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Abstract: The paper provides a precise error estimate for an asymptotic expansion of a certain
stochastic control problem related to relative entropy minimization. In particular, it is shown that
the expansion error depends on the regularity of functionals on path space. An efficient numerical
scheme based on a weak approximation with Monte Carlo simulation is employed to implement
the asymptotic expansion in multidimensional settings. Throughout numerical experiments, it is
confirmed that the approximation error of the proposed scheme is consistent with the theoretical rate
of convergence.
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1. Introduction

Constructing an efficient algorithm for the following stochastic control problem asso-
ciated with a relative entropy minimization (1) is an interesting topic in various areas, such
as probability theory, statistical physics, economics and financial mathematics:{

infh

{
E
[

1
2

∫ T
0 |hs|2ds

]
+ E[ f (Xx,ε,αh

T )]
}

dXx,ε,αh
t = b(Xx,ε,αh

t )dt + εσ(Xx,ε,αh
t )[dWt + αhtdt], Xx,ε,αh

0 = x ∈ RN .
(1)

Problem (1) appears in the risk-sensitive stochastic control problem, as studied in [1–6],
where the optimal control is given by minimizing the cost depending on the risk-sensitivity
of the policy maker. One of applications related to the problem (1) is the rare event
simulation [7,8] in statistical physics, in which accurate approximations of rare event
probabilities are studied. In the rare event simulation, importance sampling techniques are
proposed by solving (1) through the variational representation based on the large deviation
theory (see [9]). Moreover, the relation between the optimal control and data assimilation
problems are discussed in [10].

In particular in finance, (1) is closely related to pricing and hedging problems in
utility indifference pricing in incomplete market (see [11–15], for example). Since there is
no closed-form solution for the stochastic control problem of utility indifference pricing
in most cases, various numerical methods for computing indifference prices have been
developed. For example, in [11], the mean-variance expansion for utility indifference
pricing is proposed by using an expansion approach through Girsanov transformation.
In [12], the author provides an alternative approach to the analysis of [11] by using the
asymptotic expansion of the corresponding quadratic backward stochastic differential
equation. The mean-variance expansion proposed in [11] is generalized in [14] to cover a
multidimensional path-dependent payoff in Itô process markets. In [15], the authors
extended the results of [11,14] for the case of non-smooth payoffs and apply pricing
problems of power derivatives.
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In the implementation of the mean-variance expansion of [11,14,15] numerically, a sim-
ple approach for computing the mean and the variance terms will be the use of the Euler–
Maruyama discretization scheme for stochastic differential equations (SDEs). However, this
requires many number of time steps to obtain an accurate result, since it is a first-order time
discretization scheme. In other words, for a small number of time steps n, the error term
by the Euler–Maruyama discretization may affect the total approximation error, including
the mean-variance expansion error and the discretization error. Thus, it is important to
improve the convergence rate of approximations for the mean and the variance terms in
order to construct an efficient algorithm.

There have been extensive studies on asymptotic expansion methods for small noise
diffusions with Malliavin calculus (for instance, [16–18]). Moreover, by extending these
results, high-order discretization methods for SDEs are developed in various papers (for
example, [19–23]). In particular, ref. [24] introduced a new high-order approximation
method with respect to a small noise parameter ε and a number of discretization time steps
n and implemented the method by deep learning.

In this paper, we show a precise error estimate of the mean-variance expansion of
the stochastic control problem under various conditions on functionals on path space
based on asymptotic expansion and Malliavin calculus. In particular, we prove the novel
fact that the expansion error depends on the regularity of a target functional, which
is an extended result of [11,14,15]. Then, we implement the mean-variance expansion
by using the asymptotic expansion and weak approximation to achieve the high-order
approximation error with respect to ε and n based on [24]. Numerical experiments confirm
the theoretical convergence rate of the proposed method.

The organization of the paper is as follows. After introducing the notations and
settings, we provide the main theorem and the approximation method in Section 2. Section 3
shows numerical examples of the proposed method. We conclude the paper in Section 4.

2. Asymptotic Expansion and Weak Approximation of Stochastic Control Problems

Let C∞
b (Rn;Rm) be the space of infinitely continuously differentiable functions

f : Rn → Rm with bounded derivatives of all orders. We write C∞
b (Rn) for C∞

b (Rn;R). Let
CLip(Rn) be the space of Lipschitz continuous functions f : Rn → R with the Lipschitz con-
stant CLip[ f ]. Let Bb(Rn) be the space of bounded Borel measurable functions f : Rn → R.
For f ∈ Bb(Rn), we define ∥ f ∥∞ := supx∈Rn | f (x)|.

Let Ω = C0([0, T];Rd) = {w : [0, T] → Rd; continuous, w(0) = 0}, let B(Ω) be the
Borel field over Ω, and let P be the Wiener measure P : B(Ω) → [0, 1]. Let F be the
completion of B(Ω) with respect to P. Let W = {Wt}0≤t≤T be a d-dimensional Brownian
motion on the probability space (Ω,F ,P). Let {Ft}0≤t≤T be the filtration generated by
W. We assume that {Ft}0≤t≤T contains the P-null sets of F . For a random variable
Y : Ω → RN on the probability space (Ω,F ,P), let E[Y] denote the expectation of Y and let
Var[Y] denote the variance of Y and let ∥X∥p := E[|X|p]1/p, for p ≥ 1. We define the space
A as A := {X : Ω × [0, T] → Rd; {Ft}−adapted, E[

∫ T
0 |Xs|2ds] < ∞}.

We prepare notation from Malliavin calculus. Let D∞(Ω) denote the set of smooth
Wiener functionals F : Ω → R in the sense of Malliavin. Let F ∈ (D∞(Ω))N be a nonde-
generate Wiener functional. Then, for G ∈ D∞(Ω) and a multi-index α = (α1, . . . , αℓ) ∈
{1, . . . , N}ℓ, ℓ ∈ N, there exists Hα(F, G) ∈ D∞(Ω) such that:

E[∂α f (F)G] = E[ f (F)Hα(F, G)] (2)

for all f ∈ C∞
b (RN). For more details on Malliavin calculus, see [25,26].

We consider an N-dimensional diffusion driven by W: for 0 ≤ t ≤ s ≤ T:

dXt,x,ε
s = b(Xt,x,ε

s )ds + εσ(Xt,x,ε
s )dWs, Xt,x,ε

t = x ∈ RN , (3)
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where b, σi ∈ C∞
b (RN ;RN), i = 1, . . . , d and ε ∈ (0, 1]. We assume that σ = [σ1, . . . , σd]

satisfies the uniform elliptic condition. For notational simplicity, we write Xx,ε
t for X0,x,ε

t ,
0 ≤ t ≤ T, x ∈ RN .

