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Abstract: Sampling from constrained distributions has posed significant challenges in terms of
algorithmic design and non-asymptotic analysis, which are frequently encountered in statistical and
machine-learning models. In this study, we propose three sampling algorithms based on Langevin
Monte Carlo with the Metropolis–Hastings steps to handle the distribution constrained within some
convex body. We present a rigorous analysis of the corresponding Markov chains and derive non-
asymptotic upper bounds on the convergence rates of these algorithms in total variation distance.
Our results demonstrate that the sampling algorithm, enhanced with the Metropolis–Hastings
steps, offers an effective solution for tackling some constrained sampling problems. The numerical
experiments are conducted to compare our methods with several competing algorithms without the
Metropolis–Hastings steps, and the results further support our theoretical findings.

Keywords: Bayesian computation; constrained sampling; convex support; Langevin Monte Carlo;
MCMC; mixing time bound

1. Introduction

Sampling from distributions with some constraints has extensive applications in statis-
tics, machine-learning, and operations research, among other areas. Some distributions
have bounded support, such as the simple but versatile uniform distribution which serves
as the foundation for a series of Monte Carlo methods, as discussed in [1]. Furthermore,
many statistical inference problems involve estimating parameters subject to constraints
on the parameter space, which defines a posterior distribution with bounded support in a
Bayesian setting. Examples include Latent Dirichlet Allocation [2], truncated data problems
in failure and survival time studies [3], ordinal data models [4], constrained lasso and ridge
regressions [5], and non-negative matrix factorization [6]. In Bayesian learning, sampling
from posterior distributions is a fundamental primitive, used for exploring posterior dis-
tributions, identifying the unknown parameters [7,8], obtaining credible intervals, and
solving inverse problems [7,8]. Finally, constrained sampling has great potential in solving
constrained optimization problems [9,10].

Many Markov Chain Monte Carlo (MCMC) algorithms have been extensively studied
for sampling from probability distributions with convex support or more generally with
constrained parameters, mainly in the fields of Bayesian statistics and theoretical computer
science. Early work includes, among others, [1,11–14]. Firstly, based on MCMC algorithms,
a direct solution involves discarding samples that violate the constraints, thereby exclu-
sively retaining samples that satisfy the constraints; see, for example, [1,15,16]. However,
these rejection-type approaches may encounter an excessive number of rejections or an
extremely large acceptance rate within some local subspace that satisfies the constraints,
which leads to poor mixing and computational inefficiency, especially for complicated
constraints and the high dimensional distributions [17,18]. Secondly, some literature draws
inspiration from penalty functions in optimization problems and considers the construction
of barriers along the boundaries of the constrained domain, effectively constraining the sam-
pling process within the constrained area. These approaches encounter a major challenge
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when the samples reach the boundaries of the constraints, necessitating the implementation
of a mechanism based on reflection to redirect them back into the constrained region. To
address this issue, Ref. [19] extended the Hamiltonian Monte Carlo (HMC) method by
setting the potential energy outside the constraint region to infinity, restricting the states to
the desired domain. Ref. [20] extended the HMC method to sample from truncated multi-
variate Gaussian distributions, and Ref. [21] proposed an approach that involves mapping
the constrained domain onto a sphere in an augmented space. Thirdly, motivated by the
constrained optimization methods, the constrained sampling problem can be reformulated
as an unconstrained sampling problem via suitable transformations. Following this idea,
Ref. [22] proposed a family of novel algorithms based on HMC through the introduction
of Lagrange multipliers that address a broader range of constrained sampling problems.
More recently, Ref. [23] tackled the constrained sampling problem via the mirror-Langevin
algorithm. In spite of the widespread adoption of these MCMC methods, most of them
have primarily focused on the algorithm design and lack the rigorous theoretical analysis
of convergence rates.

Among all the MCMC algorithms, a class of algorithms based on the Langevin dy-
namics has garnered significant attention in both practical applications and theoretical
analyses [24–27]. It has recently witnessed a notable increase in non-asymptotic analyses
of these algorithms, initiated by the seminal work of [28]. In the setting of unconstrained
sampling, Ref. [29] extended the theoretical analysis of convergence rates by studying with
decreasing step size, and Refs. [30,31] derived corresponding convergence results based on
alternative distances. These theoretical analyses focus on the Langevin algorithm without
the Metropolis–Hastings step. More recently, Refs. [32,33] have shown that incorporating
the Metropolis–Hastings step can significantly improve the convergence rate of the asso-
ciated Langevin algorithm. In the setting of constrained sampling, Ref. [34] suggested a
Euclidean projection step in the Langevin algorithms for the constrained case (PLMC) and
derived the convergence rate of the associated Markov chain. Ref. [35] presented a detailed
theoretical analysis for a proximal version of the Langevin algorithm that incorporates the
Moreau-Yosida envelope of the indicator function (MYULA) to handle the distributions
that are restricted to a convex body. Ref. [36] constructed the mirrored Langevin algorithm
(MLD) using a mirror map to constrain the domain, which achieves the same conver-
gence rate as its unconstrained counterpart [28]. However, these constrained sampling
algorithms are all developed based on the Langevin algorithm without incorporating the
Metropolis–Hastings steps, thus not leveraging the fast mixing advantages of them.

In this paper, we considered the constrained Langevin Monte Carlo with the Metropolis–
Hastings step for sampling from the distributions restricted to some convex support. Firstly,
for certain constraints, we re-examine the simple and intuitive rejection-type methods
for sampling from constrained distributions, and reach a surprising discovery that the
corresponding algorithm still retained the advantage of rapid convergence by carefully
selecting the step size parameter. Subsequently, for the more generally constrained domain,
we build upon the framework proposed in [35], incorporating the Metropolis–Hastings
step for further refinement, and analyze the convergence rate of the corresponding Markov
chain. We present detailed non-asymptotic analysis for these constrained algorithms and
achieve notably enhanced convergence rates in the total variation distance. Compared with
the best rate in [36], our results show that adopting the Metropolis–Hastings step in some
constrained MCMC algorithms can also lead to an exponentially improved dependence on
the error tolerance.

The rest of the paper is organized as follows. In Section 2, we introduce the prelimi-
naries and the problem set-up of our study. Then, we propose the constrained sampling
algorithms tailored to different types of constraint regions in Section 3. Section 4 provides
the non-asymptotic theoretical results of the proposed algorithms. The numerical experi-
ments and comparisons are presented in Section 5. Some Markov chain basics are provided
in Appendix A and all the technical proofs are deferred to Appendix B.
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Notation: Let dae represent the smallest integer not less than a ∈ R. For a vector
x ∈ Rd, we use |x|2 to denote its Euclidean norm. For a q× q symmetric matrix A, denote
by λmin(A) and λmax(A) the smallest and largest eigenvalues of A, respectively, and let
AT be its transpose. For two square matrices A and B, we write A � B if (B − A) is
a positive semi-definite matrix. Denote by I(·) the indicator function. For r > 0, let
B(x, r) = {y ∈ Rd : |y− x|2 ≤ r} denote a closed Euclidean ball with center x and radius
r. For two real-valued sequences an and bn, we say an = O(bn) if there exists a universal
constant c such that an ≤ cbn, and an = Õ(bn) if an ≤ cnbn where the sequence cn grows at
most poly-logarithmically with n. For any two probability measures µ and ν, denote by
‖µ− ν‖TV the total variation distance between µ and ν.

2. Preliminaries and Problem Set-Up

In this section, we introduce the MCMC sampling methods with its mixing analysis,
the traditional unconstrained Metropolis-Adjusted Langevin Algorithm (MALA), and our
problem set-up for this paper.

2.1. Markov Chain Monte Carlo and Mixing

Consider a distribution Π equipped with a density π : Rd 7→ R+ such that

π(x) ∝ e−U(x) (1)

for some potential function U : Rd 7→ R. In certain scenarios, it is necessary to perform sam-
pling from this distribution. For example, many statistical applications involve estimating
the expectation of a function g(X) for X ∼ π, where analytical and numerical computation
is infeasible. Monte Carlo approximation provides a solution by generating samples from
Π and using sample mean to estimate the population expectation. Hence, the key point is
to access samples from Π.

MCMC represents a class of popular sampling algorithms, which construct an appro-
priate Markov chain whose stationary distribution is Π or close to Π in certain metrics. The
class of the Metropolis–Hastings algorithms refers to a type of MCMC method that ensures
the corresponding Markov chain converges to the target distribution by incorporating the
Metropolis–Hastings step. The Metropolis–Hastings algorithms usually take two steps
to generate a Markov chain: a proposal step and a reject-accept step. At each iteration, a
sample is generated from the proposal distribution in the proposal step, and it is updated as
a new state of the Markov chain with probability determined by the Metropolis–Hastings
correction in the reject-accept step.

Given an error tolerance ε ∈ (0, 1), in order to obtain an ε-accurate sample with
respect to some metric, one simulates the Markov chain for a certain number of steps k,
as determined by a mixing time analysis. Specifically, we are concerned about how many
steps the chain needs to take such that the current distribution of the chain is ε-close to the
target distribution Π. Based on this, we define the ε-mixing time with respect to the target
distribution Π as

τ(ε;P0, Π) = min{k ∈ N : ‖T k(P0)−Π‖TV ≤ ε} (2)

for the error tolerance ε ∈ (0, 1), where T is the transition operator of the Markov chain and
T k(P0) is the distribution of the Markov chain at k-th step from an initial distribution P0.

