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Abstract: In recent years, many works have explored possible advantages of indefinite causal order,
with the main focus on its controlled implementation known as quantum switch. In this paper, we
tackle advantages in quantum thermodynamics, studying whether quantum switch is capable of
activating a passive state, either alone or with extra resources (active control state) and/or operations
(measurement of the control system). By disproving the first possibility and confirming the second
one, we show that quantum switch is not a thermodynamic resource in the discussed context, though
it can facilitate work extraction given external resources. We discuss our findings by considering
specific examples: a qubit system subject to rotations around the x and y axes in the Bloch sphere,
as well as general unitaries from the U(2) group; and the system as a quantum harmonic oscillator
with displacement operators, as well as with a combination of displacement and squeeze operators.
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1. Introduction

A possibility that a superposition principle can be applied to quantum operations,
leading to so-called indefinite causal order, was for the first time considered in 1990 [1].
The topic received a visible boost of attention two decades later, when Chiribella et al. [2]
and Oreshkov et al. [3] introduced the concepts of non-classical causal structures and
process matrices. In this case, however, they took off from a previous work by Hardy [4],
which considers dynamical and indefinite causal structure in a potential theory of quantum
gravity. A recent review [5] comprehensively covers deep theory background behind
indefinite causal order treated as a quantum resource.

Quantum switch (QS) [2] is the paramount toy model for considerations involving
indefinite causal order. It implements the controlled superposition of orders in which two
(or more) unitaries (or, more generally, quantum channels) are applied to a target system.
Among other aspects, it has been shown that with the help of QS one can gain computational
advantages [2,6–8], communication advantages [9–11] or even the super Heisenberg limit
in metrology [12–16]. For example, it has been predicted [10] that completely depolarizing
quantum channels (which have zero capacity, i.e., they do not transmit any information),
if superposed with the help of the QS, can be used for information transmition. Moreover,
such an “acausal” superposition of noisy channels would behave as a perfect channel [17],
providing a possibility to reduce noise completely. Intriguingly, predicted enhancements
are indeed due to superposition of orders in time [17] and do not seem to occur fully for
superposition of paths in space [18]. Interestingly, these effects seem to be more related
to the sole resourcefulness [19–21] of indefinite causal order rather than to particular
arrangements of the involved channels. Moreover, as already mentioned, the first proposal
for metrology assisted by indefinite causal order implemented through the QS has also
recently been announced. In [12], the problem of estimating the product between the
average position and momentum displacements has been investigated. While a basic
parallel scheme with measurements of individual displacements results in an error of
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estimation of the product compatible with the standard quantum (shot noise) limit, a direct
measurement of the two average displacements (sequential layout) allows for a quadratic
improvement of the scaling—the famous Heisenberg limit. However, the QS-assisted
measurement protocol, which uses the fact that the parameter in question can be encoded in
the commutator of the displacements, leads to a further quadratic improvement, the super-
Heisenberg limit. We note that in this case the Weyl commutation relation between position
and momentum unitary displacement operators is crucial; therefore, it is not just a bare
resourcefulness of the quantum switch playing the role. The topic of metrology using
indefinite causal order has further been investigated in a comprehensive way [13,15,21,22].

For completeness, let us also briefly report an experimental effort directed towards
indefinite causal order, the topic in which a few proof-of-concept demonstrations have been
performed to date. The first experiment with indefinite causal order implemented through
QS was realized in a quantum optics context [23]. In this work, a superposition of gate
orders was created by considering additional degrees of freedom of photons to encode the
involved qubits, with an auxiliary qubit responsible for controlling the order in which two
given gates are applied to the qubit of interest. The sole concept of causality was the subject
of a different experiment [24], where an object called a causal witness, postulated in [25],
was used to prove the “acausality” of the process based on QS. Such causal witnesses serve
a similar purpose to entanglement witnesses. Moreover, quantum switch was recently
demonstrated in other experiments [16,26,27]. Experiments with indefinite causal order
are now entering the phase in which certain theoretical proposals mentioned above can be
implemented; see [11] for communication complexity [28,29]; for enhancements in quantum
communication [30]; for computational advantages. Again, on the theory side, we can even
observe an engineering perspective (quantum internet [31]) entering the scene.