Let γ > 0. It is known that the free energy of the small noise diffusion has the
variational representation:

− 1
γ

log E[exp{−γ f (Xx,ε
T )}] = inf

h∈A

{
E
[

1
2

∫ T

0
|hs|2ds

]
+ E[ f (Xx,ε,

√
γh

T )]

}
(4)

where Xx,ε,
√

γh is a stochastic system with a control process h ∈ A:

dXx,ε,
√

γh
t = b(Xx,ε,

√
γh

t )dt + εσ(Xx,ε,
√

γh
t )[dWt +

√
γhtdt], Xx,ε,

√
γh

0 = x ∈ RN . (5)

The main result is given as follows.

Theorem 1. It holds that:

− 1
γ

log E[exp{−γ f (Xx,ε
T )}] = E[ f (Xx,ε

T )]− γ

2
Var[ f (Xx,ε

T )] + Eγ,ε, (6)

where:

Eγ,ε =


O(γ2) if f ∈ Bb(RN),

O(γ2ε3) if f ∈ CLip(RN) ∪ C1
b(R

N),

O(γ2ε4) if f ∈ ∪k≥2Ck
b(R

N).

(7)

Remark 1. Theorem 1 provides a sharp asymptotic expansion for the solution of the stochastic
control problem for the small noise diffusion, while the direct estimate of the left-hand side of (6)
can cause inefficient computation, which is reported in [7,8]. In particular, Theorem 1 provides the
theoretical approximation order with respect to both γ and ε for each class of test functions f , which
cannot be obtained from the asymptotic analysis in the context of the risk-sensitive control problems
in [1–3] and the indifference pricing problems in [11,14,15]. In the proof of Theorem 1 below, we will
take another approach to show the sharp asymptotic expansion bounds (7), and Malliavin calculus
plays a crucial role in the error estimate.

Remark 2. In the utility indifference pricing problems, γ is regarded as the risk-aversion parameter
of an investor’s exponential utility function U(x) = −e−γx and is typically assumed to be small
as γ ≈ 0 (see [11,14,15] for more details), which is a natural setting that the investor is not far
from risk-neutral (γ = 0 corresponds to the case that the investor is risk-neutral). Thus, the
mean-variance expansion is interpreted as the expansion around the sum of the risk-neutral price
E[ f (Xx,ε

T )] and the risk-aversion discount effect − γ
2 Var[ f (Xx,ε

T )]. Theorem 1 tells us that the
expansion error depends not only on the risk-aversion parameter γ but also on the smoothness of the
payoff function f and the small noise parameter ε, which is a significant information in computing
indifference prices in practice.

Proof of Theorem 1. We introduce a perturbed process with δ > 0:

dXx,ε,δh
t = b(Xx,ε,δh

t )dt + εσ(Xx,ε,δh
t )[dWt + δhtdt], Xx,ε,δh

0 = x, (8)

in order to expand the minimization problem:

inf
h∈A

{
E
[

1
2

∫ T

0
|hs|2ds

]
+ E[ f (Xx,ε,δh

T )]

}
, (9)
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which corresponds to (4) if we set δ =
√

γ. For notational simplicity, hereafter, we assume
N = d = 1 without loss of generality.

The expansion of Xx,ε,δh
t in D∞(Ω) is calculated in the following way:

dXx,ε,0
t = b(Xx,ε,0

t )dt + εσ(Xx,ε,0
t )dWt(= dXx,ε

t ),

d
∂

∂δ
Xx,ε,δh

t = b′(Xx,ε,δh
t )

∂

∂δ
Xx,ε,δh

t dt + εσ′(Xx,ε,δh
t )

∂

∂δ
Xx,ε,δh

t dWt + εσ(Xx,ε,δh
t )htdt

+ δεσ′(Xx,ε,δh
t )ht

∂

∂δ
Xx,ε,δh

t dt,

and so on. We introduce the Jacobian of x 7→ Xx,ε,δh, i.e., Yx,ε,δh
t = ∂

∂x Xx,ε,δh
t , whose

dynamics are:

dYx,ε,δh
t = b′(Xx,ε,δh

t )Yx,ε,δh
t dt + εσ′(Xx,ε,δh

t )Yx,ε,δh
t [dWt + δhtdt], Yx,ε,δh

0 = 1. (10)

We will use a notation Yx,ε
t = Yx,ε,0

t .
The first-order term of the expansion of E[ f (Xx,ε,δh

T )] with respect to δ is given by:

E
[

f ′(Xx,ε
t )

∂

∂δ
Xx,ε,δh

t

∣∣∣∣
δ=0

]
= E

[
f ′(Xx,ε

t )Yx,ε
t

∫ t

0
(Yx,ε

s )−1εσ(Xx,ε
s )hsds

]
= E

[∫ t

0
Ds f (Xx,ε

t )hsds
]
= E

[
f (Xx,ε

t )
∫ t

0
hsdWs

]
, (11)

where DtF, 0 ≤ t ≤ T represents the Malliavin derivative process of F ∈ D∞(Ω) (for more
details, please see [26]). Then, we have the following expansion:

E[ f (Xx,ε,δh
T )] = E[ f (Xx,ε

T )] + δE
[

f (Xx,ε
T )

∫ T

0
htdWt

]
+ Rh

x,ε,δ(T), (12)

where Rh
x,ε,δ(T) = δ2

∫ 1
0 (1 − η) ∂2

∂λ2 E[ f (Xx,ε,λh
T )]|λ=ηδdη, which satisfies that if f ∈ Bb(R):

|Rh
x,ε,δ(T)| ≤ δ2∥ f ∥∞C

 1
ε2 sup

a∈(0,1]

∥∥∥∥∥
(∫ T

0
Yx,ε,ah

T (Yx,ε,ah
s )−1εσ(Xx,ε,ah

s )hsds
)2

∥∥∥∥∥
p

+
1
ε

sup
a∈(0,1]

∥∥∥∥∫ T

0
Yx,ε,ah

T (Yx,ε,ah
s )−1εσ(Xx,ε,ah

s )hs

∫ s

0
Yx,ε,ah

s (Yx,ε,ah
r )−1εσ(Xx,ε,ah

r )hrdrds
∥∥∥∥

q

}
, (13)

or if f ∈ CLip(R):

|Rh
x,ε,δ(T)| ≤ δ2∥ f ′∥∞C

{
1
ε

sup
a∈(0,1]

∥(
∫ T

0
Yx,ε,ah

T (Yx,ε,ah
s )−1εσ(Xx,ε,ah

s )hsds
)2∥∥∥

p

+ sup
a∈(0,1]

∥∥∥∥∫ T

0
Yx,ε,ah

T (Yx,ε,ah
s )−1εσ(Xx,ε,ah

s )hs

∫ s

0
Yx,ε,ah

s (Yx,ε,ah
r )−1εσ(Xx,ε,ah

r )hrdrds
∥∥∥∥

q

}
, (14)

or if f ∈ ∪k≥2Ck
b(R):

|Rh
x,ε,δ(T)| ≤ δ2C

∥ f ′′∥∞ sup
a∈(0,1]

∥∥∥∥∥
(∫ T

0
Yx,ε,ah

T (Yx,ε,ah
s )−1εσ(Xx,ε,ah

s )hsds
)2

∥∥∥∥∥
p

+∥ f ′∥∞ sup
a∈(0,1]