2.2. Metropolis-Adjusted Langevin Algorithm

Consider the problem of sampling from the distribution with density defined as
(1). MALA [26,27] adopts the Gaussian distribution N{xk − h∇U(xk), 2hIp} as the pro-
posal distribution for the k-th step, where xk is the current state and h > 0 is a proper
step size, and performs a Metropolis–Hastings accept-reject step. MALA is the standard
Metropolis–Hastings algorithm applied to the Langevin dynamics, and the associated
Langevin-type algorithms belong to a family of gradient-based MCMC sampling algo-
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rithms [37]. The Langevin-type algorithms can be understood as the Euler discretization of
the Langevin dynamics:

dXt = −∇U(Xt)dt +
√

2 dWt ,

where Wt(t ≥ 0) is the standard Brownian motion on Rd.
Algorithm 1 provides the unconstrained MALA for sampling from the distribu-

tion supported on Rd, where φh(· | x) denotes the probability density function of N{x−
h∇U(x), 2hId}.

Algorithm 1 Metropolis-adjusted Langevin algorithm

Input: a sample x0 ∈ Rd from an initial distribution P0, the step size h
for k = 0, 1, 2, . . . , K− 1 do

Proposal step: yk+1 ← xk − h∇U(xk) + ξ, where ξ ∼ N (0, 2hIp)
Accept-reject step:

compute αk+1 = min
{

1,
φh(xk | yk+1)π(yk+1)

φh(yk+1 | xk)π(xk)

}
sample uk+1 from the uniform distribution on [0, 1]
if αk+1 ≥ uk+1, then xk+1 ← yk+1

else xk+1 ← xk

end if
end for

Output: x1, x2, . . . , xK

2.3. Problem Set-Up

In this part, we consider the problem of sampling from a target distribution or posterior
Π∗ supported on a compact set X ⊂ Rd equipped with a density π∗. It can be written in
the form

π∗(x) =
exp{−U(x)}I(x ∈ X )∫
X exp{−U(y)}dy

(3)

for some potential function U : Rd 7→ R. Assume that the function U(·) and the set X
satisfy the following assumptions:

Assumption 1. U(·) is a twice continuously differentiable, L-smooth and m-strongly convex
function on Rd. That is, there exist universal constants L ≥ m > 0 such that

m
2
|y− x|22 ≤ U(y)−U(x)− {∇U(x)}T(y− x) ≤ L

2
|y− x|22

for any x, y ∈ Rd.

Assumption 2. X ⊂ Rd is a compact and convex set satisfying

B(x∗, r) ⊂ X ⊂ B(x∗, R)

for some universal constants 0 < r ≤ R and x∗ ∈ X .

Hereafter, we assume that the above two assumptions hold, which is frequently used
in the literature for the analysis of constrained sampling algorithms [34–36]. We will modify
the MALA in Algorithm 1 to adapt to sampling from the above constrained distribution,
and analyse its non-asymptotic theoretical properties and derive the mixing time bound in
terms of the problem dimension d and the error tolerance ε.

3. The Constrained Langevin Algorithms

In this section, we present three sampling algorithms based on MALA to handle the
distribution constrained within some convex body X . As discussed in [34], the inherent
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challenges in constrained sampling problems arise from the complex properties on the
boundary of the constraint region, and the lack of the curvature in the potential function.
To tackle these challenges, Ref. [34] initially studied constrained sampling from the uni-
form distribution on X , and then extended the exploration to more general distributions.
Similarly, we begin our investigation by examining some simple constrained regions and
progressively extend our analysis to more complex constraint scenarios.

3.1. Constrained Langevin Algorithm via Rejection

We initially discuss the case where the constraint region X is an Euclidean ball on
Rd, where the boundary can be characterized by a curve equation. If X = B(x∗, R)
for some universal constant R > 0 and x∗ ∈ Rd, we consider the simple and intuitive
rejection-type methods via the Metropolis–Hastings accept-reject step for sampling from
the distribution with density defined as (3). The constrained MALA for X = B(x∗, R)
outlined in Algorithm 2 as follows, where φh(· | x) denotes the probability density function
of the Gaussian distribution N{x− h∇U(x), 2hId}.

Algorithm 2 The MALA for Euclidean ball constrained domain

Input: a sample x0 ∈ X from an initial distribution P0, the step size h
for k = 0, 1, 2, . . . , K− 1 do

Proposal step: yk+1 ← xk − h∇U(xk) + ξ, where ξ ∼ N (0, 2hIp)
Accept-reject step:
if yk+1 ∈ X then

compute αk+1 = min
{

1,
φh(xk | yk+1)π∗(yk+1)

φh(yk+1 | xk)π∗(xk)

}
sample uk+1 from the uniform distribution on [0, 1]
if αk+1 ≥ uk+1, then xk+1 ← yk+1

else xk+1 ← xk

end if
else xk+1 ← xk

end if
end for

Output: x1, x2, . . . , xK

Compared with Algorithm 1, this modified algorithm forces the Markov chain to
stay at the current state when it jumps out of the limited state space X = B(x∗, R), which
is a quite natural extension of the unconstrained MALA. This idea is not completely
novel. Ref. [34] suggested a projection step in unadjusted Langevin algorithm for sampling
from a log-concave distribution with compact support. Ref. [10] proposed an MALA
for constrained optimization, where they used a similar step to constrain the Markov
chain to stay at a given state space. Due to the favorable properties on the boundary of
constrained domain X = B(x∗, R), we can establish the theoretical results of Algorithm 2;
see Lemma A1 in Appendix B for details.

3.2. Norm-Constrained Domain

Regularization is a technique commonly used in machine-learning and statistical
modeling. As discussed in [38], some models with regularization can be reformulated as
the distributions with norm-constraint on the parameters. Notice that the Lp-norm for the
vector x = (x1, x2, . . . , xd)

T ∈ Rd is defined as

|x|p =


( d

∑
i=1
|xi|p

)1/p

, p ∈ (0, ∞)

max
1≤i≤d

|xi| , p = ∞ .
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For the norm-constrained domain X = {x ∈ Rd : |x|p ≤ C} with some universal constant
C > 0, we can transform it into the Euclidean ball B(0, 1) via a vector-valued function
f : X 7→ B(0, 1). Specifically, for any x = (x1, x2, . . . , xd)

T ∈ X , we have y = f (x) =:
{ f1(x), f2(x), . . . , fd(x)}T with

fi(x) =


C−p/2sgn(xi)|xi|p/2 , p ∈ (0, ∞)

xi
|x|∞
C|x|2

, p = ∞
, 1 ≤ i ≤ d

such that y ∈ B(0, 1). Due to the bijective nature of the function f : X 7→ B(0, 1), its
inverse function f−1 =: g : B(0, 1) 7→ X can be defined accordingly. Similarly, for any
y = (y1, y2, . . . , yd)

T ∈ B(0, 1), we have x = g(y) =: {g1(y), g2(y), . . . , gd(y)}T with

gi(y) =


Csgn(yi)|yi|2/p , p ∈ (0, ∞)

Cyi
|y|2
|y|∞

, p = ∞
, 1 ≤ i ≤ d

such that x ∈ X . By utilizing the vector-valued functions f (·) and g(·) defined above, we
can employ the Euclidean ball constrained sampling algorithm, as described in Section 3.1,
to tackle the norm-constrained domain X = {x ∈ Rd : |x|p ≤ C}. The computational
process is outlined in Algorithm 3, where

πB(0,1)(x) =
exp{−U(x)}I{x ∈ B(0, 1)}∫

B(0,1) exp{−U(y)}dy

with the potential function U(·).

Algorithm 3 The MALA for norm-constrained domain

Input: a sample x0 ∈ X from an initial distribution P0, the step size h
for k = 0, 1, 2, . . . , K− 1 do

Transformation step: yk ← f (xk)
Proposal step: zk+1 ← yk − h∇U(yk) + ξ, where ξ ∼ N (0, 2hIp)
Accept-reject step:
if zk+1 ∈ B(0, 1) then

compute αk+1 = min
{

1,
φh(yk | zk+1)πB(0,1)(zk+1)

φh(zk+1 | yk)πB(0,1)(yk)

}
sample uk+1 from the uniform distribution on [0, 1]
if αk+1 ≥ uk+1, then yk+1 ← zk+1

else yk+1 ← yk

end if
else yk+1 ← yk

end if
Transformation step: xk+1 ← g(yk+1)

end for
Output: x1, x2, . . . , xK

Compared with Algorithm 2, the Algorithm 3 achieves the X → B(0, 1) → X
transformation by incorporating two transformation steps, thereby addressing the norm-
constrained sampling problems. The main purpose of this approach is to facilitate theo-
retical analysis by leveraging the well-understood properties of the boundary of the Eu-
clidean ball compared to the boundary of the norm-constrained domain; see Appendix B.7
for details.
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3.3. Constrained Langevin Algorithm via an Approximation of the Indicator Function

We proceed to discuss the constrained sampling for more general constraint regions.
Given X ∈ Rd, define

ιX (x) =: − log{I(x ∈ X )} =
{

0 , If x ∈ X
∞ , If x /∈ X

(4)

for any x ∈ Rd. Then, the target distribution Π∗ with density defined as (3) can be
reformulated as