In the above brief review, we often interchangeably treat indefinite causal order and
quantum switch. This is mainly because virtually all theoretical proposals and experimental
demonstrations have to do, or even are fully concerned with QS. However, indefinite causal
order is more than that, since QS does not even violate causal inequalities [25], the latter
being a true signature of acausality. On the other hand, as the metrology application
shows, the emergence of extraordinary improvements might need an additional ingredient
(Weyl commutation relations in this particular case), so it is not granted that indefinite
causal order (or just QS) is the source of quantum advantages. These observations become
particularly relevant in the context of quantum thermodynamics, where first attempts to
use QS have just appeared [32–35]. Therefore, in the current contribution, we scrutinize the
resourcefulness of QS in light of activation of passive states in quantum thermodynamics.
While it was initially treated in [34], here, the activation of passive states by means of
QS is further explored, and new situations are examined. First, we study the activation
with and without measuring and tracing out the control degree of freedom, in which the
latter depends on non-diagonal elements in the Hamiltonian of the control. Second, in our
case, at all times, we treat the state of the control and its measurement basis in the Bloch
sphere representation, which, experimentally speaking, might have more impact. Third,
the conditions for state activation are derived by looking at energy differences before and
after applying QS (and post selection). Hence, whenever this energy difference is negative,
state activation can be certified. Finally, when it comes to concrete examples of systems, we
show that for two-level systems (qubit), depending on the chosen measurement basis, no
work can be extracted, even if the control was initially prepared with quantum coherence.
Moreover, we also consider a quantum harmonic oscillator as the system, which has a whole
set of peculiarities when compared to finite-level systems (e.g., we can continuously set the
unitaries to the identity operator, which might lead to singularities in renormalization after
measurement of the control). The case of applying QS to systems with infinite levels—to
which the quantum harmonic oscillator is an example—was, to the best of our knowledge,
just treated previously in [36] in a very abstract manner using process matrix formalism.
In this paper, we proceed with a more concrete scenario, using well-known examples
of unitaries for continuous variable systems (displacement and squeeze operators (this
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name is not consistent in the literature, as it is also called the “squeezing operator” by
some authors. In this paper, we stick to the term “squeeze operator”). Therefore, since
electromagnetic modes can be treated as quantum harmonic oscillators, the study provided
here can have an impact on quantum optic setups.

This paper is organized as follows. In Section 2, we expand the discussion concerned
with the interplay between quantum thermodynamics and the quantum switch. We observe
that, while QS can be used in a clever way to activate [34] the so-called passive states [37],
the question about the origin of necessary resources is, due to a special status of thermody-
namics, perhaps more relevant than in other scenarios mentioned above. Therefore, we
pose a very precise question pertaining to the problem of passive states subject to QS in or-
der to figure out whether thermodynamic advantages in this context can come from the sole
resourcefulness of QS or whether they rather come from the ancillary degrees of freedom.
In Section 3, we show that the latter scenario applies to the setup under consideration.
In order to see how the results work in different cases, we apply the framework to specific
examples in Section 4. First, in Section 4.1, the situation considered is when the system is
a qubit (with only two levels) for different unitaries: (i) when they are rotations around
the x and y axes in the Bloch sphere (Section 4.1.1) and (ii) when they are represented as
general unitaries from the U(2) group (Section 4.1.2). Then, we study the case in which the
system is a quantum harmonic oscillator (Section 4.2) with two different combinations of
unitaries: (i) both unitaries are displacement operators (Section 4.2.1) and (ii) one unitary is
a displacement operator and the second is a squeeze operator (Section 4.2.2). Finally, we
pass to Section 5, where we draw conclusions about this work.