∥∥∥∥∫ T

0
Yx,ε,ah

T (Yx,ε,ah
s )−1εσ(Xx,ε,ah

s )hs

∫ s

0
Yx,ε,ah

s (Yx,ε,ah
r )−1εσ(Xx,ε,ah

r )hrdrds
∥∥∥∥

q

}
, (15)
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for some C > 0, p, q ≥ 1 independent of f , ε and δ, through the Malliavin integration by
parts formula of (2). By the Itô formula, it holds that:

f (Xx,ε
T ) = E[ f (Xx,ε

T )] +
∫ T

0
(∇Pε

T−s f )(Xx,ε
s )σε(Xx,ε

s )dWs, (16)

where Pε
t f (·) = E[ f (X·,ε

t )] and σε(·) = εσ(·), which corresponds to the Clark–Ocone
formula (see [26] for more detail). We should note that if f is a sufficiently smooth function,
(∇Pε

T−s f )(x)σε(x) is represented by:

∇Pε
T−s f (x)σε(x) = E[ f ′(Xx,ε

T−s)Y
x,ε
T−s]σ

ε(x) (17)

=
1

T − s
E
[∫ T−s

0
f ′(Xx,ε

T−s)Y
x,ε
T−s(Y

x,ε
r )−1σε(Xx,ε

r )σε(Xx,ε
r )−1Yx,ε

r dr
]

σε(x)

=
1

T − s
E
[∫ T−s

0
Dr f (Xx,ε

T−s)σ
ε(Xx,ε

r )−1Yx,ε
r dr

]
σε(x)

=
1

T − s
E
[

f (Xx,ε
T−s)

∫ T−s

0
σε(Xx,ε

r )−1Yx,ε
r dWr

]
σε(x). (18)

Remark that in the case N ̸= d, we have a similar but a more general representation of (18)
under the uniform ellipticity.

If we take a sequence of functions which approximates a Schwartz distribution which
is regarded as a bounded measurable function, we have that there exists C > 0 such that:

|∇Pε
T−s f (x)σε(x)| ≤ C√

T − s
∥ f ∥∞, s ∈ [0, T], f ∈ Bb(R), (19)

and if we take a sequence of functions which approximates f ∈ CLip(R), by (17), there
exists C > 0 such that:

|∇Pε
T−s f (x)σε(x)| ≤ CεCLip[ f ], s ∈ [0, T], f ∈ CLip(R). (20)

Furthermore, it is obvious to apply (17) for the case f is smooth to obtain the desired
estimate. To summarize the above discussion, we have the following gradient estimate for
the diffusion semigroup which depends on the smoothness condition on f : there exists
C > 0 such that:

|(∇Pε
T−s f )(x)σε(x)| ≤


C√
T−s

∥ f ∥∞ if f ∈ Bb(R),

CεCLip[ f ] if f ∈ CLip(R) ∪ C1
b(R),

Cε∥ f ′∥∞ if f ∈ ∪k≥2Ck
b(R),

(21)

for all s ∈ [0, T]. Therefore, we have:

E[ f (Xx,ε
T )

∫ T

0
hsdWs] = E

[∫ T

0
(∇Pε

T−s f )(Xx,ε
s )σε(Xx,ε

s )hsds
]

(22)

and

E
[

1
2

∫ T

0
|hs|2ds

]
+ E[ f (Xx,ε,δh

T )]

= E[ f (Xx,ε
T )] + δE

[∫ T

0
(∇Pε

T−s f )(Xx,ε
s )σε(Xx,ε

s )hsds
]
+ E

[
1
2

∫ T

0
|hs|2ds

]
+ Rh

x,ε,δ(T).
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By taking h as hs = −δ(∇Pε
T−s f )(Xx,ε

s )σε(Xx,ε
s ), and combining with (13)–(16) and (21),

we have:

inf
h∈A

{
E
[

1
2

∫ T

0
|hs|2ds

]
+ E[ f (Xx,ε,δh

T )]

}
= E[ f (Xx,ε

T )]− δ2

2
Var[ f (Xx,ε

T )] + Eδ2,ε (23)

with the error:

Eδ2,ε =


O(δ4) if f ∈ Bb(R),

O(δ4ε3) if f ∈ CLip(R) ∪ C1
b(R),

O(δ4ε4) if f ∈ ∪k≥2Ck
b(R).

(24)

Finally, setting δ =
√

γ, we have:

− 1
γ

log E[exp{−γ f (Xx,ε
T )}] = E[ f (Xx,ε

T )]− γ

2
Var[ f (Xx,ε

T )] + Eγ,ε. (25)

Remark 3. We comment on the advantages of the Malliavin calculus approach (the asymptotic ex-
pansion approach [17–19] based on the Watanabe theory [16]) taken in the current paper. While (11)
can be obtained from both the Girsanov transform approach [11] and the Malliavin calculus ap-
proach, the error estimate (24) and the result of Theorem 1 come from only the latter approach.
Although the Girsanov transform approach is useful to derive the approximation itself, it only shows
the error bound of the mean-variance expansion with respect to γ as in [11]. On the other hand,
the Malliavin calculus approach provides a sharp error bound not only with respect to γ but also ε
depending on the smoothness of the test function f . Hence, throughout the proof in Theorem 1, we
adopted the unified derivation for the approximation term (11) and the residual term(s) (13)–(15)
through Malliavin calculus. Moreover, the Malliavin calculus approach will be a powerful tool to
approximate the mean and variance terms of the expansion in Theorem 1. We will see the usefulness
of the approach in the following.

In order to implement the asymptotic expansion of Theorem 1 numerically in multidi-
mensional settings, we efficiently approximate the mean and the variance terms by a weak
approximation method for the SDE (3).

We expand the N-dimensional diffusion process X as follows: for 0 ≤ t ≤ s ≤ T:

Xt,x,ε
s = Xt,x,0

s + ε
∂

∂ε
Xt,x,ε

s

∣∣∣∣∣
ε=0

+ ε2 1
2!

∂2

∂ε2 Xt,x,ε
s

∣∣∣∣∣
ε=0

+ · · ·+ εk 1
k!

∂k

∂εk Xt,x,ε
s

∣∣∣∣∣
ε=0

+ · · · in (D∞(Ω))N . (26)

Let 0 = t0 < t1 < · · · < tn = T, ti+1 − ti = T/n, i = 0, . . . , n − 1. Here, we define
X̄x,ε,n

ti+1
as:

X̄x,ε,n
ti+1

= X̄
ti ,X̄

ti ,x,n
ti

,ε
ti+1

, X̄x,ε,n
t0

= x ∈ RN , (27)

where X̄t,x,ε
s , 0 ≤ t ≤ s ≤ T is given by:

X̄t,x,ε
s = Xt,x,0

s + ε
∂

∂ε
Xt,x,ε

s

∣∣∣∣∣
ε=0

. (28)

Moreover, we introduce the weight W ε,n
T as:

W ε,n
T =

n−1

∏
i=0

ϑ
X̄x,ε,n

ti
,ε

ti ,ti+1
(29)
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where ϑx,ε
t,s satisfies that there exists C > 0 such that:

|E[φ(Xt,x,ε
s )]− E[φ(X̄t,x,ε

s )ϑx,ε
t,s ]| ≤ Cε6∥φ∥∞(s − t)3 + C

4

∑
p=0

ε2+p∥∇p φ∥∞(s − t)3, (30)

for all φ ∈ C4
b(R

N), x ∈ RN and s > t ≥ 0. For more details on the derivation and the
explicit form of the weight ϑx,ε

t,s , see [24].
Using the scheme X̄x,ε,n

T and the weight W ε,n
T , we have the following approximation

whose property again depends on the regularity.