π∗(x) =
exp{−VX (x)}∫
X exp{−V(y)}dy

(5)

with the potential function VX : Rd 7→ R satisfying

VX (·) = U(·) + ιX (·) , (6)

where ιX (·) is defined in (4). Notice that ιX (·) is a convex function on Rd. Under
Assumption 1, we then know that the potential function VX (·) is smooth and strongly
convex on Rd. By this transformation, the problem of constrained sampling is apparently
converted into an unconstrained counterpart. However, the non-differentiability of the
function VX (·) on the boundary of X poses a challenge when applying the gradient-based
unconstrained sampling algorithms. To address this issue, we can approximate the function
ιX (·) by a differentiable function such as the Moreau-Yosida (MY) envelope [35]. The MY
envelope of ιX (·) is defined as

ιλX (x) = inf
y∈Rd
{ιX (x) + (2λ)−1|x− y|22} = (2λ)−1|x− ProX (x)|22 (7)

for any x ∈ Rd, where λ > 0 is a regularization parameter and ProX (·) is the projection
function onto X . By [35], the function ιλX (·) is convex and continuously differentiable with
the gradient

∇ιλX (x) = λ−1{x− ProX (x)} (8)

for any x ∈ Rd, and it holds that

|∇ιλX (x)−∇ιλX (y)|2 ≤ λ−1|x− y|2 (9)

for any x, y ∈ Rd. Then the approximation of VX (·) defined as (6) can be given by

Vλ
X (·) = U(·) + ιλX (·) , (10)

which is continuously differentiable, smooth and strongly convex on Rd if U(·) satisfying
Assumption 1. Define the distribution Π∗,λ with density

π∗,λ(x) =
exp{−Vλ

X (x)}∫
Rd exp{−Vλ(y)}dy

. (11)

Recall that the target distribution Π∗ with the reformulated density defined as (5). As
discussed in [35], under some mild conditions including Assumptions 1 and 2, the approxi-
mation error between Π∗ and Π∗,λ in total variation distance can be made arbitrarily small
by adjusting the regularization parameter λ. Therefore, we can utilize the gradient-based
unconstrained sampling algorithms, such as the MALA presented in Algorithm 1, for
constructing an appropriate Markov chain whose stationary distribution is close to Π∗; see
Algorithm 4 for details, where φλ

h (· | x) denotes probability density function of the Gaussian
distribution N{x− h{∇U(x) +∇ιλX (x)}, 2hId} with ∇ιλX (·) defined as (8).
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Algorithm 4 The MALA for convex constrained domain

Input: a sample x0 ∈ Rd from an initial distribution P0, the step size h
for k = 0, 1, 2, . . . , K− 1 do

Proposal step: yk+1 ← xk − h{∇U(xk) +∇ιλX (xk)}+ ξ, where ξ ∼ N (0, 2hIp)
Accept-reject step:

compute αk+1 = min
{

1,
φλ

h (xk | yk+1)π∗,λ(yk+1)

φλ
h (y

k+1 | xk)π∗,λ(xk)

}
sample uk+1 from the uniform distribution on [0, 1]
if αk+1 ≥ uk+1, then xk+1 ← yk+1

else xk+1 ← xk

end if
end for

Output: x1, x2, . . . , xK

4. Theoretical Results

In this section, we first analyze the properties of the Markov chains determined by
the three constrained sampling algorithms presented in Section 3, and then establish the
mixing time bounds of these Markov chains.

4.1. Properties of the Markov Chains

The outcomes {x1, . . . , xK} from each algorithm presented in Section 3 form a Markov
chain, whose properties are established in Propositions 1, 2, and 3, respectively, as below.

Proposition 1. For X = B(x∗, R) with some universal constant R > 0 and x∗ ∈ Rd, the Markov
chain determined by Algorithm 2 is Π∗-irreducible, smooth, and reversible with respect to the
stationary distribution Π∗ with density π∗ defined as (3) (The definition of the Π∗-irreducible,
reversible, and smooth Markov chain is deferred to Appendix A).

Remark 1. Proposition 1 shows that the Markov chain determined by Algorithm 2 enjoys a series
of nice properties as the unconstrained MALA, which form the basis for the study of the mixing time
bounds of such Markov chain.

The similar properties hold for the Markov chains determined by Algorithms 3 and 4
as well.

Proposition 2. For X = {x ∈ Rd : |x|p ≤ C} with some universal constant C > 0, the Markov
chain determined by Algorithm 3 is Π∗-irreducible, smooth, and reversible with respect to the
stationary distribution Π∗ with density π∗ defined as (3).

Proposition 3. Under Assumption 2, the Markov chain determined by Algorithm 4 is Π∗,λ-
irreducible, smooth, and reversible with respect to the distribution Π∗,λ with density π∗,λ defined
as (11).

4.2. Mixing Time Bounds of the Markov Chains

For a distribution Π supported on X ⊂ Rd with the density π, recall that the ε-mixing
time with respect to Π is defined as (2). A β-warm initial distribution P0 with density
p0 with respect to the distribution Π is commonly used for the mixing time analysis,
which satisfies

sup
x∈X

p0(x)
π(x)

≤ β

for some finite constant β > 0. We say that the Markov chain is ς-lazy if at each iteration
the chain is forced to stay at the previous state with probability at least ς. It is a convenient
assumption for theoretical analysis of the convergence rate, but not likely to be used in
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practice since the lazy steps slow down the mixing rate of Markov chain. Given the defini-
tions above and some Markov chain basics in Appendix A, we can obtain the following
results for some well-behaved Markov chains defined on {X , B(X )}.

Lemma 1. Consider a reversible, Π-irreducible, ς-lazy, and smooth Markov chain defined on
{X , B(X )} with stationary distribution Π supported on X . For any error tolerance ε ∈ (0, 1)
and β-warm initial distribution P0, the ε-mixing time with respect to Π satisfying

τ(ε;P0, Π) ≤
⌈

4
ς

∫ ε−2

4β−1

dv
vΩ̃2(v)

⌉
,

where τ(ε;P0, Π) and Ω̃(·) are defined, respectively, in (2) and (A4).

Remark 2. Lemma 1 provides a control on the mixing time of a Markov chain on X in terms of
Ω̃(·). This result can be seen as an extension of Lemma 3 in [33] to the case where a Markov chain
defined on {X , B(X )}. We then can readily derive the mixing time bound if a lower bound for
Ω̃(·) is known.

The following lemma gives a lower bound for Ω(·).

Lemma 2. Assume that the distribution Π supported on X with the density π satisfy the log-
isoperimetry inequality defined as (A1) for some constant ĉ > 0. If a reversible Markov chain with
stationary distribution Π satisfies supx,y∈X : |x−y|2≤∆ ‖Tx − Ty‖TV ≤ 1− δ for some δ ∈ (0, 1)
and ∆ > 0, it then holds that

Ω(v) ≥ δ

4
min

{
1,

∆
4ĉ

log1/2
(

1 +
1
v

)}
for any v ∈ (0, 1/2], where Tx is the one-step transition distribution of this Markov chain at x ∈ X
and Ω(·) is the conductance profile of this Markov chain defined in (A3).

Remark 3. Lemma 2 states a lower bound for the conductance profile of a Markov chain on X .
Similar results can be found in the [33,39,40]. Lemma 2, together with Lemma 1, provides a general
framework for obtaining mixing time bound of a well-behaved Markov chain on X .

Based on Lemmas 1 and 2, we can drive the upper bounds for each ε-mixing time of
the Markov chains determined by the three constrained sampling algorithms presented in
Section 3.

Theorem 1. ForX = B(x∗, R) with some universal constant R > 0 and x∗ ∈ Rd, let Assumption 1
hold with L3/8R3/4 ≥ 16/

√
d + 8 and L−15/8m2R1/4 ≥ 12d. Given a β-warm initial distribution

P0 and an error tolerance ε ∈ (0, 1), the Markov chain determined by Algorithm 2 satisfies

τ(ε;P0, Π∗) = O
(

L7/4R3/2d
m

log
log β

ε

)
for any step size h satisfying

1
L7/4R3/2d

≤ h ≤ min
[

R2(1− c̃)2

4{log1/2(16/u) +
√

d}2
,

√
u

4
√

3L3/2R
,

u
128L{log1/2(16/u) +

√
d}2

]
with c̃ = {1 + (L−7/2R−3d−2 − L−11/4R−3/2d−1)m2}1/2 and some constant u ∈ (1/2, 1),
where Π∗ with density π∗ defined as (3).

Remark 4. Theorem 1 presents a sharp mixing time bound for Algorithm 2 with a β -warm initial
distribution as Õ{d log(1/ε)} up to β and L, m, R which are specified in Assumptions 1 and 2.
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This result improves upon the previously known mixing time bounds for constrained sampling
algorithms in [34–36]; see Table 1 for details.

Table 1. Convergence rates for sampling from log-concave distributions with bounded support.

Assumptions ‖ · ‖TV Rate Algorithms

0Id � ∇2U(x) � LId Õ(d12ε−12) PLMC in [34]
mId � ∇2U(x) � LId Õ(d5ε−6) MYULA in [35]

mId � ∇2U(x) Õ(dε−2) MLD in [36]

mId � ∇2U(x) � LId Õ{d log(1/ε)} Algorithms 2 and 3 in
this paper

mId � ∇2U(x) � LId Õ(d3ε−2) Algorithm 4 in this paper

For sampling from the norm-constrained domain X = {x ∈ Rd : |x|p ≤ C} with some
universal constant C > 0, we transform it into the sampling from Euclidean ball B(0, 1) as
shown in Algorithm 3; then, the similar result holds for the Markov chain determined by
Algorithm 3 as well.

