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Abstract: We investigate the stochastic dynamics of the prey–predator model of the Low-to-High
confinement mode (L-H) transition in magnetically confined fusion plasmas. By considering stochas-
tic noise in the turbulence and zonal flows as well as constant and time-varying input power Q, we
perform multiple stochastic simulations of over a million trajectories using GPU computing. Due
to stochastic noise, some trajectories undergo the L-H transition while others do not, leading to a
mixture of H-mode and dithering at a given time and/or input power. One of the consequences of
this is that H-mode characteristics appear at a smaller input power Q < Qc (where Qc is the critical
value for the L-H transition in the deterministic system) as a secondary peak of a probability density
function (PDF) while dithering characteristics persists beyond the power threshold for Q > Qc as a
second peak. The coexisting H-mode and dithering near Q = Qc leads to a prominent bimodal PDF
with a gradual L-H transition rather than a sudden transition at Q = Qc and uncertainty in the input
power. Also, a time-dependent input power leads to increased variability (dispersion) in stochastic
trajectories and a more prominent bimodal PDF. We provide an interpretation of the results using
information geometry to elucidate self-regulation between zonal flows, turbulence, and information
causality rate to unravel causal relations involved in the L-H transition.

Keywords: magnetic fusion plasmas; non-equilibrium statistics; L-H transition; bifurcation;
information geometry; non-perturbative analysis; causality

1. Introduction

Magnetically confined fusion of high-temperature plasmas aims to provide limitless
environmentally friendly energy. The main challenge in achieving this aim is to maintain a
high temperature of the core plasmas for a sufficiently long time to extract enough fusion
energy that exceeds the energy input needed to heat the plasmas. This is the so-called
confinement problem, which has been difficult to address, as plasmas in fusion devices
tend to be unstable with various instabilities and become turbulent, with anomalous loss
of energy, much larger than what is expected from collisional processes [1]. Furthermore,
plasmas can be far from equilibrium with strong time-varying fluctuations where the
traditional equilibrium statistical theory based on small fluctuations and short memory time
become invalid. Examples would include avalanche-like events that can play an important
role in turbulent transport [2–5], e.g., through their interaction with shear (zonal) flows.

One of the promising candidates for improved confinement regimes in fusion reactors
is the high-confinement mode (H-mode), where the confinement time is increased by
roughly a factor of two compared with the low-confinement mode (L-mode). The transition
from the L-mode to H-mode, the so-called L-H transition, is considered to be a bifurcation
of edge plasmas where the order parameter is a radial electric field E, which drives an
E × B shear flow in the poloidal direction. Here, B is a magnetic field, which has a strong
toroidal component in conventional tokamaks. The L-H transition has been one of the most
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active area of fusion research over the last 40 years since its first discovery in the 1980s [6]
due to its reproducibility and importance for future fusion devices (such as ITER) [7] and
STEP [8], among others.

More specifically, the L-H transition occurs as the input power approaches a critical
value—the power threshold—and is believed to be caused by the turbulence reduction
by radially sheared E × B flows [9–18]. The latter can involve two types of flows—mean
shear flows driven by the mean pressure gradient and zonal flows internally driven by
turbulence. As zonal flows grow from turbulence and then regulate turbulence when they
are sufficiently strong, zonal flows and turbulence constitute a self-regulating system, their
time-evolution leading to prey–predator type limit-cycle oscillations, commonly observed
in population dynamics. Given the ubiquity of self-regulation and shear flow suppres-
sion of turbulence [19–22] in many other systems including astrophysical, geophysical,
and environmental dynamics, the study of the L-H transition will help us understand
other systems.

Of particular note is the universality of the L-H transition across models, fusion
devices, and experiments. Specifically, the L-H transition has experimentally been observed
in different tokamaks and reversed pinches and simulated using different approximations
of plasma turbulence ranging from reduced ODE to fluid to gyrokinetic models [9–14,18].
The scaling relation of the power threshold is studied in terms of the mean values of
several important variables (toroidal magnetic fields, electron density, etc.). In particular,
the qualitative feature of the L-H transition was modelled through a deterministic prey–
predator model [12] involving a prey (turbulence amplitude), a predator (zonal flow), and
a super-predator (mean flow), where a zonal flow was shown to facilitate the transition by
reducing turbulence prior to the transition before the mean shear flow locks the plasmas
in H-mode.

However, the turbulence characteristics in L-mode are very variable; for instance,
the RMS values of fluctuating electron density and turbulence velocity are highly time-
varying. Furthermore, there is growing evidence for micro avalanches or transport
events [5] occurring on time scales smaller than a typical L-H transition time of O(1)
ms in edge plasmas from experiments and simulations, suggesting the importance of
stochastic noise in the L-H transition. Furthermore, experimental studies have shown a
large scatter in the power threshold (e.g., see [23]). To address this, [24–26] investigated the
effects of stochastic noise on turbulence amplitude and zonal flows by extending [12] to a
stochastic prey–predator L-H transition model and calculated time-dependent probability
density functions (PDFs) by solving the Fokker–Planck (F-P) equation [27]. The results re-
vealed that the L-H transition can involve strongly non-Gaussian PDFs with multiple peaks
and intermittent zonal flows, which can play a key role in suppressing turbulence. We [28]
applied the PDF methods to analyze time-series data of density fluctuations, perpendicular
velocity, and, more recently, magnetic fluctuations, confirming some of the findings from
the stochastic prey-predator models in [24,25].

The main aim of this paper is twofold. The first is to elucidate the mechanism un-
derlying multimodal PDFs found from the F-P approach [24–26] by investigating how
each stochastic trajectory evolves over time, undergoes the L-H transition, and affects a
PDF shape. The second is to investigate how zonal flows and turbulence interact and are
causally related prior to and during the L-H transition. To address these, in this paper,
we perform multiple systematic stochastic simulations using GPU computing [29] and
present a thorough statistical analysis utilizing information theory [30–33], in particular,
information geometric theory [34–38], summarized in Section 2.