Corollary 1. It holds that:

− 1
γ

log E[exp{−γ f (Xx,ε
T )}]

= E[ f (X̄x,ε,n
T )W ε,n

T ]− γ

2
{E[ f (X̄x,ε,n

T )2W ε,n
T ]− E[ f (X̄x,ε,n

T )W ε,n
T ]2}+ Eγ,ε,n, (31)

where:

Eγ,ε,n =


O
(

γ2 + ε2

n2

)
if f ∈ Bb(RN),

O
(

γ2ε3 + ε3

n2

)
if f ∈ CLip(RN) ∪ C1

b(R
N),

O
(

γ2ε4 + ε3

n2

)
if f ∈ ∪k≥2Ck

b(R
N).

(32)

Proof of Corollary 1. By [24], each expectation is discretized with the order O(1/n2) as follows:

E[ f (Xx,ε
T )]− γ

2
{E[ f (Xx,ε

T )2]− E[ f (Xx,ε
T )]2}

= E[ f (X̄x,ε,n
T )W ε,n

T ]− 1
2
{E[ f (X̄x,ε,n

T )2W ε,n
T ]− E[ f (X̄x,ε,n

T )W ε,n
T ]2}+ Ēε,n, (33)

with:

Ēε,n =


O
(

ε2

n2

)
if f ∈ Bb(RN),

O
(

ε3

n2

)
if f ∈ CLip(RN) ∪ C1

b(R
N),

O
(

ε3

n2

)
if f ∈ ∪k≥2Ck

b(R
N),

(34)

through the applicability of the Malliavin integration by parts in the global error analysis
of the weak approximation analysis according to the regularity of f . Then, combining (33)
with Theorem 1, the assertion is proved.

Remark 4. As in the proof of Theorem 1, Malliavin integration by parts formula plays an important
role to prove Corollary 1. The detail proof of the small noise expansion error is shown in [17,18]
and the global error analysis of weak approximation error is provided in [19–23]. These results are
essential to show the precise error estimate (34) depending on the regularity of the test function,
which is an extension of the error estimate of [24].

3. Numerical Examples

This section provides numerical experiments to show the validity of the proposed
algorithm for indifference pricing problems.

Let (Ω,F ,P) be a Wiener space (which is appropriately chosen in each subsection
below) on which a Brownian motion is defined. We regard P as the physical probability
measure. Let M be the set of equivalent martingale measures. Let U : R → R be the
investor’s utility function given by U(x) = − exp(−γx), γ > 0.
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3.1. Indifference Pricing under Black–Scholes Model with a Lipschitz Payoff Function

We consider 2d-dimensional SDE (d-tradable assets Ss = (Ss,1, . . . , Ss,d) and d-nontradable
assets Xx,ε = (Xx,1,ε, . . . , Xx,d,ε)):

dSs,i
t = µSSs,i

t dt + σSSs,i
t dW2i−1

t , Ss,i
0 = si ∈ R (35)

dXx,i,ε
t = µXXx,i,ε

t dt + εσXXx,i,ε
t (ρdW2i−1

t +
√

1 − ρ2dW2i
t ), Xx,i,ε

0 = xi ∈ R, (36)

for i = 1, . . . , d, µS, µX , ρ ∈ R and σS, σX > 0, where W = (W1, . . . , W2d) is a P-dimensional
Brownian motion. The model of (35) and (36) referred to as the Black–Scholes model is
widely used in financial institutions. We define Q ∈ M by:

dQ
dP = e∑d

i=1(mW2i−1
T − 1

2 m2T)+∑d
i=1

∫ T
0
√

γhi
tdW2i

t − 1
2
∫ T

0 γ|ht |2dt, (37)

for m = r−µS

σS and h ∈ A. Under a probability measure Q, we can rewrite the above SDE as:

dSs,i
t = rSs,i

t dt + σSSs,i
t dWQ,1

t , (38)

dXx,i,ε,
√

γh
t = µXXx,i,ε,

√
γh

t dt + εσXXx,i,ε,
√

γh
t (ρ[dWQ,2i−1

t + mdt]

+
√

1 − ρ2[dWQ,2i
t +

√
γhi

tdt]), (39)

for i = 1, . . . , d, where WQ = (WQ,1, . . . , WQ,2d) defined by dWQ,2i−1
t = dW2i−1

t − mdt
and dWQ,2i

t = dW2i
t −√

γhi
tdt, i = 1, . . . , d is a Q-Brownian motion. We write Xx,ε,h =

(Xx,1,ε,h, . . . , Xx,d,ε,h).
We consider the case of a basket option of the nontradable assets, i.e., we set the payoff

function f : Rd → R as f (x) = max{(1/d)∑d
i=1 xi − K, 0.0}. We assume that the riskfree

rate r = 0 for simplicity. Here, the buyer utility indifference price p is given by:

p = − 1
γ(1 − ρ2)

log E[e−γ(1−ρ2) f (Xx,ε,0
T )]

= inf
h∈A

{
E
[

1
2

∫ T

0
|hs|2ds

]
+ E[ f (Xx,ε,

√
γh

T )]

}
.

We approximate the indifference price by the proposed method. Since f ∈ CLip(Rd),
by Theorem 1, it holds that:

− 1
γ(1 − ρ2)

log E[exp{−γ(1 − ρ2) f (Xx,ε,0
T )}]

= E[ f (Xx,ε,0
T )]− 1

2
γ(1 − ρ2)Var[ f (Xx,ε,0

T )] + O(γ2(1 − ρ2)2ε3). (40)

In order to estimate the expansion error of (40), we compute the both sides by using
the explicit solution of Xx,ε,0 obtained by the Itô formula and Monte Carlo simulation with
M = 108 paths. Moreover, the approximation errors of the mean and variance terms are
given by Corollary 1 as

E[ f (Xx,ε,0
T )]− 1

2
γ(1 − ρ2)Var[ f (Xx,ε,0

T )]

=E[ f (X̄x,ε,n
T )W ε,n

T ]− 1
2
{E[ f (X̄x,ε,n

T )2W ε,n
T ]− E[ f (X̄x,ε,n

T )W ε,n
T ]2}+ O

(
ε3

n2

)
, (41)

where {X̄x,ε,n
ti

}i=0,1,...,n is the approximation process for Xx,ε = Xx,ε,0 introduced by (27) and (28).
To check the convergence rate of (41), we employ Monte Carlo simulation with M = 108 paths
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to implement the proposed method, where the reference value (the left hand side of (41)) is
obtained by the Itô formula and Monte Carlo simulation with M = 108 paths.