Corollary 1. For X = {x ∈ Rd : |x|p ≤ C} with some universal constant C > 0, let
Assumption 1 hold with L3/8 ≥ 16/

√
d + 8 and L−15/8m2 ≥ 12d. Given a β-warm initial distri-

bution P0 and an error tolerance ε ∈ (0, 1), the Markov chain determined by Algorithm 3 satisfies

τ(ε;P0, Π∗) = O
(

L7/4d
m

log
log β

ε

)
for any step size h satisfying

1
L7/4d

≤ h ≤ min
[

(1− c̄)2

4{log1/2(16/u) +
√

d}2
,
√

u
4
√

3L3/2
,

u
128L{log1/2(16/u) +

√
d}2

]
with c̄ = {1 + (L−7/2d−2 − L−11/4d−1)m2}1/2 and some constant u ∈ (1/2, 1), where Π∗ with
density π∗ defined as (3).

For the Markov chain determined by Algorithm 4, we can also derive a sharp mixing
time bound by the mixing time analysis for sampling from log-concave distribution without
constraints in [33] and the approximation error between Π∗ and Π∗,λ in [35].

Theorem 2. Let Assumptions 1 and 2 hold, and assume that there exists a universal constant
C̃ > 0 such that exp{infx∈X c U(x) − supx∈X U(x)} ≥ C̃. Given the initial distribution
P0 = N{x?, (L + λ?−1)−1 Id} with x? = arg minx∈Rd Vλ?

X (x) and an error tolerance ε ∈ (0, 1),
the Markov chain determined by Algorithm 4 satisfies

τ(ε;P0, Π∗) = O
[
(L + λ?−1)d

m
log

d
ε
·max

{
1,

√
L + λ?−1

dm

}]
for the step size h satisfying

h = c
1

(L + λ?−1)d ·max
{

1,
√

L+λ?−1

dm

}
with some universal constant c > 0, where Vλ?

X (·) is defined as in (10) with λ? := 8π−1ε2r2d−2C̃2,
and Π∗ with density π∗ defined as (3).
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Remark 5. Theorem 2 presents a mixing time bound for Algorithm 4 with a feasible initial dis-
tribution as O{d3ε−2 log(d/ε)} up to L, m, r which are specified in Assumptions 1 and 2 if we
choose the regularization parameter λ = λ?. This result improves upon the mixing time bound for
constrained sampling algorithm without incorporating the Metropolis–Hastings step in [35]; see
Table 1 for details.

5. Numerical Experiments

In this section, we conduct numerical experiments to validate the theoretical prop-
erties derived in Section 4 and compare the constrained sampling algorithms presented
in Section 3 with three competing MCMC algorithms for sampling from constrained log-
concave distributions listed in Table 1 under various simulation settings. The implementa-
tion of these algorithms involves the selection of a step size. For Algorithms 2 and 3, we
follow Theorem 1 and Corollary 3, respectively, to select the step size. For Algorithm 4, we
choose the step size as that in [32] for the MALA for sampling from log-concave distribution
without constraints. The step size choice of the other three MCMC algorithms follows the
recommendation in the associated papers; see Table 2 for details.

Table 2. Step sizes for sampling from log-concave distributions with bounded support.

Algorithms Step Size

PLMC in [34] L−1d−2

MYULA in [35] {d max(d, L)}−1

MLD in [36] the grid search
Algorithm 2 in this paper L−7/4R−3/2d−1

Algorithm 3 in this paper L−7/4d−1

Algorithm 4 in this paper {(L + λ?−1)max[d, {m−1d(L + λ?−1)}1/2]}−1

5.1. Sampling from the Euclidean Ball Constrained Domain

We consider the problem of sampling from a truncated multivariate Gaussian distri-
bution on X , which admits the density

π∗(x) ∝ exp
{
− (x− µ)TΣ−1(x− µ)

2

}
I(x ∈ X ) ,

where the mean µ = 0 and covariance matrix Σ ∈ Rd×d is a diagonal matrix with
λmax(Σ) = 10 and λmin(Σ) = 1. For this target distribution, the potential function U(·)
and its derivatives are given as U(x) = 2−1xTΣ−1x, ∇U(x) = Σ−1x, and ∇2U(x) = Σ−1.
Therefore, the function U(·) is smooth with parameter L = λ−1

min(Σ) and strongly convex
with parameter m = λ−1

max(Σ) on Rd. We select X = B(0, R) with R = 5, the initial distribu-
tion P0 = NX {0, (2L)−1 Id}, and use the inverse transformation algorithm [14] to generate
an initial point from P0. We compare Algorithm 2 with the three sampling algorithms
in literature given in Table 2, and follow the recommendation in the associated papers to
choose the initial points of the three sampling algorithms.

5.1.1. The Trace Graphs of Sampling Algorithms

To initiate a preliminary assessment of the convergence properties of these algo-
rithms, we commence with simple sample trace plots. Write x = (x1, . . . , xd)

T ∈ Rd and
µ = (µ1, . . . , µd)

T ∈ Rd. Figure 1 depicts the traces of x1 of the Markov chains determined
by the four sampling algorithms under dimension d = 10. Evidently, in comparison to the
other three algorithms, Algorithm 2 exhibits a notably faster mixing time, as evidenced by
the trace consistently remaining around its mean µ1 = 0. Conversely, the traces of the other
three sampling algorithms exhibit greater fluctuations and deviate more from µ1 = 0.



Entropy 2023, 25, 1234 12 of 27

PLMC

Iterations

0 500 1000

−
4

−
2

0
2

4

MYULA

Iterations

0 500 1000

−
4

−
2

0
2

4

MLD

Iterations

0 500 1000

−
4

−
2

0
2

4

Algorithm 2

Iterations

0 500 1000
−

4
−

2
0

2
4

Figure 1. The trace graphs of x1 of the Markov chain determined by the four sampling algorithms.

Figure 2 illustrates the histograms and densities corresponding to these traces of x1.
Similarly, it is evident that Algorithm 2 achieves sample means closer to µ1 = 0, along with
the least variance. Conversely, the sample means obtained from the other three sampling
algorithms exhibit a certain degree of deviation from µ1 = 0, accompanied by heavier tails.
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Figure 2. The densities of x1 of the Markov chain determined by the four sampling algorithms.

5.1.2. Dimension and Error Dependence of Algorithm 2

The goal of this simulation is to demonstrate that the dimension and error tolerance
dependence of the mixing time bound for Algorithm 2 both conform to the theoretical
results shown in Theorem 1.

Since the total variation distance between continuous measures is hard to estimate,
we use the error in quantiles along some direction for convergence diagnostics in the
experiments. In the spirit of [33], we measure the error in the 95% quantile of the sample
distribution and the true distribution in the direction along the eigenvector of Σ corre-
sponding to λmin(Σ). The approximate mixing time k̂mix(ε) is then defined as the smallest
iteration k when such error between the distribution of the Markov chain at iteration k
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and the target distribution falls below the error tolerance ε. We simulate 20 independent
runs of the Markov chain of the algorithms with N = 20,000 samples at each run to deter-
mine the approximate mixing time k̂mix(ε). Then the final k̂mix(ε) is the average of these
20 independent runs.

Figure 3a shows the dependence of the approximate mixing time k̂mix(0.2) as a function
of dimension d for Algorithm 2. By the linear regression for k̂mix(0.2) with respect to d, we
conclude that the mixing time of Algorithm 2 is linear in d with slope 4.137 and R-squared
0.991. Figure 3b presents the dependence of the approximate mixing time k̂mix(ε) on the
inverse of the error tolerance ε−1 for Algorithm 2 under d = 4. The linear regression for
the approximate mixing time k̂mix(ε) with respect to ε−1 suggests that the mixing time of
Algorithm 2 is linear in log(ε−1) with slope 15.854 and R-squared 0.994, which is consistent
with the theoretical results given in Theorem 1.
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Figure 3. Approximate mixing time with respect to dimension and error tolerance of Algorithm 2.
(a) Dimension dependence for fixed error tolerance. (b) Error tolerance dependence for fixed dimension.

5.1.3. Comparison with Competitive Algorithms

Figure 4a shows the dependence of the approximate mixing time k̂mix(0.2) on the problem
dimension d for the four sampling algorithms. Compared with the other three algorithms,
the approximate mixing time of Algorithm 2 seems more robust to dimension. When
d is small, the approximate mixing time of the four algorithms is comparatively close.
However, as the dimension d increases, the approximate mixing time of PLMC and MYULA
increases rapidly, showing a polynomial order with respect to d. Moreover, the dimension
dependence of MLD and Algorithm 2 both indicate a linear growth trend, and MLD needs
a few more steps than Algorithm 2 to reach the same error tolerance.

Figure 4b presents the dependence of the approximate mixing time k̂mix(ε) on the
inverse of the error tolerance ε−1 for the four sampling algorithms under d = 4. The
regression analysis shows that the approximate mixing time k̂mix(ε) of PLMC and MYULA
increases in polynomial order of ε−1. When ε−1 is relatively small, MLD and Algorithm 2
have similar approximate mixing time. With the increase in ε−1, the strength of Algorithm 2
gets more significant. For MLD, the linear regression for the approximate mixing time
k̂mix(ε) with respect to ε−2 yields a slope of 1.934 and R-squared 0.984, suggesting the error
tolerance dependence of order ε−2.

