.67%

In total - - - 92.44%

Table 3. PNN classification results for three types of ships using multiscale DispEn features.

Categories
Recognized as Classification

AccuracyPassenger Ocean Liner Motorboat

Passenger 150 0 0 100%
Ocean liner 27 123 0 82%
Motorboat 30 9 111 74%

In total - - - 85.33%
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The results clearly indicate that both the MEIPE and multiscale DispEn algorithms
achieve an impressive recognition rate of 100% for the passenger ship category. However,
for the motorboat and ocean liner categories, the multiscale DispEn algorithm demonstrates
a comparatively lower recognition rate, denoted as 74% and 82%, respectively, in contrast
to the MEIPE algorithm. Overall, the MEIPE algorithm attains a classification accuracy
of 92.44% for the three target categories, which is 7.11% higher than multiscale DispEn.
These findings illustrate the superior performance of the MEIPE algorithm in accurately
identifying and discriminating between the various ship categories.

4.4. EEG Signals

EEG records contain fruitful physiological and pathological information. The analysis
of EEG signals is of high significance in numerous applications, such as evaluating the
mental state of subjects, assessing drivers’ fatigue, measuring anesthesia depth, and pre-
dicting the onset of epileptic seizures [6]. In this subsection, our proposed algorithm was
employed to process the commonly used University of Bonn EEG database. Our analysis
covered four subsets of the database, which correspond to healthy subjects with eyes open
(Class 0), healthy participants with eyes closed (Class 1), subjects during interictal epileptic
activity (Class 2), and participants experiencing seizure attacks (Class 3), respectively. Each
subset comprises 100 data segments, with each segment lasting 23.6 seconds and consisting
of 4097 data points (sampling frequency is 173.61 Hz). For detailed descriptions of the
dataset, please see reference [6].

The MEIPE analysis result is presented in Figure 7a, where the scale factor is varied
from 1 to 5, owing to the limited length of the signal. It is evident that Class 1 acquires
the highest EIPE values across all scale factors, followed by Class 0, 3, and 2. Notably, the
MEIPE features of each category exhibit a distinct separation from one another. In contrast,
Figure 7b reveals that the multiscale DispEn features of Class 0 and 1 are challenging to
discriminate, particularly for scales 1 to 3. Additionally, under scales 3 to 5, the differences
between Class 2 and 3 appear less pronounced. These outcomes indicate that the proposed
MEIPE algorithm may be better suited for discriminating between different EEG classes in
comparison to multiscale DispEn.
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To quantitatively evaluate the differences in entropy values across different EEG
categories, the non-parametric Mann–Whitney U-test is utilized, and the corresponding
p-values are listed in Tables 4 and 5. These statistical results are in line with the findings
in Figure 7. With the application of multiscale DispEn, it is observed that there are no
significant differences between Class 2 and 3 at scales 1 and 2. Furthermore, the distinction
between Class 0 and 1 at scale 5 is not pronounced. In contrast, the inter-group differences
are found to be significant across all scale factors when using the MEIPE approach. Based
on these findings, we can confidently conclude that MEIPE outperforms multiscale DispEn
in accurately discriminating between EEG categories.
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Table 4. The significance of inter-group differences between distinct categories when MEIPE is
applied. p-values smaller than 0.001 are represented by ***.

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5

Class 0 vs. Class 1 p = 5.4 × 10−14 *** p = 1.5 × 10−12 *** p = 1.9 × 10−11 *** p = 4.8 × 10−11 *** p = 1.5 × 10−10 ***
Class 2 vs. Class 3 p = 2.5 × 10−5 *** p = 1.2 × 10−10 *** p = 2.3 × 10−18 *** p = 5.6 × 10−24 *** p = 6.4 × 10−21 ***

Table 5. The significance of inter-group differences between distinct categories when multiscale
DispEn is applied. p-values smaller than 0.01, and 0.001 are represented by ** and ***, respectively.

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5

Class 0 vs. Class 1 p = 0.0025 ** p = 6.4 × 10−5 *** p = 8.3 × 10−4 *** p = 0.0081 ** p = 0.1314
Class 2 vs. Class 3 p = 0.1582 p = 0.0739 p = 0.0043 ** p = 6.2 × 10−7 *** p = 4.3 × 10−9 ***

5. Conclusions

To enhance the performance of traditional entropy quantification methods, this paper
introduces two novel algorithms for time series analysis: the EIPE and MEIPE. To validate
the effectiveness of these proposed methods, a comprehensive evaluation was conducted
using both simulated and experimental signals. The findings of this study demonstrate that
the EIPE algorithm outperforms traditional entropy algorithms in distinguishing white,
pink, and brown noise, even with a smaller number of samples. Moreover, EIPE exhibits
sensitivity to the underlying behavior of the model, making it effective in discriminating
between regular and non-regular dynamics. Additionally, the MEIPE algorithm exhibits
reduced dependence on SNR levels, enabling its application in noisy conditions. Finally,
the proposed methods demonstrate better discriminating power compared to conventional
entropy measures in practical applications, such as RR interval data classification, bearing
fault diagnosis, marine vessel identification, and EEG signal classification. Hence, the EIPE
and MEIPE algorithms are of value in time series analysis.
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