3.1.1. One-Dimensional Case

We perform the numerical experiment for the one-dimensional case. We set the parameters
as d = 1, T = 1.0, x = 100.0, K = 100.0, γ = 0.01, µS = µX = 0.0, σS = σX = 0.2, ρ = 0.0.

First, we estimate the expansion error of (40) with respect to ε and γ. The mean-
variance expansion (40) is referred to as “MV-expansion” in the following figures.

Figure 1 plots the results for ε = 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 for the fixed γ = 0.01.

0.1 0.2 0.4 0.6 0.8 1.0
ε

10
−4

10
−3

10
−2

10
−1

E
rr
or

MV-expansion
O(ε3)

Figure 1. Expansion error of (40) for each ε with γ = 0.01 under the one-dimensional Black–
Scholes model.

Furthermore, we summarize the result for γ = 0.01, 0.02, 0.04, 0.08 for the fixed ε = 0.4
in Figure 2.

0.01 0.02 0.04 0.08
γ

10
−2

10
−1

E
rr
or

MV-expansion
O(γ2)

Figure 2. Expansion error of (40) for each γ with ε = 0.4 under the one-dimensional Black–
Scholes model.
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In Figures 1 and 2, we can check that the expansion error achieves the theoretical rate
of convergence of O(γ2ε3).

Next, we estimate the weak approximation error of (41). The proposed second-order
weak approximation method is referred to as “WA 2nd” in the following figures and tables.
For comparison, we also compute the approximation error by using the Euler–Maruyama
scheme, referred to as “EM”. The approximation error of (41) is plotted in Figure 3.

20 21 22 23 24 25
Number of time steps n

10
−4

10
−3

10
−2

10
−1

E
rr

or
EM (ε=0.4)
O(n−1)
WA 2nd (ε=0.4)
O(n−2)
EM (ε=0.6)
O(n−1)
WA 2nd (ε=0.6)
O(n−2)
EM (ε=0.8)
O(n−1)
WA 2nd (ε=0.8)
O(n−2)

Figure 3. Weak approximation error of (41) for each ε with γ = 0.01 under the one-dimensional
Black–Scholes model.

The figure shows that the error of “WA 2nd” decreases rapidly as the number of
time steps increases compared to “EM”, which means that the proposed method achieves
the second-order accuracy with respect to the number of time-steps n. The results are
summarized in Table 1.

Table 1. Numerical error of (41) for each ε with γ = 0.01 under the one-dimensional Black–
Scholes model.

ε = 0.4 ε = 0.6 ε = 0.8

EM (n = 25) 1.9 × 10−4 1.7 × 10−3 4.7 × 10−3

WA 2nd (n = 22) 1.3 × 10−4 1.6 × 10−3 4.7 × 10−3

By the figures and the tables, we confirm that the proposed method achieves the
theoretical rate of convergence with respect to γ, ε and n.

3.1.2. 10-Dimensional Case

Now we consider a multidimensional case. We set the parameters as d = 10, T = 1.0,
x = (100.0, . . . , 100.0), K = 100.0, γ = 0.01, µS = µX = 0.0, σS = σX = 0.2, ρ = 0.0.

First, we estimate the expansion error of (40) with respect to ε and γ. Figure 4 plots
the results for ε = 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 for the fixed γ = 0.01.
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0.1 0.2 0.4 0.6 0.8 1.0
ε

10
−6

10
−5

10
−4

10
−3

E
rr
or

MV-expansion
O(ε3)

Figure 4. Expansion error of (40) for each ε with γ = 0.01 under the 10-dimensional Black–
Scholes model.

We perform the same experiment with the parameter γ = 0.01, 0.02, 0.04, 0.08 for the
fixed ε = 0.4. The result is summarized in Figure 5.

0.01 0.02 0.04 0.08
γ

10
−4

10
−3

E
rr
or

MV-expansion
O(γ2)

Figure 5. Expansion error of (40) for each γ with ε = 0.4 under the 10-dimensional Black–
Scholes model.

In Figures 4 and 5, we can check that the expansion error achieves the theoretical rate
of convergence of O(γ2ε3).

Next, we estimate the weak approximation error of (41). The discretization error is
plotted in Figure 6.
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20 21 22 23 24 25
Number of time steps n

10
−4

10
−3

10
−2

E
rr

or

EM (ε=0.4)
O(n−1)
WA 2nd (ε=0.4)
O(n−2)
EM (ε=0.6)
O(n−1)
WA 2nd (ε=0.6)
O(n−2)
EM (ε=0.8)
O(n−1)
WA 2nd (ε=0.8)
O(n−2)

Figure 6. Weak approximation error of (41) for each ε with γ = 0.01 under the 10-dimensional
Black–Scholes model.

The figure shows that the proposed method provides an accurate approximation
for (41) with a small number of time steps compared to the Euler–Maruyama scheme. The
results are summarized in Table 2.

Table 2. Numerical error of (41) for each ε with γ = 0.01 under the 10-dimensional Black–
Scholes model.

ε = 0.4 ε = 0.6 ε = 0.8

EM (n = 25) 4.1 × 10−5 9.9 × 10−5 2.0 × 10−4

WA 2nd (n = 22) 2.6 × 10−5 7.3 × 10−5 1.5 × 10−4

By the figures and the table, we confirm that the proposed method achieves the
theoretical rate of convergence.

3.1.3. 100-Dimensional Case

Finally, we consider a higher-dimensional case. We set the parameters as d = 10,
T = 1.0, x = (100.0, . . . , 100.0), K = 100.0, γ = 0.01, µS = µX = 0.0, σS = σX = 0.2,
ρ = 0.0.

As the previous sections, we estimate the expansion error of (40). Figure 7 plots the
results for ε = 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 for the fixed γ = 0.01.

We also summarizes the result for each γ = 0.01, 0.02, 0.04, 0.08 for the fixed ε = 0.4 in
Figure 8.

In Figures 7 and 8, we can check that the expansion error achieves the theoretical rate
of convergence of O(γ2ε3).

Next, we estimate the weak approximation error of (41). We set the value we com-
puted in the previous experiment as the reference value of the right hand side of (41).
The discretization error is summarized in Table 3.

The table shows that the proposed method approximates (41) more accurately than
the Euler–Maruyama scheme with a small number of time steps.
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0.1 0.2 0.4 0.6 0.8 1.0
ε
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E
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or

MV-expansion
O(ε3)

Figure 7. Expansion error of (40) for each ε with γ = 0.01 under the 100-dimensional Black–
Scholes model.

0.01 0.02 0.04 0.08
γ

10
−5

10
−4

E
rr
or

MV-expansion
O(γ2)

Figure 8. Expansion error of (40) for each γ with ε = 0.4 under the 100-dimensional Black–
Scholes model.

Table 3. Numerical error of (41) for each ε with γ = 0.01 under the 100-dimensional Black–
Scholes model.