It is noteworthy that the above analysis not only suggests significantly better dimen-
sion and error tolerance dependence of the constrained MALA but also partly verifies the
theoretical convergence rates of the three methods for comparison.
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Figure 4. Approximate mixing time with respect to dimension and error tolerance dependence of the
four sampling algorithms. (a) Dimension dependence for fixed error tolerance. (b) Error tolerance
dependence for fixed dimension.

5.2. Bayesian Regularized Regression

The regularized regression involves adding a penalty term on the objective function of
the regression model, which helps to control the complexity of the model and prevent it
from fitting the noise in the data. In this section, we validate the effectiveness of Algorithm 3
for constrained sampling involving the Bayesian regularized regression.

Given the independent and identically observations y = (y1, y2, . . . , yn)T ∈ Rn which
follow from the Gaussian distribution with mean Xβ and covariance matrix σ2 In, we
consider the regression models where the parameter are obtain by minimizing the square
of Euclidean norm of the residual subject to a norm-constraint on the regression parameter
as follows:

min
β∈Rd

|y− Xβ|22 subject to |β|p ≤ C

for some universal constant C > 0, where X ∈ Rn×d is the design matrix, β ∈ Rd is the
regression parameter, and |β|p is the Lp-norm of β. In Bayesian setting, many regularization
techniques correspond to imposing certain prior distributions on model parameters. We
then consider sampling from the distribution with density

π∗(x) ∝ exp
{
−
|y− Xβ|22

2σ2

}
I(x ∈ X ) ,

and obtaining the parameter estimates β̂ via the maximum a posteriori probability (MAP)
estimate, where X = {x ∈ Rd : |x|p ≤ C}. We use the diabetes data studied in [41], and
set the burn-in period to be 103 iterations and σ2 = 1. Figure 5 presents the paths of the
parameter estimates under different norm constraints, which demonstrate that Algorithm 3
can effectively handle the norm-constrained sampling problems.



Entropy 2023, 25, 1234 15 of 27

0 500 1000 1500 2000 2500 3000

−
60

0
−

20
0

0
20

0
40

0
60

0

L1 norm−constrained

C
oe

ffi
ci

en
ts

0 2 4 6 8 10 10

(a)

0 500 1000 1500 2000 2500 3000

−
60

0
−

20
0

0
20

0
40

0
60

0

L1.5 norm−constrained

C
oe

ffi
ci

en
ts

0 3 4 6 8 10 10

(b)

0 500 1000 1500 2000

−
20

0
0

20
0

40
0

L2 norm−constrained

C
oe

ffi
ci

en
ts

10 10 10 10 10

(c)

Figure 5. Bayesian regularized regression via Algorithm 3, where distinct colors represent various
trajectories of parameter estimates for distinct variables. (a) L1—norm-constraint. (b) L1.5—norm-
constraint. (c) L2—norm-constraint.

5.3. Truncated Multivariate Gaussian Distribution

The final comparison was made by examining the sampling performance of MYULA
in [35] and Algorithm 4 in the setting of a more general truncated multivariate Gaussian
distribution. We consider the same setup as in [35]. Specifically, the density of the target
distribution is defined as follows:

π∗(x) ∝ exp
{
− (x− µ)TΣ−1(x− µ)

2

}
I(x ∈ X ) ,

where X is a convex set and the origin 0 is on its boundary. Let µ = 0, the covariance matrix
Σ ∈ Rd×d with (i, j)-th element given by (Σ)i,j = 1/(1 + |i − j|), and X = [0, 5]× [0, 1].
We generate 106 samples for Algorithm 4, and set the burn-in period to be the initial
10% iterations.

Table 3 presents the mean and covariance estimation results of the target distribution
based on the samples generated by MYULA and Algorithm 4. For comparison purposes,
the results of MYULA align with those reported in [35]. With the same number of iterations,
Algorithm 4 outperforms MYULA in terms of the estimation results. This indicates that
incorporating the Metropolis–Hastings step in Algorithm 4 leads to improvements in the
mixing time.

Table 3. The mean and covariance estimation results obtained by MYULA and Algorithm 4.

Assumptions Mean Covariance

The truth
(

0.790
0.488

) (
0.326 0.017
0.017 0.080

)
MYULA

(
0.758± 0.052
0.484± 0.016

) (
0.309± 0.038 0.017± 0.009
0.017± 0.009 0.088± 0.002

)
Algorithm 4

(
0.781± 0.034
0.491± 0.009

) (
0.317± 0.012 0.017± 0.004
0.017± 0.004 0.082± 0.003

)

6. Discussion and Conclusions

In this article, we propose three sampling algorithms based on Langevin Monte Carlo
with the Metropolis–Hastings steps to handle the distribution constrained within some
convex body, and establish the mixing time bounds of these algorithms for sampling from
strongly log-concave distributions. Under certain conditions, these bounds are sharper than
existing algorithms in the literature. Furthermore, in comparison to existing algorithms,
the suggested constrained sampling algorithms are simpler, more intuitive, and easier to
operate in some cases.

Our results demonstrate that the sampling algorithm, enhanced with the Metropolis–
Hastings step, offers an effective solution for tackling some constrained sampling problems.
Numerical experiments fully illustrate the advantages of the proposed algorithms. Al-
though we focus on the strongly log-concave distributions in the theoretical analysis, the
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proposed algorithm can be readily applied to weakly log-concave distributions or non-
convex potential functions. Simultaneously, we recognize that there are various aspects
of the sampling algorithms that can be further improved. For instance, potential enhance-
ments could involve the multiple importance sampling methods or adaptive techniques.
We leave the investigation of its theoretical properties under such scenarios for future work.
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Appendix A. Some Markov Chain Basics

Consider the time-homogeneous (We say that a Markov chain is time-homogeneous in
which the probability of any state transition is independent of time.) Markov chains defined
on a measurable state space {X , B(X )} with a transition probability Ψ : X ×B(X ) 7→
[0, 1]. The transition probability satisfies

Ψ(x, dy) ≥ 0 ∀ x ∈ X , and
∫

y∈X
Ψ(x, dy) = 1 .

The k-th step transition probability defined recursively as

Ψk(x, dy) =
∫

z∈X
Ψk−1(x, dz)Ψ(z, dy) .

For a distribution Π on X , a Markov chain defined on {X , B(X )} is called Π-irreducible
if for each A ∈ B(X ) with Π(A) > 0 and each x ∈ X , there exists k ∈ N such that
Ψk(x, A) > 0. A Markov chain defined on {X , B(X )} with transition probability Ψ:
X ×B(X ) 7→ [0, 1] and stationary distribution Π is called reversible if it satisfies the
detailed balance condition Π(dx)Ψ(x, dy) = Π(dy)Ψ(y, dx) for any x, y ∈ X .

Smooth chain assumption. We say that the Markov chain satisfies the smooth chain
condition if its transition probability Ψ : X ×B(X ) 7→ [0, 1] can be expressed in the form

Ψ(x, dy) = ψ(x, y)dy + ιxδx(dy)

for any x, y ∈ X , where ψ(· , ·) is the transition kernel satisfying ψ(x, y) ≥ 0 for any
x, y ∈ X , ιx denotes the one-step probability of the chain to stay at its current state x, and
δx(·) is the Dirac-delta function at x.

Log-isoperimetric inequality. A distribution Π supported on X with density π is said
to satisfy the log-isoperimetry inequality with some constant ĉ > 0 if

Π(S3) ≥
d(S1, S2)

2ĉ
min{Π(S1), Π(S2)} log1/2

[
1 +

1
min{Π(S1), Π(S2)}

]
(A1)

for any partition (S1, S2, S3) of X , where Π(Si) =
∫

Si
π(x)dx and d(S1, S2) =

infx∈S1,y∈S2 |x− y|2.
Conductance profile. Given a Markov chain with transition probability Ψ : X ×

B(X ) 7→ [0, 1] and stationary distribution Π with density π, its stationary flow ω(·) :
B(X ) 7→ R is defined as

ω(S) =
∫

S
Ψ(x, Sc)π(x)dx (A2)
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for any S ∈ B(X ). For any v ∈ (0, 1/2], the conductance profile is given by

Ω(v) = inf
S: Π(S)∈(0,v]

ω(S)
Π(S)

. (A3)

Furthermore, the extended conductance profile is defined as

Ω̃(v) =

{
Ω(v) , v ∈ (0, 1/2] ,

Ω(1/2) , v ∈ (1/2, ∞) .
(A4)

Appendix B. Proofs

Appendix B.1. Proof of Proposition 1

Proof of Proposition 1. Denote by Ψ(x, ·) the transition probability of the Markov chain
at x ∈ X determined by Algorithm 2. For any x ∈ X , let Px,h = N{x − h∇U(x), 2hId}
with the step size h. Write the density of Px,h as φh(· | x). For any x ∈ X , denote by
αx(y) = min{1, Rx(y)} the acceptance probability for any y ∈ Rd, where

Rx(y) =
π∗(y)φh(x | y)
π∗(x)φh(y | x)

I(y ∈ X ) .

Then, the transition probability of the associated Markov chain at x ∈ X has a probability
mass ψx = 1−

∫
X φh(y | x)αx(y)dy. Define the transition kernel

ψ(x, y) = φh(y | x)αx(y)I(y ∈ X \ {x})

for x ∈ X . Then, the transition probability Ψ : X ×B(X ) 7→ [0, 1] satisfies

Ψ(x, dy) = ψxδx(dy) + ψ(x, y)dy , (A5)

where δx(·) is the Dirac-delta function at x. By the smooth chain condition given in
Appendix A, we know the Markov chain with the transition probability Ψ(· , ·) is smooth.