The remainder of the paper is organized as follows. Section 2 summarizes information
geometric theory and proposes an instantaneous transfer entropy to quantify time-varying
statistics. Section 3 presents the model and Section 4 provides the power threshold Qc for
the deterministic system. Section 5 and Section 6 discuss the results from δ function initial
conditions and Gaussian initial distributions, respectively. Section 7 compares the results
from additive and multiplicative zonal noises. Conclusions are found in Section 8.
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2. Information Geometry and Instantaneous Transfer Entropy

Information theory has become increasingly popular since it provides a fundamental
entity with which one can describe complex systems as well as connecting seemingly
different phenomena in terms of “information” (e.g., [33]). We focus on information
geometric theory, which is a subset of a broader information theory. In simple terms,
information geometry quantifies the distinguishability of two probability distributions with
a metric and provides a way of understanding the difference between any two PDFs [34–38].
For time-dependent stochastic processes, the concept of information rate was proposed by
comparing temporally adjacent PDFs (see review papers [37,38]) and by quantifying the
rate at which a PDF changes, which signifies how fast a system changes its statistical states
over time.

Furthermore, while there are causality analyses using information theory, such as
mutual information [39], transfer entropy [39–45], and information flow [46,47], their
formulation is based on entropy, which is a global measure of a PDF that is insensitive to the
local arrangement of a PDF. Furthermore, entropy-based causality measures may not pick
up a sudden change in mean values, as shown for information flow [48]. In comparison, the
causal information rate based on information geometry is sensitive to the local arrangement
of a PDF (e.g., a PDF shape) with the capability of capturing an abrupt event [48].

In this section, we summarize the definitions of information rate and causal informa-
tion rate while proposing instantaneous transfer entropy to analyze the results in Section 6.

2.1. Information Rate

In order to quantify the temporal change in a PDF, we use a dimensionless quantity,
the information length L, and its time derivative Γ = dL

dt [37,38,49,50], which are defined by

L(t) =
∫ t

0
Γ(t1)dt1, Γ(t)2 =

1
τ(t)2 =

∫
dx

1
p(x, t)

[
∂p(x, t)

∂t

]2

. (1)

The unit of Γ in Equation (1) is time−1; τ represents a dynamic time unit for how
quickly a PDF p(x, t) changes; L(t) measures the clock time in units of τ(t) and quantifies
the total number of statistically different states that x passes through between time 0 and
t, starting from some initial PDF p(x, 0). Consequently, L(t) represents the cumulative
change in p(x, t), taking into account the uncertainty due to a finite width of p(x, t). We
note that L(t) depends on p(x, t′) for all t′ ∈ [0, t] depending on the evolution of p(x, t)
and is independent of the (time-independent) change in variables. We showed that L, as a
path-dependent measure, is useful for understanding dynamics that have a long memory
time and hysteresis involved in phase transitions [49] (e.g., the L-H transition), while Γ is
useful for quantifying correlations [37,50] and forecasting abrupt events [51]. In particular,
a strong correlation between two switching species was captured by the similar evolution
of L(t) of these two species [50] despite the different time-evolutions of their PDFs.

For a system with two variables x1, x2, we define the information length and rate for
the ith variables (i = 1, 2) as

Li(t) =
∫ t

0
dt1 Γi(t1) (2)

Γ2
i =

∫
dxi

1
p(xi, t)

[
∂p(xi, t)

∂t

]2

. (3)

Since Γi and Li depend on the time history of xi, we can quantify the correlation or
causality between xi and xj (i ̸= j) by comparing Γi and Γj (i ̸= j).

2.2. Causal Information Rate

Ref. [48] proposed the causal information rate Γi→j for i ̸= j (i, j = 1, 2) from the
variable Xi to Xj using a bivariant joint PDF p(Xi, t1; Xj, t2) at different times t1 and t2, its
equal-time joint PDF p(Xi, t; Xj, t) ≡ p(Xi, Xj, t), the conditional entropy p(Xj, t2|Xi, t1) =
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p(Xj, t2; Xi, t1)/p(Xi, t1), and the marginal PDFs p(Xi, t) =
∫

dXj p(Xi, Xj, t) and p(Xj, t) =∫
dxi p(Xi, Xj, t) as follows:

Γi→j ≡ Γ∗
j − Γj, (4)

Γ2
j ≡ Γj(t)2 =

∫
dXj p(Xj, t)

(
∂t ln (p(Xj, t)

)2, (5)

Γ2∗
j ≡ Γ∗

j (t)
2 = lim

t1→t+

∫
dXidXj p(Xj, t1; Xi, t)

(
∂t1 ln [p(Xj, t1|Xi, t)]

)2

= lim
t1→t+

∫
dXidXj p(Xj, t1; Xi, t)

(
∂t1 ln [p(Xj, t1; Xi, t)]

)2. (6)

Here, ∂t1 p(Xi, t) = 0 for t1 ̸= t was used; Γi =
1

τi(t)
represents the information rate of

Xi with its characteristic timescale τi(t); Γ∗
j represents the information rate of Xj for a given

(frozen) Xi. Subtracting Γj from Γ∗
j in Equation (4) then gives us the contribution of dynamic

(time-evolving) Xi to Γj, signifying how Xi instantaneously influences the information rate
of Xj. That is, the causal information rate quantifies how one variable affects the change
in the statistical state (PDF) of the other variable. Alternatively, it represents the effect of
the dynamic change in the statistical state of one variable due to the other. Γi→j ̸= Γj→i in
general, and the net causal information rate Γi→j − Γj→i quantifies the net effect of i on j.

Here, note that Equation (6) can be shown to be related to the infinitesimal relative
entropy (see Appendix A) as

Γ2∗
j = 2 lim

dt→0

1
(dt)2

∫
dXidXj p(Xj, t + dt; Xi, t) ln

[
p(Xj, t + dt; Xi, t)

p(Xj, Xi, t)

]
. (7)

2.3. Instantaneous Transfer Entropy

One popular information theoretical method for quantifying causality is transfer
entropy [39–41,43], which is based on the uncertainty reduction or the improvement in the
prediction of one variable by having the knowledge of the behaviour of another variable at
an earlier time. It was applied to understand causal relations involved in stationary data
from fusion plasma [44,45]. However, the usual definition of transfer entropy given in [40]
is only applicable to stationary states. Therefore, in this paper we define an instantaneous
transfer entropy applicable for non-stationary systems:

Ti→j(t) = lim
dt→0

∫
dXidXj p

(
Xj, t + dt; Xj, t; Xi, t

)
log2

p
(
Xj, t + dt; Xj, t; Xi, t

)
p
(
Xj, t

)
p
(
Xj, t; Xi, t

)
p
(
Xj, t + dt; Xj, t

) . (8)

Here, Ti→j denotes the instantaneous transfer entropy from
Xi to Xj; p

(
Xj, t + dt; Xj, t; Xi, t

)
denotes the joint PDF of Xj(t + dt), Xj(t), and Xi(t);

p
(
Xj, t + dt; Xj, t

)
represents the joint PDF of Xj(t + dt) and Xj(t); and p

(
Xj, t

)
is the

marginal PDF of Xj(t). We note that Ti→J is a directional quantity and is not symmetric in
i and j. Furthermore, Ti→j and Tj→i can take either positive or negative signs or vanish; the
net causality from i to j is quantified by Ti→j − Tj→i (e.g., see [44]).