ε = 0.4 ε = 0.6 ε = 0.8

EM (n = 24) 8.1 × 10−5 1.8 × 10−5 3.5 × 10−4

WA 2nd (n = 21) 9.8 × 10−6 4.0 × 10−7 2.6 × 10−5

Throughout the numerical experiments, we confirm that the proposed method achieves
the theoretical rate of convergence consistently with Theorem 1 and Corollary 1 in multidi-
mensional settings with a Lipschitz continuous test function f .
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3.2. Indifference Pricing under Constant Elasticity Model (CEV Model) with a Bounded
Measurable Payoff Function

We consider the following two-dimensional SDE:

dSs
t = µSSs

t dt + σSSs
t dW1

t , Ss
0 = s ∈ R, (42)

dXx,ε
t = µXXx,ε

t dt + εσX(Xx,ε
t )β(ρdW1

t +
√

1 − ρ2dW2
t ), Xx,ε

0 = x ∈ R, (43)

where W = (W1, W2) is a P-dimensional Brownian motion. The dynamics of (43) is called
the constant elasticity of variance model (CEV model), which is a generalized model of the
Black–Scholes model.

We define Q ∈ M by:

dQ
dP = emW1

T−
1
2 m2T+

∫ T
0
√

γhtdW2
t − 1

2
∫ T

0 γh2
t dt, (44)

for m = r−µS

σS and h ∈ A. Under a probability measure Q, we can rewrite the above SDE as:

dSs
t = rSs

t dt + σSSs
t dWQ,1

t , (45)

dXx,ε,
√

γh
t = µXXx,ε,

√
γh

t dt + εσX(Xx,ε,
√

γh
t )β(ρ[dWQ,1

t + mdt] +
√

1 − ρ2[dWQ,2
t +

√
γhtdt]), (46)

where WQ = (WQ,1, WQ,2) defined by dWQ,1
t = dW1

t − mdt and dWQ,2
t = dW2

t −√
γhtdt is

a Q-Brownian motion.
As the previous section, we assume that the riskfree rate r = 0 for simplicity. We

consider the case of a digital option of the nontradable asset, i.e., we set the payoff function
f : R → R as f (x) = 1{x>K}.

Here, the buyer utility indifference price p is given by:

p = − 1
γ(1 − ρ2)

log E[e−γ(1−ρ2) f (Xx,ε,0
T )] = inf

h∈A

{
E
[

1
2

∫ T

0
|hs|2ds

]
+ E[ f (Xx,ε,

√
γh

T )]

}
. (47)

We approximate the indifference price by the proposed method. Since f ∈ Bb(R), it
holds that:

− 1
γ(1 − ρ2)

log E[exp{−γ(1 − ρ2) f (Xx,ε,0
T )}] (48)

= E[ f (Xx,ε,0
T )]− 1

2
γ(1 − ρ2)Var[ f (Xx,ε,0

T )] + O(γ2(1 − ρ2)2). (49)

To estimate the expansion error of (49), we compute both sides by using the Euler–
Maruyama discretization scheme with n = 210 time steps and Monte Carlo simulation with
M = 2 × 109 paths. The mean-variance expansion (49) is referred to as “MV-expansion
(EM n = 210)” in the following figures.

Moreover, the approximation errors of the mean and variance terms are given by
Corollary 1 as:

E[ f (Xx,ε,0
T )]− 1

2
γ(1 − ρ2)Var[ f (Xx,ε,0

T )]

= E[ f (X̄x,ε,n
T )W ε,n

T ]− 1
2
{E[ f (X̄x,ε,n

T )2W ε,n
T ]− E[ f (X̄x,ε,n

T )W ε,n
T ]2}+ O

(
ε2

n2

)
, (50)

where {X̄x,ε,n
ti

}i=0,1,...,n is the approximation process for Xx,ε,0 introduced by (27) and (28).
To check the convergence rate of (50), we employ Monte Carlo simulation with

M = 2 × 109 paths to implement the proposed method, where the reference value (the left
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hand side of (50)) is obtained by using the Euler–Maruyama discretization scheme with
n = 210 time steps and Monte Carlo simulation with M = 2 × 109 paths.

We set the parameters as T = 2.0, x = 100.0, K = 100.0, µS = µX = 0.0, σS = σX = 0.3,
ρ = 0.0, β = 0.5. We estimate the approximation error of (49) with respect to γ. Figure 9
plots the results for ε = 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 for the fixed γ = 0.025.

0.1 0.2 0.4 0.6 0.8 1.0
ε

10
−7

10
−6

10
−5

10
−4

E
rr
or

MV-expansion (EM n=210)
O(1)
Regression
(Error=2.1×10−7× ε+2.3×10−7)

Figure 9. Expansion error of (49) for each ε with γ = 0.025 under the CEV model

In Figure 9, a linear regression line (which is referred to as “Regression” in Figure 9) is
added to confirm the empirical convergence rate. We can check that the coefficient of ε is
quite small and the regression line seems to be flat. By the experiment, we confirm that the
expansion error is consistent with Theorem 1.

Next, we perform the same experiments with the parameter γ = 0.0125, 0.025, 0.05, 0.1
for the fixed ε = 0.4.

In Figure 10, we can check that the expansion error achieves the theoretical rate of
convergence of O(γ2).

0.0125 0.0250 0.0500 0.1000
γ

10
−8

10
−7

10
−6

10
−5

E
rr
or MV-expansion (EM n=210)

O(γ2)

Figure 10. Expansion error of (49) for each γ with ε = 0.4 under the CEV model.
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Finally, we estimate the weak approximation error of (50). The result is summarized
in the next table.

Table 4 shows that the proposed method provides an accurate approximation com-
pared to the Euler–Maruyama scheme.

Table 4. Numerical error of (50) for each ε with γ = 0.025 under the CEV model.

ε = 0.4 ε = 0.6 ε = 0.8

EM (n = 24) 8.5 × 10−5 1.3 × 10−4 1.9 × 10−4

WA 2nd (n = 20) 4.7 × 10−5 4.6 × 10−5 4.5 × 10−5

3.3. Indifference Pricing under Stochastic Volatility Model with a Lipschitz Payoff Function

We consider the following 3d-dimensional SDE:

dSs,i
t = µSSs,i

t dt + σSSs,i
t dW3i−2

t , Ss,i
0 = si ∈ R, (51)

dXx,i,ε
t = µXXx,i,ε

t dt + εVv,i,ε
t Xx,i,ε

t (ρdW3i−2
t +

√
1 − ρ2dW3i−1

t ), Xx,i,ε
0 = xi ∈ R, (52)

dVv,i,ε
t = ενVv,i,ε

t (ρ̃dW3i−1
t +

√
1 − ρ̃2dW3i

t ), Vv,i,ε
0 = v ∈ R, (53)

for i = 1, . . . , d where W = (W1, . . . , W3d) is a P-dimensional Brownian motion. The above
SDE represents the stochastic volatility model and is widely used by practitioners in
financial institutions.