Recall that Π∗ is the distribution on X with the density π∗ defined as (3). Since

αx(y)π∗(x)φh(y | x) = αy(x)π∗(y)φh(x | y)

for any x, y ∈ X , then π∗(x)ψ(x, y) = π∗(y)ψ(y, x) for any x, y ∈ X . Together with (A5),
for any A, B ∈ B(X ), it holds that∫

A
π∗(x)Ψ(x, B)dx =

∫
A∩B

π∗(x)ψx dx +
∫
(x,y)∈A×B

π∗(x)ψ(x, y)dxdy

=
∫

B
π∗(x)ψxδx(A)dx +

∫
(x,y)∈A×B

π∗(y)ψ(y, x)dxdy

=
∫

B
π∗(x)Ψ(x, A)dx

with δx(A) = I(x ∈ A), which implies Π∗(A) =
∫

A π∗(x)Ψ(x,X )dx =
∫
X π∗(x)Ψ(x, A)dx

for any A ∈ B(X ). Thus, Π∗ is the stationary distribution of the Markov chain with the
transition probability Ψ(· , ·). Hence, such Markov chain is reversible.

Furthermore, by (A5), we have

Ψ(x, A) = ψxδx(A) +
∫

A
ψ(x, y)dy

for any x ∈ X and A ∈ B(X ). For any A ∈ B(X ) with Π∗(A) > 0, due to Π∗(A) =∫
A π∗(x)dx, we know the Lebesgue measure of A is nonzero. Since αx(y) ≤ 1 and
X = B(x∗, R) for some universal constant R > 0 and x∗ ∈ Rd, we know ψx ≥ 1 −∫
X φh(y | x)dy > 0 for any x ∈ X . If A = {x}, Ψ(x, A) ≥ ψx > 0. If A 6= {x}, we know the
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Lebesgue measure of A \ {x} is also nonzero, which implies Ψ(x, A) ≥
∫

A\{x} ψ(x, y)dy > 0.
Thus, the Markov chain with the transition probability Ψ(· , ·) is Π∗-irreducible. We com-
plete the proof of Proposition 1.

Appendix B.2. Proof of Proposition 2

Proof of Proposition 2. Recall X = {x ∈ Rd : |x|p ≤ C} for some universal constant
C > 0. Notice that the additional two steps are introduced in Algorithm 3 only for the
purpose of establishing a one-to-one mapping between {x ∈ Rd : |x|p ≤ C} and B(0, 1),
and they do not affect the properties of the Markov chain. Using the same arguments in
the proof of Proposition 1, we can obtain the results of Proposition 2.

Appendix B.3. Proof of Proposition 3

Proof of Proposition 3. The proof is almost identical to that of Proposition 1. Recall the
distribution Π∗,λ with density

π∗,λ(x) =
exp{−Vλ

X (x)}∫
X exp{−Vλ(y)}dy

,

where Vλ
X (·) = U(·) + ιλX (·) with ∇ιλX (·) defined as (8). Let φλ

h (· | x) be the probability
density function of the Gaussian distribution N{x − h{∇U(x) + ∇ιλX (x)}, 2hId}. We
only need to replace {Π∗, π∗, φh(· | x)} which appeared in the proof of Proposition 1 by
{Π∗,λ, π∗,λ, φλ

h (· | x)} and all the arguments still hold.

Appendix B.4. Proof of Lemma 1

Proof of Lemma 1. We introduce some notation first. Denote by π the density function of
Π, and L2(π) the space of square integrable functions defined on X under the density π,
that is, ∫

X
g2(x)π(x)dx < ∞

for any g ∈ L2(π). The Dirichlet form EΨ : L2(π) × L2(π) 7→ R associated with the
transition probability Ψ(· , ·) is defined as follows:

EΨ(g, h) =
1
2

∫
(x,y)∈X 2

{g(x)− h(y)}2Ψ(x, dy)π(x)dx . (A6)

For any g ∈ L2(π), let

Eπ(g) =
∫
X

g(x)π(x)dx and Varπ(g) =
∫
X
{g(x)−Eπ(g)}2π(x)dx .

For a measurable non-empty subset S ⊂ X , the spectral gap is defined as

λ(S) = inf
g∈c+0 (S)

EΨ(g, g)
Varπ(g)

,

where c+0 (S) = {g ∈ L2(π) : supp(g) ⊂ S, g ≥ 0, Varπ(g) > 0}. Define the spectral profile
Λ(·) as

Λ(v) = inf
S: Π(S)∈(0,v]

λ(S) (A7)
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for any v ∈ (0, ∞). If the current state of a Markov chain admits the distribution P with
density p, we write T (p) as the distribution of its next state. The proof of Lemma 1 includes
two steps. The first step is to show

τ(ε;P0, Π) ≤ 1
ς

∫ ε−2

4β−1

dv
vΛ(v)

.

The second step is to show that the spectral profile and the conductance profile defined in
(A3) are related as

Λ(v) ≥


Ω2(v)

2
, v ∈ (0, 1/2] ,

Ω2(1/2)
4

, v ∈ (1/2, ∞) .

Notice that Π(X ) = 1. Replacing the restricted conductance profile and restricted spectral
gap in the proof of Lemma 1 in [33] by the conductance profile and spectral gap, respectively,
and using the similar arguments in the proof of Lemma 1 in [33], we can obtain the results
of the two steps. Then, Lemma 1 can be constructed immediately.

Appendix B.5. Proof of Lemma 2

Proof of Lemma 2. Denote by π the density function of the distribution Π. For any mea-
surable non-empty subset A1 ⊂ X such that 0 < Π(A1) ≤ 1/2, we have Π(A2) ≥ 1/2 ≥
Π(A1), where A2 = X \ A1. Given δ > 0, we define the following sets

A′1 = {x ∈ A1 : Ψ(x, A2) < δ/2} , A′2 = {x ∈ A2 : Ψ(x, A1) < δ/2}

and A′3 = X \ (A′1
⋃

A′2), where Ψ : X ×B(X ) 7→ [0, 1] is the transition probability of the
considered Markov chain.

On the one hand, if Π(A′1) ≤ Π(A1)/2, then Π(A1 \ A′1) ≥ Π(A1)/2. Thus,∫
A1

Ψ(x, A2)π(x)dx ≥
∫

A1\A′1
Ψ(x, A2)π(x)dx ≥ δ

2

∫
A1\A′1

π(x)dx ≥ δ

4
Π(A1) .

Similarly, if Π(A′2) ≤ Π(A2)/2, we have
∫

A2
Ψ(x, A1)π(x)dx ≥ δΠ(A2)/4. By the de-

tailed balance condition and the Fubini’s theorem, it holds that∫
A1

Ψ(x, A2)π(x)dx =
∫

x∈A1

∫
y∈A2

Ψ(x, dy)π(x)dx

=
∫

x∈A1

∫
y∈A2

Ψ(y, dx)π(y)dy

=
∫

A2

Ψ(y, A1)π(y)dy =
∫

A2

Ψ(x, A1)π(x)dx . (A8)

Therefore, if Π(A′1) ≤ Π(A1)/2 or Π(A′2) ≤ Π(A2)/2, we have∫
A1

Ψ(x, A2)π(x)dx ≥ δ

4
min{Π(A1), Π(A2)} =

δ

4
Π(A1) .

On the other hand, we consider the case with Π(A′1) > Π(A1)/2 and Π(A′2) >
Π(A2)/2. Notice that Tx(·) = Ψ(x, ·). By the definition of the total variation distance, for
any x ∈ A′1 and y ∈ A′2, we have

‖Tx − Ty‖TV ≥ Ψ(x, A1)−Ψ(y, A1) = 1−Ψ(x, A2)−Ψ(y, A1) > 1− δ .
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Since supx,y∈X : |x−y|2≤∆ ‖Tx − Ty‖TV ≤ 1 − δ, we know |x − y|2 > ∆, which implies
d(A′1, A′2) := infx∈A′1,y∈A′2

|x− y|2 ≥ ∆. Recall A′3 = X \ (A′1
⋃

A′2). By (A8),

∫
A1

Ψ(x, A2)π(x)dx =
1
2

∫
A1

Ψ(x, A2)π(x)dx +
1
2

∫
A2

Ψ(x, A1)π(x)dx

≥ 1
2

∫
A1\A′1

Ψ(x, A2)π(x)dx +
1
2

∫
A2\A′2

Ψ(x, A1)π(x)dx

≥ δ

4
Π(A′3) . (A9)

Since Π(A′1) > Π(A1)/2, Π(A′2) > Π(A2)/2 and the sets (A′1, A′2, A′3) partition X , by the
log-isoperimetry inequality given in (A1), it holds that

Π(A′3) ≥
d(A′1, A′2)

2ĉ
min{Π(A′1), Π(A′2)} log1/2

[
1 +

1
min{Π(A′1), Π(A′2)}

]
≥ ∆

4ĉ
min{Π(A1), Π(A2)} log1/2

[
1 +

2
min{Π(A1), Π(A2)}

]
≥ ∆

4ĉ
Π(A1) log1/2

{
1 +

1
Π(A1)

}
, (A10)

where the second inequality follows from the fact that x log1/2(1 + x−1) is non-decreasing
in x > 0. By (A9) and (A10), we have

∫
A1

Ψ(x, A2)π(x)dx ≥ δ∆
16ĉ

Π(A1) log1/2
{

1 +
1

Π(A1)

}
.