Note that in the original definition of transfer entropy (e.g., see [40,44,45]), the PDFs
denote the distribution of values in a single time series trajectory and, hence, require sta-
tionarity to be meaningful, whereas in the case of instantaneous transfer entropy the PDFs
denote the distribution of stochastic trajectories at a specific instance in time. Note also that
for a Gaussian process, the transfer entropy is proportional to the Granger causality [42].

Furthermore, in analyzing time signals, the statistics needed to obtain joint/conditional
PDFs are calculated by sampling over time with some time lags. In comparison, we can
calculate the transfer entropy at any time from joint/conditional PDFs constructed from
the stochastic trajectories and present the time-dependent transfer entropy.
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2.4. Numerical Computation

Numerical computation of information geometric quantities and transfer entropy first
involves the estimation of PDFs of the distributions of stochastic trajectories. This can be
obtained by either solving the corresponding Fokker–Planck equation or by simulating an
ensemble of stochastic trajectories and estimating the PDFs. In this work, we prefer the
latter approach, since it scales better when large numbers of variables are involved and can
handle δ-function initial conditions.

For estimating PDFs, 10 million trajectories were simulated using a GPU. The time
steps were changed adaptively to meet an absolute local error tolerance of 10−6. For gener-
ating plots of univariate PDFs, the number of bins was chosen to be n = 2.6N1/3, where
N is the number of samples, which is 10 million in this case. This is a modified colorblue
version of Rice’s rule. The modification was made since the PDFs were often non-Gaussian
with sharper peaks.

Computing the causal information rate using Equation (4) involves estimating a uni-
variate PDF p

(
Xj, t

)
and a bivariate PDF p

(
Xj, t1; Xi, t

)
. The estimates were made using

histograms having 100 uniform bins along each dimension. The computation of instan-
taneous transfer entropy using Equation (8) involves univariate, bivariate, and trivariate
PDFs. The requirement of estimation of a trivariate PDF limits the number of bins and
25 uniform bins were used along each dimension. Note that these PDF estimates can in
principle be improved by using kernel density estimators, but the algorithm is computa-
tionally more expensive and requires a non-trivial choice of its bandwidth parameter for
accurate estimates.

Equation (4) contains terms of the form P(X, t)(∂t ln P(X, t))2. These terms are numer-
ically unstable when P(X, t) → 0 due to the presence of logarithms. Therefore, we use the
following identity to perform the computation:

P(X, t)(∂t ln P(X, t))2 = 4
(

∂t

√
P(X, t)

)2
(9)

The derivative can then be approximated using finite difference.

∂t

√
P(X, t) =

√
P(X, t + dt)−

√
P(X, t)

dt
+

δ[P]
dt

+O(dt2) (10)

Here O(dt2) is the truncation error in the finite difference scheme and δ[P] is the error
in the term

√
P(X, t + dt)−

√
P(X, t). For the 1D PDF estimate using a histogram [52],

δ[P] ∼
√

M/N, where M is the number of bins and N is the number of samples. In this
work, M ∼ 103 and N ∼ 106 and therefore, δ[P] ∼ 0.03. By minimizing the error term in
Equation (10) with respect to dt, we obtain dt ∼ 0.1. Note that we neglected some factors
that depend on P(X, t) and these will depend on the specific form of P(X, t). A detailed
numerical treatment of this problem can be found in [29]. Throughout the rest of this work
we use the value dt = 0.1 to approximate expressions in Equation (17) and Equation (8).

The numerical integrations were performed using the trapezoidal rule.

∫ b

a
f (x)dx ≈ ∆x

2

N

∑
k=1

( f (xk−1) + f (xk)), ∆x =
b − a

N
. (11)

3. Stochastic Prey–Predator Model

We recall that the prey–predator L-H transition model [12] consists of three coupled
ODEs for turbulence amplitude ϵ, zonal flow v, and density gradient N as follows:

dϵ

dt
= Nϵ − a1ϵ2 − a2V2ϵ − a3v2ϵ, (12)

dv
dt

=
b1ϵv

1 + b2V2 − b3v, (13)
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dN
dt

= −c1ϵN − c2N + Q. (14)

Here, ai, bi, and ci are non-negative constants, V = dN2 (with d a positive constant)
is the mean flow, and Q is the external heating that ultimately drives the entire system.
Equations (12)–(14) are identical to Equations (6)–(8) in [12]; v, ϵ, and N here correspond to
VZF, E , and N , respectively, in [12].

In Equation (12), ϵ grows due to the linear instability of the density gradient and are
damped due to nonlinear interaction and turbulence regulation by mean flows and zonal
flows. In Equation (13), zonal flows grow from turbulence inhibited by the mean flow
(1 + b2V2) and are damped due to linear (collisional) damping. The density gradient in
Equation (14) relaxes by turbulent transport and a neo-classical/collisional effect while
driven by the input power Q. We recall that the L-mode is a state of high turbulence ϵ and
low zonal flow v; dithering is of moderate ϵ and v; H-mode is a quiescent H-mode with
ϵ = v = 0 in this model.