We define Q ∈ M by:

dQ
dP = e∑d

i=1(mW3i−2
T − 1

2 m2T)+∑d
i=1

∫ T
0
√

γhi
tdW3i−1

t − 1
2
∫ T

0 γ|ht |2dt+∑d
i=1

∫ T
0
√

γki
tdW3i

t − 1
2
∫ T

0 γ|kt |2dt, (54)

for m = r−µS

σS and h, k ∈ A. Under a probability measure Q, we can rewrite the above SDE as:

dSs,i
t = rSs,i

t dt + σSSs,i
t dWQ,3i−2

t , (55)

dXx,i,ε,
√

γh,
√

γk
t = µXXx,i,ε,

√
γh,

√
γk

t dt + εVv,i,ε,
√

γh,
√

γk
t Xx,i,ε,

√
γh,

√
γk

t

× (ρ[dWQ,3i−2
t + mdt] +

√
1 − ρ2[dWQ,3i−1

t +
√

γhi
tdt), (56)

dVv,i,ε,
√

γh,
√

γk
t = ενVv,i,ε,

√
γh,

√
γk

t (ρ̃[dWQ,3i−1
t +

√
γhi

tdt] +
√

1 − ρ̃2[dWQ,3i
t +

√
γki

tdt]), (57)

for i = 1, . . . , d, where WQ = (WQ,1, . . . , WQ,3d) defined by dWQ,3i−2
t = dW3i−2

t − mdt,
dWQ,3i−1

t = dW3i−1
t −√

γhi
tdt and dWQ,3i

t = dW3i
t −√

γki
tdt, i = 1, . . . , d is a Q-Brownian

motion. We write Xx,ε,h = (Xx,1,ε,h, . . . , Xx,d,ε,h) and Vv,ε,h = (Vv,1,ε,h, . . . , Vv,d,ε,h).
We consider the case of a maximum option of the nontradable assets, i.e., we set the

payoff function f : Rd → R as f (x) = max{max{x1 − K, 0.0}, . . . , max{xd − K, 0.0}}. We
assume that the riskfree rate r = 0 as the previous examples.

Here, the buyer utility indifference price is given by:

p = − 1
γ(1 − ρ2)

log E[e−γ(1−ρ2) f (Xx,ε,0,0
T )]

= inf
h,k∈A

{
E
[

1
2

∫ T

0
(|hs|2 + |ks|2)ds

]
+ E[ f (Xx,ε,

√
γh,

√
γk

T )]

}
. (58)
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Since f ∈ CLip(Rd), by Theorem 1, we have:

− 1
γ(1 − ρ2)

log E[e−γ(1−ρ2) f (Xx,ε,0,0
T )]

= E[ f (Xx,ε,0,0
T )]− 1

2
γ(1 − ρ2)Var[ f (Xx,ε,0,0

T )] + O(γ2(1 − ρ2)ε3). (59)

We check the expansion error of (59) by computing the both sides by using the Euler–
Maruyama discretization scheme with n = 210 time steps and Monte Carlo simulation with
M = 108 paths. The mean-variance expansion (59) is referred to as “MV-expansion (EM
n = 210)” in the following figures.

Moreover, the approximation errors of the mean and variance terms are given by
Corollary 1 as:

E[ f (Xx,ε,0,0
T )]− 1

2
γ(1 − ρ2)Var[ f (Xx,ε,0,0

T )]

= E[ f (X̄x,ε,n
T )W ε,n

T ]− 1
2
{E[ f (X̄x,ε,n

T )2W ε,n
T ]− E[ f (X̄x,ε,n

T )W ε,n
T ]2}+ O

(
ε2

n2

)
, (60)

where {X̄x,ε,n
ti

}i=0,1,...,n is the approximation process for Xx,ε,0,0 introduced by (27) and (28).
To check the convergence rate of (60), we implement the proposed method by Monte

Carlo simulation with M = 108 paths, where the reference value (the left hand side of (60))
is obtained by using the Euler–Maruyama discretization scheme with n = 210 time steps
and Monte Carlo simulation with M = 108 paths.

We set the parameters as d = 10, T = 1.0, x = (100.0, . . . , 100.0), v = (0.2, . . . , 0.2),
K = 100.0, γ = 0.01, µS = µX = 0.0, σS = 0.2, ν = 0.1, ρ = 0.0, ρ̃ = −0.5. We estimate the
expansion error of (59) with respect to ε and γ.

Figure 11 plots the results for ε = 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 for the fixed γ = 0.01.
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Figure 11. Expansion error of (59) for each ε with γ = 0.01 under the 20-dimensional stochastic
volatility model.

Furthermore, we summarize the result for γ = 0.01, 0.02, 0.04, 0.08 for the fixed ε = 0.4
in Figure 12.
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Figure 12. Expansion error of (59) for each γ with ε = 0.4 under the 20-dimensional stochastic
volatility model.

In Figures 11 and 12, we can check that the expansion error achieves the theoretical
rate of convergence of O(γ2ε3).

Next, we estimate the weak approximation error of (60). The approximation error
of (60) is plotted in Figure 13.
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WA 2nd (ε=0.8)
O(n−2)
EM (ε=1.0)
O(n−1)
WA 2nd (ε=1.0)
O(n−2)

Figure 13. Weak approximation error of (60) for each ε with γ = 0.01 under the 20-dimensional
stochastic volatility model.

The figure shows that the error of “WA 2nd” decreases rapidly as the number of
time steps increases compared to “EM”, which means that the proposed method achieves
the second-order accuracy with respect to the number of time-steps n. The results are
summarized in Table 5.



Entropy 2024, 26, 119 19 of 20

Table 5. Numerical error of (60) for each ε with γ = 0.01 under the 20-dimensional stochastic
volatility model.

ε = 0.6 ε = 0.8 ε = 1.0

EM (n = 27) 4.7 × 10−3 7.9 × 10−3 1.1 × 10−2

WA 2nd (n = 23) 6.6 × 10−4 1.7 × 10−3 3.9 × 10−3

Throughout the numerical experiments, we confirm that the proposed method pro-
vides a consistent result with Theorem 1 and Corollary 1 even when f is a non-smooth function.

4. Conclusions

In the paper, we showed a precise error estimate of the mean-variance expansion of the
stochastic control problem under general conditions on the terminal test function based on
asymptotic expansion and Malliavin calculus. In particular, we proved that the expansion
error depends on the smoothness of the test function, which is an extension of [11,14,15].
Moreover, an efficient algorithm has been introduced based on the asymptotic expansion
method and weak approximation for the small noise diffusion. Numerical experiments
confirmed the theoretical convergence rate of γ, the small noise parameter ε and the number
of time-steps. For future work, it is worth considering to apply the proposed method to
important problems in statistical physics, such as the rare event simulation studied by [7,8].

Author Contributions: Conceptualization, M.K., R.N. and T.Y.; methodology, M.K., R.N. and T.Y.;
validation, R.N. and T.Y.; formal analysis, M.K., R.N. and T.Y.; investigation, R.N. and T.Y.; writing—
original draft preparation, R.N. and T.Y.; writing—review and editing, T.Y.; visualization, R.N. and
T.Y.; supervision, T.Y.; project administration, T.Y.; funding acquisition, T.Y. All authors have read
and agreed to the published version of the manuscript.