2. Quantum Switch and Passive States in Thermodynamics

Whenever QS is shown to provide quantum advantages, a similar scheme is exercised.
We consider a state of the system, denoted by ρS, and a control qubit, denoted by ρC.
Initially, the state of the total system is ρSC = ρS ⊗ ρC, so by assumption there is no
correlation between the system and the control qubit at the initial time.

Given two unitaries U1 and U2 (or other quantum channels, as everything naturally
extends to Kraus decomposition involving more terms; see [10] as a profound example),
we perform the following operation:

UQS = U2U1 ⊗ |0⟩⟨0|C + U1U2 ⊗ |1⟩⟨1|C. (1)

We note that, from a physical point of view, in the above definition, we offer meaning
to the computational basis of the control qubit, {|0⟩, |1⟩}. Afterwards, we measure the
control qubit on a suitable basis (most often in {|+⟩, |−⟩}) and infer conclusions about
gains associated with the system.

Let us now consider the problem of passive states in thermodynamics. State ρS is
passive with respect to the Hamiltonian system, HS, if [38–40]

tr{ρS HS} ≤ tr
{

UρSU†HS

}
(2)

for every unitary operation U. The notion closely related with passivity of states is er-
gotropy [41,42] as it measures extractable work. The definition of ergotropy is the following:
considering a quantum system whose state is ρS and Hamiltonian is HS, the ergotropy of
such system—or extractable work—is expressed by

Wmax := tr{ρS HS} − min
U

tr{UρSU† HS}, (3)

where the minimization procedure is applied to all the unitary transformations existing in
the Hilbert space of system HS. As shown in [43], the ergotropy is upper bounded as the
following:

Wmax ≤ tr{ρS HS} − tr{σβ HS}, (4)
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with

σβ =
e−βHS

ZS
(5)

being the Gibbs thermal state at inverse temperature β such that its von Neumann entropy
S(ρ) := − tr{ρ ln ρ} is the same as that of ρS, i.e., S(ρS) = S(σβ). Moreover, ZS is the
partition function of the system defined by ZS := tr{exp(−βHS)}. Therefore, it can be seen
that the Gibbs thermal state sets a limit on the amount of work that can be extracted from
a quantum system. As a matter of fact, having a system in a thermal state means that no
work can be extracted from it using any unitary U.

One then is led to a question: is it possible to extract work from passive states with
the help of QS? The natural way is to check whether starting from a passive state one can
obtain a state whose ergotropy is non-zero. In this line, Simonov et al. [34] scrutinized
gains in ergotropy due to application of QS. As usual, it turded out that occurrence of
the potential benefits critically depends on the basis on which the control qubit is being
measured. This fact suggests a follow-up question: is the increased ergotropy a consequence
of extra information (like in the Maxwell demon problem) which is available after tailored
measurements applied to the control qubit (i.e., some resources associated with the control
qubit), or is it rather the acausal character of quantum switch which plays the major role?
Here, we discuss the second possibility.

To this end, we resort to the fact that the notion of passivity admits the phenomenon
of superadditivity. While the two states can individually be passive, the tensor product does
not need to be such. Only Gibbs states are completely passive, which means they do not
admit superadditivity in that context.

3. Results

We are in a position to formalize our problem at hand. As before, we assume that at
initial time the total state is not correlated, ρSC = ρS ⊗ ρC, and moreover both ρS and ρC
are individually passive with respect to their local Hamiltonians HS and HC. Clearly, due
to the phenomenon of superadditivity, if we admit any unitaries acting on the composite
system, we will potentially be able to extract work from ρSC, as the composite state is not
necessarily passive.

We restrict, however, the set of allowed global unitary operations to those that are
realized by QS involving two unitaries on the system side only. We then check whether this
setting is sufficient to activate the system, i.e., to observe

∆QS := tr
{

UQSρSCU†
QSHSC

}
− tr{ρSC HSC}

= E′
SC − ESC < 0, (6)

with the total Hamiltonian HSC = HS ⊗ 1C + 1S ⊗ HC. Here, we consider that system and
control do not interact, hence ESC = ES + EC.