In this paper, we focus on the 2D stochastic version of Equations (12)–(14), as the
previous studies [24,25]. Specifically, we first make the adiabatic approximation of N in
Equation (14) as

N =
Q

c1x2 + c2
. (15)

We then rewrite Equations (12) and (13) in terms of x = ±
√

ϵ and add the two
stochastic noises ξ and η (which were not considered in [12]) as follows:

dx
dt

= f + ξ, f =
1
2

[
N − a1x2 − a2V2 − a3v2

]
x, (16)

dv
dt

= g + η, g =
b1x2v

1 + b2V2 − b3v. (17)

Here, ξ and η are two independent δ-correlated Gaussian stochastic noises [27] that satisfy

⟨ξ(t)ξ(t′)⟩ = 2Dxδ(t − t′), ⟨η(t)η(t′)⟩ = 2Dvδ(t − t′),

⟨ξ(t)η(t′)⟩ = 0, ⟨ξ⟩ = ⟨η⟩ = 0, (18)

where the angular brackets denote averages. Dx and Dv are the amplitudes of the stochastic
noises ξ and η, affecting x and v, respectively.

The parameter values in Equations (16) and (17) are chosen to be the same as those
in [12,24,25], namely, a1 = 0.2, a2 = a3 = 0.7, b1 = 1.5, b2 = b3 = 1, c1 = 1, c2 = 0.5,
and d = 1. The behaviour of Equations (16) and (17) together with the condition (15) very
much depends on these parameter values, and our specific choice was made to qualitatively
reproduce the L-mode, dithering, and H-mode as Q increases. For c1 = 1, c2 = 0.5,
Equation (15) sets the critical turbulence amplitude xc =

√
c2
c1

= 0.717 above and below
which the damping of N is dominated by the transport by turbulence c1ϵ (typical of the
L-mode) and the collisional damping c2, respectively. One of the consequences of this is
discussed below in Sections 4 and 5. Furthermore, the zonal flow generation is severely
inhibited by the mean shear when V > b−1/2

2 = 1.
We note that [24] considered a linearly increasing input power Q(t) = 0.03t + 0.1

for t ∈ [0, 50] (Q ∈ [0.1, 1.6]), while [25] studied the forward and backward transitions
associated with the L-H and H-L transition using a linear increasing and then decreasing
input power. In both studies, the initial condition was a narrow Gaussian PDF p(x, v, 0) ∝
exp[−((|x| − 0.5)2 + v2)/5 · 10−3] centered around x = 0.5 and v = 0.

4. Power Threshold Qc for the 2D Deterministic System

Before presenting the results for the stochastic system, it is useful to note that, for the
deterministic system with Dx = Dv = 0 in Equations (17) and (18) and a constant power Q,
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whether the system evolves to the H-mode or not in the long time limit depends on the
initial condition x(0) and v(0). For instance,

• For x(0) = 0.5, v(0) = 0.1, 0.01, Qc = 0.832.
• For x(0) = 0.707, v(0) = 0.01, Qc = 0.919.
• For x(0) = 0.5, v(0) = 0.2, Qc = 0.830.

Here, Qc again denotes the power threshold in the deterministic model in Equa-
tions (12)–(14) above and calculated to the third decimal point.

In order to explore this dependence further, we first simulate 4000 different initial
x0 = [0.01, 4] for a fixed v0 = 0.01 and determine the corresponding Qcs. Qc is then plotted
against x0 in the left panel of Figure 1, which reveals three distinct regions. First, for small
x0 < xc (≈ 0.7), Qc increases with x0, suggesting that a smaller Qc is required when Q is
applied suddenly (e.g., by a neutral beam) when the turbulence is rather weak.

0 1 2 3 4
x0

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Q
c

Figure 1. Qc vs x0 with v0 = 0.01 (left); Qc vs. x0 for different v0 = [0.01, 3] (right).

Moreover, this region has a steady dithering solution (with an almost constant am-
plitude) for Q close to Qc (Q < Qc). Interestingly, recalling that collisional damping is
more important than turbulent transport (as noted above) for x0 < xc, our result of a low
Qc for a small x0 is reminiscent of the observation that once plasmas are in the H-mode,
the required power to keep the same plasma conditions is reduced due to increased energy
confinement time (hysteresis effect) [23].

For the intermediate x0 ≈ [xc, 2xc] ≈ [0.7, 1.4], Qc vs. x0 shows a more or less parabolic
behaviour and is associated with persistent finite-amplitude oscillations of the dithering
before the transition to the H-mode. This is caused by the damping of N via turbulence
transport, which is stronger than the collisional value for x = xc (as expected for the
L-mode). On the other hand, too large an initial value x0 > 2xc causes a rapid growth of
zonal flows, which in turn damps turbulence quickly, essentially creating a scenario very
similar to what happens to a small x0. This results in a decrease in Qc with x0.

In order to check the robustness of this tendency, we also explore the dependence
of Qc on v0 in addition to x0 and present the results as a heat map in the right panel of
Figure 1 using the color scheme shown on the right. The largest Qc (marked in dark red
color) occurs for x0 ≈ 0.9, v0 ≈ 0.7. Since these x0, v0 values are the characteristic amplitude
of a dithering solution, applying a constant Q in a dithering state will require a higher Qc
to lead to the transition to the H-mode. Further discussion of this is provided in Section 8.

The heat map in Figure 1 around this maximum Qc exhibits a remarkable symmetry
in x0 and v0, with an approximately circular or triangular shape. This can be explained by
the self-regulation between turbulence and zonal flow. In particular, for x0 ⪆ 0.9, v0 ⪆ 0.7,
Qc tends to monotonically decrease with v0 for a fixed x0 (or with x0 for a fixed x0), since
a strong zonal flow v0 rapidly damps turbulence, leading to a lower Qc. One conclusion
that we could thus draw from these observations is that any physical mechanism that
helps damping turbulence (e.g., a smaller collisional zonal damping) will facilitate the L-H
transition with a lower Qc. Also, in a very weak turbulence regime x0 ≪ xc, a sudden jump
in Q would give a smaller Qc, as noted earlier. Physically, this would suggest that applying
a set of neutral beams of a fixed voltage at the same time would be more advantageous
than applying each beam individually at different times.
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We will see shortly that a similar dependence of Qc on x0 persists in the stochastic 2D
model and discuss the implications.

5. δ-Function Initial Conditions and Constant Q

Here, we focus on investigating the effect of stochastic noise on Qc in comparison with
the deterministic case. To this end, we use initial conditions that are given by a δ-function
distribution. In passing, we note that in the previous study using the F-P method [24–26],
δ-function initial conditions could not be implemented due to a resolution problem in the
finite space difference numerical scheme. In comparison, a δ-function PDF is easily handled
in stochastic simulations. This also allows us to explore the transition to the H-mode, where
PDFs become very narrow, as shown below.