Putting the two cases together, it holds that

ω(A1) =
∫

A1

Ψ(x, A2)π(x)dx ≥ δ

4
Π(A1)min

[
1,

∆
4ĉ

log1/2
{

1 +
1

Π(A1)

}]
for any measurable non-empty subset A1 ⊂ X with 0 < Π(A1) ≤ 1/2. Due to
infx∈(0,v] log1/2(1 + x−1) = log1/2(1 + v−1), by the definition of the conductance profile
given in (A9), we have

Ω(v) ≥ δ

4
min

{
1,

∆
4ĉ

log1/2
(

1 +
1
v

)}
for any v ∈ (0, 1/2]. We complete the proof of Lemma 2.

Appendix B.6. Proof of Theorem 1

For any x ∈ X , letPx,h = N{x− h∇U(x), 2hId}with the step size h. ForX = B(x∗, R)
with some universal constant R > 0 and x∗ ∈ Rd, without loss of generality, we set
x∗ = arg minx∈Rd U(x). Under Assumption 1, we know ∇U(x∗) = 0.

Lemma A1. Let X = B(x∗, R) for some universal constant R > 0 and x∗ = arg minx∈Rd U(x),
and Assumption 1 hold. For any step size h ∈ (0, 2L−1] with L specified in Assumption 1, it
holds that

‖Px,h −Px,h‖TV ≤
|x− y|2√

2h
(A11)

for any x, y ∈ X . Furthermore, if L3/8R3/4 ≥ 16d−1/2 + 8 and L−15/8m2R1/4 ≥ 12d, for any
u ∈ (1/2, 1), it holds that

sup
x∈X
‖Px,h − Tx‖TV ≤

u
4

(A12)
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for any step size h satisfying

1
L7/4R3/2d

≤ h ≤ min
[

R2(1− c̃)2

4{log1/2(16u−1) +
√

d}2
,

√
u

4
√

3L3/2R
,

u
128L{log1/2(16u−1) +

√
d}2

]
with c̃ = {1+ (L−7/2R−3d−2− L−11/4R−3/2d−1)m2}1/2, where m is specified in Assumption 1,
and Tx is the one-step transition distribution of the associated Markov chain involved in Algorithm 2
at x ∈ X .

Proof of Lemma A1. Firstly, we prove the first claim (A11) of this lemma. Recall Px,h =
N{x− h∇U(x), 2hId} with the step size h. For any x, y ∈ X , by the Pinsker’s inequality,
we have

‖Px,h −Py,h‖TV ≤
√

2KL(Px,h ‖ Py,h) = (2h)−1/2|{x− h∇U(x)} − {y− h∇U(y)}|2 ,

where KL(Px,h ‖ Py,h) is the Kullback–Leibler divergence between Px,h and Py,h. Under
Assumption 1, by the Taylor expansion, it holds that

|{x− h∇U(x)} − {y− h∇U(y)}|2 = |{Id − h∇2U(z)}(x− y)|2
≤ ‖Id − h∇2U(z)‖2|x− y|2

for some z lying on the jointing line between x and y. Since X = B(x∗, R) for some universal
constant R > 0 and U(·) is L-smooth and m-strongly convex onX , by Theorems 2.1.6 and 2.1.11
of [42], we have mId � ∇2U(z) � LId. Due to h ∈ (0, 2L−1], then

λmax{Id − h∇2U(z)} ≤ λmax(Id) + λmax{−h∇2U(z)} ≤ 1−mh ≤ 1 ,

and

λmin{Id − h∇2U(z)} ≥ λmin(Id) + λmin{−h∇2U(z)} ≥ 1− Lh ≥ −1

for all z ∈ X . Therefore, we can obtain supz∈X ‖Id − h∇2U(z)}‖2 ≤ 1, which implies that

‖Px,h −Py,h‖TV ≤
|x− y|2√

2h

for any x, y ∈ X . It yields the claim (A11).
Next, we will prove the second claim (A12) of this lemma. Write the density of Px,h as

φh(· | x). Notice that the one-step transition distribution of the associated Markov chain at
x ∈ X has a probability mass

Tx({x}) = 1−
∫
X

φh(z | x)αx(z)dz ,

and admits a transition kernel φh(z | x)αx(z)I(z ∈ X \ {x}), where

αx(z) = min
{

1,
π∗(z)φh(x | z)
π∗(x)φh(z | x)

I(z ∈ X )

}
.

By the definition of the total variation distance, we have

‖Px,h − Tx‖TV =
1
2
Tx({x}) +

1
2

∫
Rd
|φh(z | x)− φh(z | x)αx(z)I(z ∈ X\{x})|dz

= 1−
∫
X

φh(z | x)αx(z)dz

= 1−Ez∼Px,h αx(z)
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for any x ∈ X . By the Markov’s inequality, it holds that

Ez∼Px,h αx(z) ≥ CPz∼Px,h

{
π∗(z)φh(x | z)I(z ∈ X )

π∗(x)φh(z | x)
≥ C

}
(A13)

for any C ∈ (0, 1]. In the sequel, we will derive a lower bound for this tail probability.
Notice that

π∗(z)φh(x | z)
π∗(x)φh(z | x)

= exp
[

4h{U(x)−U(z)}+ |z− x + h∇U(x)|22 − |x− z + h∇U(z)|22
4h

]
.

For the numerator of this exponent, we have

4h{U(x)−U(z)}+ |z− x + h∇U(x)|22 − |x− z + h∇U(z)|22
= 4h{U(x)−U(z)}+ |z− x|22 + |h∇U(x)|22 + 2h(z− x)T∇U(x)

− |x− z|22 − |h∇U(z)|22 − 2h(x− z)T∇U(z)

= 2h{U(x)−U(z)− (x− z)T∇U(x)}+ 2h{U(x)−U(z)− (x− z)T∇U(z)}
+ h2{|∇U(x)|22 − |∇U(z)|22} .

Since U(·) is L-smooth and m-strongly convex on X , it holds that

U(x)−U(z)− (x− z)T∇U(x) ≥ − L
2
|x− z|22 , U(x)−U(z)− (x− z)T∇U(z) ≥ m

2
|x− z|22

for any x, z ∈ X . By the Cauchy–Schwarz’s inequality, triangle inequality, and
Theorem 2.1.5 of [42], we know

|∇U(x)|22 − |∇U(z)|22 = {∇U(x) +∇U(z)}T{∇U(x)−∇U(z)}
≥ −|∇U(x) +∇U(z)|2|∇U(x)−∇U(z)|2
≥ −|∇U(x) +∇U(z)−∇U(x) +∇U(x)|2L|x− z|2
≥ −{2|∇U(x)|2 + L|x− z|2}L|x− z|2

for any x, z ∈ X . Since X = B(x∗, R) for some universal constant R > 0 and x∗ =
arg minx∈Rd U(x), by Assumption 1, it holds that

|∇U(x)|2 = |∇U(x)−∇U(x∗)|2 ≤ L|x− x∗|2 ≤ LR

for any x ∈ X . Thus,

π∗(z)φh(x | z)
π∗(x)φh(z | x)

≥ exp
{
− L−m

4
|x− z|22 −

hL2R
2
|x− z|2 −

hL2

4
|x− z|22︸ ︷︷ ︸

T

}
(A14)

for any x, z ∈ X . Since z ∼ Px,h = N{x− h∇U(x), 2hId} and ∇U(x∗) = 0, we have

|x− z|2 = |h∇U(x)− (2h)1/2ξ|2 ≤ h|∇U(x)|2 + (2h)1/2|ξ|2 ≤ hLR + (2h)1/2|ξ|2

and |x− z|22 ≤ 2h2L2R2 + 4h|ξ|22 for some ξ ∼ N (0, Id), which implies

T ≥ −3
2

h2L3R2 − 2hL|ξ|22 −
1√
2

h3/2L2R|ξ|2
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if hL ≤ 1. Recall X = B(x∗, R). Under Assumption 1, by Theorems 2.1.5, 2.1.9 and 2.1.10
of [42], it holds that

|x− h∇U(x)− x∗|22 = |x− x∗|22 − 2h(x− x∗)T∇U(x) + h2|∇U(x)|22
≤ |x− x∗|22 + (h2 − hL−1)|∇U(x)|22
≤ {1 + (h2 − hL−1)m2}R2 ≤ R2

for any x ∈ X if hL ≤ 1. Recall z = x − h∇U(x) + (2h)1/2ξ. Select c̃ ∈ (0, 1) satisfying
c̃2 = 1 + (L−7/2R−3d−2 − L−11/4R−3/2d−1)m2, which can be guaranteed by L ≥ m and
L3/8R3/4 ≥ 16d−1/2 + 8. Then

|z− x∗|2 ≤ Rc̃ + (2h)1/2|ξ|2

for any h ∈ [L−7/4R−3/2d−1, L−1 − L−7/4R−3/2d−1]. For such selected h, we have

{|ξ|2 ≤ (2h)−1/2R(1− c̃)} ⊂ {z ∈ X} .