Since the application of “causally separable” unitaries on the system side is not enough
for activation to occur, we check whether including QS is already a sufficient resource for
the discussed purpose. To this end, we can explicitly compute

E′
SC = ⟨0|ρC|0⟩E12 + ⟨1|ρC|1⟩E21 + ⟨0|ρC|0⟩⟨0|HC|0⟩

+ ⟨1|ρC|1⟩⟨1|HC|1⟩+ χ⟨0|ρC|1⟩⟨1|HC|0⟩+ χ∗⟨1|ρC|0⟩⟨0|HC|1⟩,
(7)

with
E12 := tr

{
U2U1ρSU†

1 U†
2 HS

}
, E21 := tr

{
U1U2ρSU†

2 U†
1 HS

}
(8)

and
χ = tr

{
U2U1ρSU†

2 U†
1

}
≡ |χ|eiϕ. (9)
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Complex number χ is connected to the unitary cross-map [34], encoding correlations
relevant when both unitaries do not commute. In the communing case, we trivially obtain
χ = 1. Let us denote

Uϕ,± =

(
1 0
0 ±e−iϕ

)
, (10)

and introduce states

ρ̃C =
1 + |χ|

2
Uϕ,+ρCU†

ϕ,+ +
1 − |χ|

2
Uϕ,−ρCU†

ϕ,−, (11)

ρ̃S = ⟨0|ρC|0⟩U2U1ρSU†
1 U†

2 + ⟨1|ρC|1⟩U1U2ρSU†
2 U†

1 . (12)

We find that
E′

SC = ẼS + ẼC, (13)

where, by analogy, we define

ẼS := tr{ρ̃S HS}, ẼC := tr{ρ̃C HC}. (14)

Since both ρ̃S and ρ̃C represent the result of applying incoherent (convex) superpositions of
local unitary operations to ρS and ρC respectively, we conclude that

ES + EC ≤ ẼS + ẼC. (15)

Consequently,
∆QS ≥ 0, (16)

since from individual passivity of ρ̃S and ρ̃C we know that

∆S := ẼS − ES ≥ 0, ∆C := ẼC − EC ≥ 0. (17)

As our first result, we find that QS itself is incapable of performing an activation of a
passive state. While it was expected that the passive control state does not become activated
(no unitaries are operating on these degrees of freedom), the same is shown to be true
for the reduced system state itself, and as a mere consequence of linearity extends to the
composite state of system and control. Therefore, the predicted increase in the ergotropy of
the composite system seems to be associated with resources of the control qubit and/or
measurements performed on it rather than the sole action of quantum switch.

To frame the first possibility, we suppose that the control qubit is in a generic state that
does not need to be passive. As direct calculation shows,

∆C = 2 Re{⟨0|ρC|1⟩⟨1|HC|0⟩(χ − 1)}, (18)

where Re{z} denotes the real part of complex number z, so it is straightforward to
minimize this expression with respect to the state of the qubit. To this end, we need
⟨0|ρC|1⟩ = −eiϕ/

√
2, where phase ϕ is selected to cancel the phase of ⟨1|HC|0⟩(χ − 1).

Consequently,
min

ρC
∆C = −

√
2|⟨1|HC|0⟩(χ − 1)|. (19)

The last expression not only shows an expected effect of activation for the control, but also
proves that the composite system plus control state activation is possible if and only if
χ ̸= 1 and the Hamiltonian HC has non-diagonal terms in the computational basis {|0⟩, |1⟩}
defined by the action of QS. Non-commuting unitaries U1 and U2 are essential for state
activation; otherwise, χ = 1. To obtain ∆QS ≤ 0, we need a sufficiently large value of the
control Hamiltonian coherence in comparison with the energy scale of the system. We
stress that in this way, it is impossible to activate just the system. Activation can occur only
for the composite state.
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On the other hand, even if the requirement of Hamiltonian of the control having non-
diagonal terms in the computational basis is not fulfilled, it is still possible to activate the state
of the system by measuring the control qubit. In order to show how it happens, we consider
that the state of the control is pure, ρC = |ψ⟩⟨ψ|C, and parametrized in the following way:

|ψ⟩C = cos
(

θC
2

)
|0⟩C + eiφC sin

(
θC
2

)
|1⟩C (20)

such that in the Bloch sphere it is represented by point (sin θC cos φC, sin θC sin φC, cos θC).
Then, the final joint state of system and control is equal to