We first consider a δ-function initial condition of x(t = 0) = 0.5, v(t = 0) = 0.1, in which
case the power threshold is Qc = 0.832 in the deterministic model, as noted above. The strength
of the stochastic noise is chosen as Dx = Dv = 10−4. We explore how the system evolves to a
statistically stationary state in the long time limit for a given constant Q.

The main effect of the stochastic noises Dx and Dv is to induce stochastic trajectories,
as can be seen in Figure 2, which plots the time-evolution of stochastic trajectories of
200 samples for Q = 0.2, 0.7, 0.8, 0.9. The deterministic solution is over-plotted using a thick
black curve. Due to the finite Dx and Dv, the same initial condition evolves to different
stochastic trajectories. The larger Dx and Dv, the larger the dispersion (variability) in the
stochastic trajectories. Also, due to the stochastic noise, some of the trajectories cross v = 0
and take negative values v < 0.

Figure 2. Trajectories of x and v and the phase portrait of x − v, respectively, in the first, second
and third rows for δ-function initial condition with x(0) = 0.5 and v(0) = 0.1, Dx = Dv = 10−4

(Qc = 0832); Q = 0.2, 0.7, 0.8, 0.9 from left to right. The deterministic solution is over plotted by a
thick black curve for comparison.

To examine Figure 2 in detail, we recall that H-mode is characterized by x = v = 0,
while dithering is characterized by finite values of x, v. For Q = 0.2, all the trajectories
converge to a dithering state in the long term. For Q = 0.7, all trajectories again converge to
a dithering sate. However, for Q = 0.8 < Qc, some of the trajectories converge to H-mode,
while others remain in a dithering state, leading to a multimodal PDF. As Q increases,
the peak at x = v = 0 for the H-mode grows, while the one for dithering at finite x, v
becomes smaller. When Q is increased to Q = 0.9, all the trajectories converge to the
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H-mode. Thus, the complete transition to the H-mode occurs at a slightly higher Q > Qc
compared with the deterministic model, while the appearance of the H-mode characteristic
appears for a smaller Q < Qc.

To highlight this tendency, we show in Figure 3 the stationary PDFs of x, v obtained in the
long time limit of the simulations of 2 million trajectories for constant power Q = 0.80, 0.83, 0.85.
Quite similar behavior is observed for a slightly different initial condition x(t = 0) = 0.5 and
v(t = 0) = 0.01, and sample trajectories are shown in Figure A1 in Appendix B.

Figure 3. Stationary PDFs for Q = 0.8, 0.83, 0.85: δ-function initial condition with x(0) = 0.5 and
v(0) = 0.1, Dx = Dv = 10−4.

However, some initial conditions lead to quite different, interesting behaviour. Two
examples that we show in Figure 4 are the trajectories for x(0) = 0.8 and v(0) = 0.01 at
Q = 1 and x(0) = 3.5 and v(0) = 0.01 at Q = 0.58. Robust oscillations during dithering are
observed near Q < Qc in the upper panel. These dithering oscillations are very different
from the bursts in the lower panel due to the intermittent switching between the H- and
L-modes. Physically, the latter is due to the co-existence of two competing attractors and
the stochastic switching between the two. This suggests the possibility of alternation between
L- and H-modes just before the transition to the H-mode.

Figure 4. Trajectories for x(0) = 0.8 and v(0) = 0.01 at Q = 0.95 and x(0) = 3.5 and v(0) = 0.01 at
Q = 0.58 in the top and bottom panels.

Fraction of H-Mode and Comparison of Qc with the Deterministic Model

In the previous section, we observed that in a stochastic model, a slightly larger value of
Q is required for all the trajectories to converge to the H-mode in Figure 2. For convenience,
we call Q = Q100 the smallest Q where all the trajectories converge to the H-mode and
present their values in blue dots in Figure 5. The deterministic Qc is also shown in the
orange curve to help comparison.

However, we also observed that the H-mode characteristic appears for a lower Q < Qc,
so we define Q10 when 10 % of the population converge to the H-mode and show the results
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in the red dots in Figure 5. Obviously, Q10 < Qc < Q100 for moderate x0 values between
x0 = 0.2 and x0 = 2.8, illustrating that the transition to the H-mode would occur rather
gradually with Q. This physically means that there is uncertainty in the power threshold
due to stochastic noise.

Furthermore, the overall dependence of Q100 and Q10 on x0 is similar to Qc. Interest-
ingly, this dependence of Q100, Q10 on x0, in particular, a smaller Qc for a smaller x0 (< xc),
is consistent with the results of the recent paper [26], where one (big) single jump in Q to
Q∗ > Qc was found to facilitate the emergence of H-mode characteristics compared with
the case of three (small) jumps to the same Q∗ > Qc. Furthermore, these results highlight
that time-scheduling of the heating could be an important factor contributing to Qc.

Figure 5. Qc vs. x0 with v0 = 0.01.

Note that in Figure 5, the Q100 plot is noisy, since for some initial values x0 and v0,
H-mode is metastable with a long lifetime, as shown in Figure 4 bottom panel. The Q100
values were computed using the bisection method, where the fraction of H-mode trajec-
tories was calculated at each iteration by simulating 5000 trajectories for 2000 time units.
The metastability combined with the finite duration of the simulation thus resulted in some
error in the estimates.

6. Initial Distributions, Information Geometry, and Instantaneous Transfer Entropy

We now consider an initial condition that is given by a Gaussian distribution p(x, v, 0) ∝
exp[−((|x| − 0.5)2 + v2)/5 · 10−3] and Dx = Dv = 10−4 and use the same parameter values
as before. We consider a constant Q and time-varying Q and provide a detailed statistical
analysis using the information rate, causal information rate, and instantaneous transfer
entropy defined in Section 2. The main aim of this section is to present the effects of
stochastic noise due to the uncertainty in the initial conditions as well as provide a new
statistical analysis of the L-H transition and its backward H-L transition using information
geometric methods, which can help us better understanding of dynamic interaction and
causal relations that are involved.