Since L3/8R3/4 ≥ 16d−1/2 + 8 and L−15/8m2R1/4 ≥ 12d, by Lemma 1 of [43], for any given
u ∈ (1/2, 1), we have

Pz∼Px,h

(
T ≥ −u

8
, z ∈ X

)
≥ P

{
T ≥ −u

8
, |ξ|2 ≤

R(1− c̃)√
2h

}
≥ P

{
|ξ|22 ≤

R2(1− c̃)2

2h

}
− P

{(√
3
2

hL3/2R +
√

2hL|ξ|2
)2

≥ u
8

}
≥ P

[
|ξ|22 ≤ 2

{
log1/2

(
16
u

)
+
√

d
}2]
− P

(
|ξ|22 ≥

u
64hL

)
≥ 1− u

8

for any step size h satisfying

1
L7/4R3/2d

≤ h ≤ min
[

R2(1− c̃)2

4{log1/2(16u−1) +
√

d}2
,

√
u

4
√

3L3/2R
,

u
128L{log1/2(16u−1) +

√
d}2

]
.

Together with (A14), it holds that

Pz∼Px,h

{
π∗(z)φh(x | z)I(z ∈ X )

π∗(x)φh(z | x)
≥ exp

(
− u

8

)}
≥ 1− u

8

for any x ∈ X . Select C = exp(−u/8) in (A13). Due to exp(−u/8) ≥ 1− u/8, we have

Ez∼Px,h αx(z) ≥
(

1− u
8

)2

≥ 1− u
4

,

which implies ‖Px,h − Tx‖TV ≤ u/4 for any x ∈ X . Therefore, we have the result (A12). We
complete the proof of Lemma A1.

Lemma A2. LetX = B(x∗, R) for some universal constant R > 0 and x∗ ∈ Rd, and Assumption 1
hold. The target distribution Π∗ with density π∗ defined as (3) satisfies the log-isoperimetry
inequality given in (A1) with constant ĉ = m−1/2, where m is specified in Assumption 1.
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Proof of Lemma A2. Let p denote the density of the Gaussian distributionN (0, σ2 Id), and
let Π be a distribution with density π = q · p, where q is a log-concave function supported
on X . From Lemma 16 in [33], it holds that

Π(S3) ≥
d(S1, S2)

2σ
min{Π(S1), Π(S2)} log1/2

[
1 +

1
min{Π(S1), Π(S2)}

]
(A15)

for any partition S1, S2, S3 of X .
We now prove that the target distribution Π∗ with density π∗ defined as (3) satisfies

the log-isoperimetry inequality defined as (A1). Notice that

π∗(x) =
(

2π

m

)d/2 exp{−U(x) + m|x|22/2}∫
X exp{−U(y)}dy

I(x ∈ X ) ·
exp(−m|x|22/2)
(2π/m)d/2 ,

where U(·) is m-strongly convex on X . By Theorem 2.1.11 of [42], we know U(·)−m| · |22/2
is convex on X . Since the indicator function I(· ∈ X ) is log-concave on X and the class
of log-concave functions is closed under multiplication, then π∗ can be expressed as the
product of a log-concave function and the density of the normal distribution N (0, m−1 Id).
By (A15), the distribution Π∗ satisfies the log-isoperimetry inequality defined as (A1) with
constant ĉ = m−1/2. We complete the proof of Lemma A2.

Proof of Theorem 1. Let T L
x be the one-step transition distribution of the Markov chain

determined by the 1/2-lazy version of Algorithm 2, at x ∈ X . Then we have

T L
x (A) =

1
2

δx(A) +
1
2
Tx(A)

for any A ∈ B(X ), where δx(·) is the Dirac-delta function at x ∈ X and Tx is the one-step
transition distribution of the associated Markov chain determined by Algorithm 2, at x ∈ X .
By the definition of lazy chain and Proposition 1, we know that the Markov chain with
transition distribution T L

x is 1/2-lazy, Π∗-irreducible, smooth, and reversible with respect
to the distribution Π∗ with density π∗ defined as (3).

Recall Px,h is the proposal distribution involved in Algorithm 2 and the 1/2-lazy
version of Algorithm 2. For any x, y ∈ X such that |x − y|2 ≤ (2−1h)1/2u for some
u ∈ (1/2, 1) and the step size h satisfying h ≥ L−7/4R−3/2d−1 and

h ≤ min
[

R2(1− c̃)2

4{log1/2(16u−1) +
√

d}2
,

√
u

4
√

3L3/2R
,

u
128L{log1/2(16u−1) +

√
d}2

]
with c̃ = {1 + (L−7/2R−3d−2 − L−11/4R−3/2d−1)m2}1/2, by the triangle inequality and
Lemma A1, it holds that

‖T L
x − T L

y ‖TV ≤
1
2
+

1
2
‖Tx − Ty‖TV

≤ 1
2
+

1
2
(‖Tx −Px,h‖TV + ‖Px,h −Py,h‖TV + ‖Py,h − Ty‖TV)

≤ 1 + u
2

.

Recall X = B(x∗, R) for some universal constant R > 0 and x∗ ∈ Rd. Under Assumption 1,
Lemma A2 implies that the distribution Π∗ with density π∗ satisfies the log-isoperimetry
inequality given in (A1) with constant ĉ = m−1/2. Using Lemma 2 with δ = 2−1(1− u)
and ∆ = (2h)1/2u, we have

Ω(v) ≥ 1− u
8

min
{

1,
u
√

hm
4
√

2
log1/2

(
1 +

1
v

)}
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for any v ∈ (0, 1/2], where Ω(·) is the conductance profile defined in (A3) for Markov
chain with transition distribution T L

x . For the above selected u and h, define the function

Υ(v) =


1− u

8
min

{
1,

u
√

hm
4
√

2
log1/2

(
1
v

)}
, v ∈ (0, 1/2]

1− u
8

min
{

1,
u
√

hm
4
√

2
(log 2)1/2

}
, v ∈ (1/2, ∞)

for any v > 0. Recall that

τ(ε;P0, Π∗) = min{k ∈ N : ‖T k(P0)−Π∗‖TV ≤ ε}

for an error tolerance ε ∈ (0, 1), where T k(P0) is the distribution of the Markov chain with
transition distribution T L

x at the k-th step. Let

Ω̃(v) =

{
Ω(v) , v ∈ (0, 1/2] ,

Ω(1/2) , v ∈ (1/2, ∞) .

be the extended conductance profile of such Markov chain. By Lemma 1, it holds that

τ(ε;P0, Π∗) ≤
⌈

8
∫ ε−2

4β−1

dv
vΩ̃2(v)

⌉
≤
⌈

8
∫ ε−2

4β−1

dv
vΥ2(v)

⌉
.

If β > 8 and h ≤ 32u−2{m log(β/4)}−1, it then holds that

u
√

hm
4
√

2
(log 2)1/2 <

u
√

hm
4
√

2
log1/2

(
β

4

)
≤ 1 ,

which implies

τ(ε;P0, Π∗) = O
(

1
hm

log
log β

ε

)
.

Together with h ≥ L−7/4R−3/2d−1, we complete the proof of Theorem 1.

Appendix B.7. Proof of Corollary 1

Proof of Corollary 1. Recall X = {x ∈ Rd : |x|p ≤ C} for some universal constant
C > 0. Since the additional two steps are introduced in Algorithm 3 only transforming
the sampling from the norm-constrained region {x ∈ Rd : |x|p ≤ C} to the Euclidean
ball B(0, 1), the convergence rate of the two processes remains consistent. Using the same
arguments in the proof of Theorem 1 with R = 1 and x∗ = 0, we can obtain the results of
Corollary 1.

Appendix B.8. Proof of Theorem 2

Proof of Theorem 2. Recall that the distribution Π∗,λ with density

π∗,λ(x) =
exp{−Vλ

X (x)}∫
Rd exp{−Vλ(y)}dy

for a regularization parameter λ > 0, where Vλ
X (·) is defined as in (10), and the target

distribution Π∗ with density

π∗(x) =
exp{−U(x)}I(x ∈ X )∫
X exp{−U(y)}dy
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for some potential function U : Rd 7→ R. Under Assumptions 1 and 2, if there exists a uni-
versal constant C̃ > 0 such that exp{infx∈X c U(x)− supx∈X U(x)} ≥ C̃, by Proposition 4
in [35], we have

‖Π∗,λ −Π∗‖TV ≤ ε (A16)

for λ = 8π−1ε2r2d−2C̃2 with the error tolerance ε ∈ (0, 1), where r > 0 is specified in
Assumption 2.

Notice that Vλ
X (·) = U(·) + ιλX (·) with ιλX (·) defined as (7). Under Assumption 1,

by (9) and Theorem 2.1.5 in [42], we know that the function Vλ
X (·) is twice continuously dif-

ferentiable, (L + λ−1)-smooth and m-strongly convex on Rd. Given the initial distribution
P0 = N{x?, (L + λ−1)−1 Id} with x? = arg minx∈Rd Vλ

X (x) and an error tolerance ε ∈ (0, 1),
by Theorem 5 of [33], the Markov chain determined by Algorithm 4 satisfies

τ(ε;P0, Π∗,λ) = O
[
(L + λ−1)d

m
log

d
ε
·max

{
1,

√
L + λ−1

dm

}]
with the step size

h = c
1

(L + λ−1)d ·max
{

1,
√

L+λ−1

dm

} ,

where c > 0 is a universal constant. Together with (A16), by the definition of ε-mixing time
and the triangle inequality, we have

τ(ε;P0, Π∗) = O
[
(L + λ−1)d

m
log

d
ε

max
{

1,

√
L + λ−1

dm

}]
with λ = 8π−1ε2r2d−2C̃2. Hence, we complete the proof of Theorem 2.
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