Funding: This work is supported by JST PRESTO (Grant Number JPMJPR2029), Japan.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: Masaya Kannari is employed by Aflac Life Insurance Japan Ltd. Riu Naito is
employed by Asset Management One, Co., Ltd. The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

SDE Stochastic Differential Equation

References
1. James, M.R.; Baras, J.S.; Elliott, R.J. Risk-sensitive control and dynamic games for partially observed discrete-time nonlinear

systems. IEEE Trans. Automat. Contr. 1994, 39, 780–792. [CrossRef]
2. Campi, M.C.; James, M.R. Nonlinear discrete-time risk-sensitive optimal control. Int. J. Robust Nonlinear Control 1996, 6, 1–19.

[CrossRef]
3. James, M.R. Asymptotic analysis of nonlinear stochastic risk-sensitive control and differential games. Math. Control Signals Syst.

1992, 5, 401–417. [CrossRef]
4. Whittle P. Risk-sensitive linear/quadratic/gaussian control. Adv. Appl. Probab. 1981, 13, 764–777. [CrossRef]
5. Whittle P. Risk sensitivity, a strangely pervasive concept. Macroecon. Dyn. 2002, 6, 5–18. [CrossRef]
6. Fleming, W.H. Risk sensitive stochastic control and differential games. Commun. Inf. Syst. 2006, 6, 161–177. [CrossRef]
7. Hartmann, C.; Richter, L.; Schütte, C.; Zhang, W. Variational characterization of free energy: Theory and algorithms. Entropy 2017,

19, 626. [CrossRef]
8. Nüsken, N.; Richter, L. Solving high-dimensional Hamilton–Jacobi-Bellman PDEs using neural networks: Perspectives from the

theory of controlled diffusions and measures on path space. Partial Differ. Equ. Appl. 2021, 2, 1–48. [CrossRef]
9. Boué, M.; Dupuis, P. A variational representation for certain functionals of Brownian motion. Ann. Probab. 1998, 26, 1641–1659

[CrossRef]
10. Reich, S. Data assimilation: The Schrödinger perspective. Acta Numer. 2019, 28, 635–711. [CrossRef]

http://doi.org/10.1109/9.286253
http://dx.doi.org/10.1002/(SICI)1099-1239(199601)6:1<1::AID-RNC128>3.0.CO;2-3
http://dx.doi.org/10.1007/BF02134013
http://dx.doi.org/10.2307/1426972
http://dx.doi.org/10.1017/S1365100502027025
http://dx.doi.org/10.4310/CIS.2006.v6.n3.a1
http://dx.doi.org/10.3390/e19110626
http://dx.doi.org/10.1007/s42985-021-00102-x
http://dx.doi.org/10.1214/aop/1022855876
http://dx.doi.org/10.1017/S0962492919000011


Entropy 2024, 26, 119 20 of 20

11. Davis, M.H. Optimal hedging with basis risk. In From Stochastic Calculus to Mathematical Finance; Kabanov, Y., Liptser, R., Stoyanov,
J., Eds.; Springer: Berlin, Deutsch, 2006; pp. 169–187.

12. Sekine, J. An approximation for exponential hedging. In Stochastic Analysis and Related Topics in Kyoto: In Honour of Kiyosi Itô;
Mathematical Society of Japan: Tokyo, Japan, 2004; Volume 41, pp. 279–300.

13. Carmona, R. Indifference Pricing: Theory and Applications; Princeton University Press: Princeton, NJ, USA, 2008.
14. Monoyios, M. Malliavin calculus method for asymptotic expansion of dual control problems. SIAM J. Financ. Math. 2013, 4,

884–915. [CrossRef]
15. Benedetti, G.; Campi, L. Utility indifference valuation for non-smooth payoffs with an application to power derivatives. Appl.

Math. Opt. 2016, 73, 349–389. [CrossRef]
16. Watanabe, S. Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels. Ann. Probab. 1987, 15, 1–39.

[CrossRef]
17. Takahashi, A.; Yamada, T. An asymptotic expansion with push-down of Malliavin weights. SIAM J. Financ. Math. 2012, 3, 95–136.

[CrossRef]
18. Takahashi, A.; Yamada, T. On error estimates for asymptotic expansions with Malliavin weights: Application to stochastic

volatility model. Math. Oper. Res. 2015, 40, 513–541. [CrossRef]
19. Takahashi, A.; Yamada, T. A weak approximation with asymptotic expansion and multidimensional Malliavin weights. Ann.

Appl. Probab. 2016, 26, 818–856. [CrossRef]
20. Yamada, T. An arbitrary high order weak approximation of SDE and Malliavin Monte Carlo: Application to probability

distribution functions. SIAM J. Numer. Anal. 2019, 57, 563–591. [CrossRef]
21. Naito, R.; Yamada, T. A third-order weak approximation of multi-dimensional Itô stochastic differential equations. Monte Carlo

Methods Appl. 2019, 25, 97–120. [CrossRef]
22. Naito, R.; Yamada, T. A higher order weak approximation of McKean-Vlasov type SDEs. BIT 2022, 62, 521–559. [CrossRef]
23. Iguchi, Y.; Yamada, T. Operator splitting around Euler–Maruyama scheme and high order discretization of heat kernels. ESAIM

Math. Model. Num. 2021, 55, 323–367. [CrossRef]
24. Iguchi, Y.; Naito, R.; Okano, Y.; Takahashi, A.; Yamada, T. Deep asymptotic expansion: Application to financial mathematics. In

Proceedings of IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), Brisbane, Australia, 8 December 2021.
25. Ikeda, N.; Watanabe, S. Stochastic Differential Equations and Diffusion Processes, 2nd ed.; North-Holland Math. Lib.: North-Holland,

Amsterdam, The Nederlands, 1989.
26. Nualart, D. The Malliavin Calculus and Related Topics; Springer: Berlin, Deutsch, 2006.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1137/120892441
http://dx.doi.org/10.1007/s00245-015-9306-4
http://dx.doi.org/10.1214/aop/1176992255
http://dx.doi.org/10.1137/100807624
http://dx.doi.org/10.1287/moor.2014.0683
http://dx.doi.org/10.1214/15-AAP1105
http://dx.doi.org/10.1137/17M114412X
http://dx.doi.org/10.1515/mcma-2019-2036
http://dx.doi.org/10.1007/s10543-021-00880-1
http://dx.doi.org/10.1051/m2an/2020043

	Introduction
	Asymptotic Expansion and Weak Approximation of Stochastic Control Problems
	Numerical Examples
	Indifference Pricing under Black–Scholes Model with a Lipschitz Payoff Function
	One-Dimensional Case
	10-Dimensional Case
	100-Dimensional Case

	Indifference Pricing under Constant Elasticity Model (CEV Model) with a Bounded Measurable Payoff Function
	Indifference Pricing under Stochastic Volatility Model with a Lipschitz Payoff Function

	Conclusions
	References