6.1. Constant Q

The additive stochastic noise quickly randomizes the trajectories starting from the ini-
tial distribution, as can be seen in Figure 6 for constant Q = 0.6, 0.7, 0.8, 0.9, 1.0. Specifically,
the H-mode characteristic starts emerging at Q = 0.7, smaller than Q = 0.8 for the case of
the δ-function initial condition in Figure 2. On the other hand, the H-mode characteristic
persists up to a higher Q = 0.9 in comparison with the δ-function initial condition. These
results corroborate our previous observation that stochastic noise induces a more gradual
transition. Another distinct difference is the almost symmetric x trajectories due to the
symmetric initial distribution. The appearance of some of the non-x-symmetric trajectories
in Q = 0.7, 0.8, 0.9, 1 is due to the finite number of simulations. That is, the trajectories will
become symmetric in both x and v for a sufficiently large number of simulations.
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Figure 6. Initial condition p(x, v, 0) ∝ exp[−((|x| − 0.5)2 + v2)/5 · 10−3] and Dx = Dv = 10−4.
Qc = 0.832. Q = 0.6, 0.7, 0.8, 0.9, 1 from left to right, respectively.

6.2. Time Varying Q = 0.01t, 0.03t, 0.1t

We consider the cases where Q is linearly increasing far beyond Qc at the three different
rates Q = 0.01t, 0.03t, 0.1t. Note that stochastic simulations allow us to investigate the
transition to the H-mode in the regime where PDFs become very narrow. Figure 7 shows
the trajectories for Q = 0.01t, 0.03t, 0.1t from left to right. In all cases, a finite time interval
over which the transition to the H-mode occurs is visible. Specifically, from left to right,
these time intervals are approximately t = (110, 150), (40, 60), (13, 18), corresponding to
Q = (11, 15), (12, 18), (13, 18), respectively, showing a tendency of a slight increase in Q for
a rapid damping. This is due to the time lag between Q and the system’s behaviour, with a
larger lag for a faster change in Q.

Figure 7. Initial condition p(x, v, 0) ∝ exp[−((|x| − 0.5)2 + v2)/5 · 10−3] and Dx = Dv = 10−4.
Qc = 0.832. Q = 0.01t, Q = 0.03t and Q = 0.1t in first, second and third columns respectively.

Of additional interest is that the variability in trajectories is most pronounced for
Q = 0.03t, in which case x initially rapidly increases to the value of x = 1, followed by
prominent oscillations. This is consistent with our previous observation that the initial x
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conditions around x ≈ 1 (the plateau region in Figure 1) have a long duration of oscillations
before transitioning to the H-mode. For Q = 0.1t, the x value increases to a larger value
x > 1 and then monotonically approaches the H-mode due to too fast a ramping.

Figures 8–10 show the information rate, causal information rate, and transfer entropy
for Q = 0.01t, Q = 0.03t, and Q = 0.1t. In each figure, the top panels show the information
rate Γx, Γv, causal information rate Γx→v, Γv→x, and transfer entropy Tx→v and Tv→x from
left to right columns; the bottom panels show the information phase portrait Γx against
Γv, net causal information rate, and net transfer entropy. Here, net Γx→v is defined as
Γx→v − Γv→x, and similarly, net Tx→v is defined as Tx→v − Tv→x.

For Q = 0.01t, we observe a large spike in Γv that appears at t = 0 in the first column
of Figure 8 due to a rapid evolution of p(v, t) towards an almost δ-function PDF around
v = 0 (L-mode). Self-regulation of x, v and the resulting dithering is manifested by the
oscillations in Γx, Γv with approximately 180-degree phase difference for t ≈ (30, 60). The
crossing of Γx and Γv signifies the time matching of the dynamics of x and v and can be
clearly seen in the Γx vs., Γv phase portrait, where the trajectories are scattered around the
diagonal line with unit slope around Γx = Γv.

Figure 8. Initial condition p(x, v, 0) ∝ exp[−((|x| − 0.5)2 + v2)/5 · 10−3] and Dx = Dv = 10−4.
Qc = 0.832. Q = 0.01t. Top: from left to right, information rate, causal information rate and transfer
entropy; bottom: from left to right, phase portrait, net causal information rate and net transfer entropy.

Figure 9. Initial condition p(x, v, 0) ∝ exp[−((|x| − 0.5)2 + v2)/5 · 10−3] and Dx = Dv = 10−4.
Qc = 0.832. Q = 0.03t. Top: from left to right, information rate, causal information rate and transfer
entropy; bottom: from left to right, phase portrait, net causal information rate and net transfer entropy.
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Figure 10. Initial condition p(x, v, 0) ∝ exp[−((|x| − 0.5)2 + v2)/5 · 10−3] and Dx = Dv = 10−4.
Qc = 0.832. Q = 0.1t. Top: from left to right, information rate, causal information rate and transfer
entropy; bottom: from left to right, phase portrait, net causal information rate and net transfer entropy.

A very interesting feature can be inferred from the causal information rate in second
column of Figure 8. In particular, for small times t = [0, 30) in the L-mode, we observe
Γx→v > Γv→x, which suggests that the dynamics of turbulence (x) is mainly causing that of
zonal flow (v). This is consistent with the expectation of L-mode dynamics. A large spike in
the net causal information rate Γx→v − Γv→x > 0 around t = 30 captures a driving of zonal
flow from turbulence, which rapidly increases the amplitude of v (as seen in Figure 7). This
is followed by Γx→v − Γv→x < 0 as v starts regulating x, and then the self-regulation of x, v
where x, v are mutually influencing each other with the alternative sign in the net causal
information rate Γx→v − Γv→x.

In comparison, the instantaneous transfer entropy in the third column of Figure 8
does not seem to reflect the expected causal relations between x and v in the L-mode,
L-H, transition and H-mode. In particular, for 30 ⪅ t ⪅ 35, the net transfer entropy
Tx→v − Tv→x < 0, implying that zonal flow is causing turbulence instead of the turbulence
causing zonal flow (growth). This is followed by the net transfer entropy Tx→v − Tv→x > 0
at 35 ⪅ t ⪅ 40, occurring later than zonal flow growth which starts at t < 30. For
50 ⪅ t ⪅ 140, the net transfer entropy Tx→v − Tv→x > 0, suggesting a stronger coupling
from turbulence to zonal flow during the dithering and the transition to the H-mode,
with no clear signature of what is causing the H-mode transition. This is to be contrasted to
the net causal information rate Γx→v − Γv→x < 0 around t ≈ 130, noted above.

We observed in Figure 7, dithering is most pronounced for Q = 0.03t. Similar tendency
can be seen in all panels in Figure 9. In particular, the time matching of Γx = Γv is very
well noticeable in the intervals Γx, Γv = (0, 1). And a similar conclusion can be drawn in
regards to the causal information rate and transfer entropy.

For the fastest ramping in Figure 10, the change in the input power is too fast for
the system to catch up, causing the system to be further from equilibrium. Thus, the
overall values of Γx, Γv, Γx→v, Γv→x, and Tx→v, Tv→x are much higher than those for the
slower ramping Q = 0.01t, 0.03t. Consequently, dithering and self-regulation are much
less notable. Nevertheless, the regulation between x, v is well captured by Γx→v, Γv→x with
their overall similar time-evolution.

6.3. Mirror-Symmetric Q = 0.01t, 0.03t, 0.1t

As in the previous work, we model the forward and backward processes associated
with the L-H and H-L transitions using a mirror-symmetric Q at t = ts when Q takes its
maximum value. For t < ts, Q linearly increases, while for t > ts, it linearly decreases.
Specifically, we use the same three ramping rates as above apart from the mirror-symmetric
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Q around t = ts as Q = 0.01t, ts = 120, Q = 0.03t, ts = 40, and Q = 0.1t, ts = 12 so that all
three cases have Qmax = 1.2 > Qc.

The results equivalent to those in Figures 7–10 are shown in Figures 11–14, respectively.
As they should be, the results in Figures 7–14 are identical up to t = ts.

Figure 11. Initial condition p(x, v, 0) ∝ exp[−((|x| − 0.5)2 + v2)/5 · 10−3] and Dx = Dv = 10−4.
Qc = 0.832. Q = 0.01t, ts = 120, Q = 0.03t, ts = 40 and Q = 0.1t, ts = 12 in first, second and third
columns respectively.

Figure 12. Initial condition p(x, v, 0) ∝ exp[−((|x| − 0.5)2 + v2)/5 · 10−3] and Dx = Dv = 10−4.
Qc = 0.832. Q = 0.01t, ts = 120. Top: from left to right, information rate, causal information rate
and transfer entropy; bottom: from left to right, phase portrait, net causal information rate and net
transfer entropy.
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Figure 13. Initial condition p(x, v, 0) ∝ exp[−((|x| − 0.5)2 + v2)/5 · 10−3] and Dx = Dv = 10−4.
Qc = 0.832. Q = 0.03t, ts = 40. Top: from left to right, information rate, causal information rate
and transfer entropy; bottom: from left to right, phase portrait, net causal information rate and net
transfer entropy.

Figure 14. Initial condition p(x, v, 0) ∝ exp[−((|x| − 0.5)2 + v2)/5 · 10−3] and Dx = Dv = 10−4.
Qc = 0.832. Q = 0.1t, ts = 12. Top: from left to right, information rate, causal information rate
and transfer entropy; bottom: from left to right, phase portrait, net causal information rate and net
transfer entropy.

First, let us look at the detailed dynamics for Q = 0.01, ts = 120 in Figure 11. For t > ts,
some of the x and v trajectories stay in the dithering state, while some others are attracted
to the H-mode, followed by their eventual convergence to a dithering state. This is less
pronounced for the faster ramping Q = 0.03t, ts = 40 and Q = 0.1t, ts = 12 due to the
time-lag between the instantaneous Q(t) and the system’s response and consequently, due
to the prevalence of dithering at the start of the ramp-down at t = ts.

Finally, in comparison with Figures 8–10, Figures 12–14 exhibit more robust oscillations
in the information rates and causal information rates, but not much in transfer entropy.
Of particular note is that the back transition from the H-mode to the dithering state around
t ≈ 150 − 180 is well captured by the net positive causal information rate Γx→v − Γv→x > 0,
followed by the suppression of turbulence by zonal flows with the net negative causal
information rate Γx→v − Γv→x < 0 for 180 < t < 230 approximately. In comparison, such
directional behaviour is not seen in the transfer entropy. Also, a similar conclusion on the
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utility of the causal information rate can be drawn for the faster ramping up/down in
Figures 13 and 14.

7. Comparison between Additive and Multiplicative Noise for a Mirror-Symmetric Q(t)

There has been a suggestion of zonal flow noises that are generated internally,
e.g., through an incoherent turbulence interaction [53]. It is thus of interest to investi-
gate the possibility where zonal flows arise from internal stochastic noise. To this end, we
consider multiplicative zonal noise by replacing η in Equation (17) with ηv. Effectively,
ηv represents a stochastic growth rate of zonal flow. This will also allow us to check the
robustness of our results discussed above. We use an initial distribution centred around
x(0) = 0.5 and v(0) = 0.2 and the strength Dx = Dv = 10−4 of the stochastic noises
ξ and η. To highlight the key difference between the additive and multiplicative zonal
noises, we consider the forward and backward processes associated with the L-H and H-L
transitions using a mirror-symmetric Q around time t = ts when Q takes its maximum
value Qmax = 1.2; for t < ts, Q linearly increases, while for t > ts, it linearly decreases.
The three different ramping scenarios Q = 0.1t, 0.05t, 0.03t are used. The results for the
additive and multiplicative noises are shown in Figures 15 and 16, respectively, where the
first, second, and third columns correspond to Q = 0.1t, ts = 12, Q = 0.05t, ts = 20, and
Q = 0.03t, ts = 40, respectively.

Figure 15. Additive zonal noise. From left to right, Q = 0.1t, ts = 12, Q = 0.05t, ts = 20 and
Q = 0.03t, ts = 40. Delta initial condition x(0) = 0.5 and v(0) = 0.2, Qc = 0.950.

Comparing Figures 15 and 16, we observe that the overall evolution of x is quite similar
but the H-mode trajectories appear in the multiplicative case in Figure 16 when the power
takes its maximum value (Q ≈ 1.3). Also, a more robust H-mode characteristic persists for a
longer time in the backward process for the multiplicative zonal noise, increasing hysteresis.
Mathematically, it is because a multiplicative v noise has the property of generating smaller
values of v towards v = 0. This can indeed be seen from the trajectories of v in the third
column, where v = 0 persists over a long time interval 40 < t < 80. Another difference
between the additive and multiplicative noise cases is that stochastic trajectories with v < 0
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are not generated from the initial condition v(0) > 0, as v maintains its zero value once it
becomes zero because of ηv = 0 for v = 0.

Figure 16. Multiplicative zonal noise. From left to right, Q = 0.1t, ts = 12, Q = 0.05t, ts = 20 and
Q = 0.03t, ts = 40. Delta initial condition x(0) = 0.5 and v(0) = 0.2, Qc = 0.950.

8. Conclusions

In this paper, we presented the stochastic dynamics of the 2D prey–predator L-H
transition model with GPU-based simulations. We proposed an instantaneous transfer
entropy to deal with time-varying statistics and compared it with the causal information
rate. The main conclusions from our investigations are as follows.

• Stochastic noise induces different trajectories that are attracted to the H-mode and
dithering states, undergoing the L-H transition at different times.

• Stochastic noise induces the appearance of the H-mode at a lower input power while
making the complete transition to the H-mode at a larger input power than expected
from the deterministic model.

• Stochastic noise can induce stochastic switching between the two competing attractors
(H-mode and dithering), leading to alternations between the two with intermittent bursts.

• Stochastic noise induces an uncertainty in the input power and a more gradual transition.
• A rapid temporal change in the input power increases the uncertainty in the input power.
• The power threshold appears to depend on how the strong turbulence and zonal flows

are in the L-mode.
• Self-regulation between turbulence and zonal flows is well-characterized by the com-

petition between and the matching of their information rates.
• The causal relation is captured by the causal information rate much better than the

instantaneous transfer entropy.
• Internal stochastic zonal noise has similar effects to additive zonal noise and tends to

increase hysteresis.

Our results reveal different contributing factors to the uncertainty (scatters) in the
power threshold, including the initial conditions x0, v0, stochastic noise, and power ramping
rate. This is an interesting result in view of the large variations in power threshold observed
experimentally [23,54]. In particular, [23] applied a comprehensive statistical analysis of a
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large experimental dataset to establish the relation between threshold power and several
machine parameters, e.g., finding that the power threshold can vary up to a factor of five at
a fixed plasma density (e.g., see Figure 5 in [23]). This large variation in power threshold
can arise from different L-mode turbulence characteristics, which would correspond to
different initial conditions x0, v0 in our study, from stochasticity due to mini-avalanches,
as secondary effects of hidden variables (e.g., magnetic configurations, divertor geometry,
neutral density, etc. that do not appear in the power threshold scaling relations given
by plasma density, toroidal magnetic fields, surface area, etc.), or from different power
ramping scenarios.

As noted in Section 4, the initial conditions mimicking strong turbulence in the L-mode
(x0 ≫ 0.9) generate strong zonal flows, damping turbulence in turn and leading to a lower
Qc, while a strong initial zonal flow (v0 ≫ 0.7) rapidly damps turbulence, again leading
to a lower Qc. This suggests that larger x0, v0 can represent any physical mechanism that
can facilitate a quick damping of turbulence, e.g., through zonal flows. One example
would be small collisionality, which was shown to decrease the size of coherent structure
(shear flows) and turbulence level [55] in edge plasmas. In particular, small collisionality
is attained for a low plasma density in the high-density branch (see, e.g., [56]) where the
power threshold decreases with decreasing plasma density (see Figure 3 of [23]). Thus,
our results of Qc decreasing with larger x0, v0 in the region x0 > 0.9, v0 > 0.7 would
correspond to a decreasing Qc with decreasing plasma density (with a lower collisionality)
in the high-density branch. This warrants further study, which will require a synergistic
analysis of characterizing the L-mode turbulence statistical property for different machine
parameters, including hidden variables when measuring power thresholds experimentally.
Furthermore, our result of the largest Qc for persistent dithering before the transition to the
H-mode for x0 ∼ 0.9, v0 ∼ 0.7 suggests that the dithering-to-H-mode transition may require
a higher power threshold than a sharp H-mode transition, which needs to be explored
further in the future.

It remains for the future work to analyze the temporal and spatial dynamics involved
in the L-H transition, such as profile steepnesses and shear flow poloidal widths, which
could not be addressed in our reduced model. Nevertheless, our reduced model has the
merit of allowing us to perform a thorough exploration of different scenarios and learn new
lessons that were inaccessible from the previous deterministic, stationary, or mean-field
time approaches. It will also be of interest to extend the work to perform statistical analysis
of the edge localized modes (ELMs), e.g., by using stochastic simulations to extend our
previous work (e.g., [57]).
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Appendix A. Derivation of the Equality of Equations (6) and (7)

To obtain Equation (6) from Equation (7), we use the Taylor expansion
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p(Xj, t + dt; Xi, t)

= lim
t1→t+

[
p(Xj, Xi, t) + dt∂t1 p(Xj, t1; Xi, t) +

(dt)2

2
∂t1t1 p(Xj, t1; Xi, t)

]
(A1)

for small dt to leading order O((dt)2) to expand the logarithm term in Equation (7)
as follows:

ln

[
p(Xj, t + dt; Xi, t)

p(Xj, Xi, t)

]

= lim
t1→t+

dt
∂t1 p(Xj, t1; Xi, t)

p(Xj, Xi, t)
+

(dt)2

2
∂t1t1 p(Xj, t1; Xi, t)

p(Xj, Xi, t)
− (dt)2

2

(
∂t1 p(Xj, t1; Xi, t)

p(Xj, Xi, t)

)2


(A2)

to leading order O((dt)2). Here, we used ln (1 + x) ≈ x − x2/2 + O(x3) for small x.
We plug Equation (A2) into Equation (7), use Equation (A1) once more, and then sim-
plify terms using the total probability conservation

∫
dXidXj p(Xi, Xj, t) = 1 (that is,∫

dXidXj ∂t1 p(Xi, t1; Xj, t) =
∫

dXidXj ∂t1t1 p(Xi, t1; Xj, t) = 0) to obtain Equation (6).

Appendix B. Additional Results

Figure A1 provides the trajectories of x, v for the initial conditions x(t = 0) = 0.5 and
v(t = 0) = 0.01, which are slightly different from those in Figure 2.

Figure A1. Trajectories for δ-function initial condition with x(0) = 0.5 and v(0) = 0.01, Dx = Dv =

10−4 (Qc = 0832); Q = 0.2, 0.7, 0.8, 0.9 from left to right.
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