ρ′SC = cos2
(

θC
2

)
U2U1ρSU†

1 U†
2 ⊗ |0⟩⟨0|C +

eiφC

2
sin θC U2U1ρSU†

2 U†
1 ⊗ |0⟩⟨1|C

+
e−iφC

2
sin θC U1U2ρSU†

1 U†
2 ⊗ |1⟩⟨0|C + sin2

(
θC
2

)
U1U2ρSU†

2 U†
1 ⊗ |1⟩⟨1|C.

(21)

The measurement of the control is supposed to be performed by means of a projective
measurement onto state

|ψM⟩C = cos
(

θM
2

)
|0⟩C + eiφM sin

(
θM
2

)
|1⟩C, (22)

so that the state of the system post measurement of the control is

ρS,M =
(1S ⊗ ⟨ψM|C)ρ′SC(1S ⊗ |ψM⟩C)

tr{(1S ⊗ ⟨ψM|C)ρ′SC(1S ⊗ |ψM⟩C)}
. (23)

This state explicitly reads

ρS,M =
1

NM

(
cos2

(
θC
2

)
cos2

(
θM
2

)
U2U1ρSU†

1 U†
2 + sin2

(
θC
2

)
sin2

(
θM
2

)
U1U2ρSU†

2 U†
1

+
e−i(φC+φM)

4
sin θM sin θC U1U2ρSU†

1 U†
2 +

ei(φC+φM)

4
sin θM sin θC U2U1ρSU†

2 U†
1

)
,

(24)

with
NM =

1
2
(1 + cos θC cos θM + sin θC sin θM Re{χei(φC+φM)}). (25)

As can be seen, the state expressed by Equation (24) contains not only the incoherent
terms (the ones associated with the diagonal elements of ρC) but also coherences coming
from the off-diagonal terms of the state of the control. Hence, the average internal energy
of the system post application of the QS and post measurement of the control,

ES,M := tr{ρS,M HS}, (26)

might be inferior to the initial average internal energy. As in the pre-measurement case,
coherences in the control qubit are mandatory for state activation. In fact, it can be seen that
whenever the difference between the final (ES,M) and the initial value is negative, that is,

∆S,M := ES,M − ES < 0, (27)

there is activation of the state of the system, and work can be extracted from it.
By expanding the previous expression for ∆S,M, it can be found that it is equivalent to

∆S,M =
1

NM

(
cos2

(
θC
2

)
cos2

(
θM
2

)
∆12

+ sin2
(

θC
2

)
sin2

(
θM
2

)
∆21 +

1
2

sin θC sin θM Re{∆Fei(φC+φM)}
)

,
(28)



Entropy 2024, 26, 153 7 of 22

where
∆12 := tr{U2U1ρSU†

1 U†
2} − ES, ∆21 := tr{U1U2ρSU†

2 U†
1} − ES (29)

and
∆F := FS − χES, FS := tr{U2U1ρSU†

2 U†
1 HS}. (30)

Since ∆12 ≥ 0 and ∆21 ≥ 0, the conditions for a possible state activation can be found after
measuring the control: (i) θC ̸= 0, π and θM ̸= 0, π (i.e., the states cannot be either |0⟩ or
|1⟩); (ii) tan(φC + φM) ̸= Re{∆F}/ Im{∆F}, and (iii) sin θC sin θM Re{∆Fei(φC+φM)} < 0.
These are necessary, but not sufficient conditions for state activation of the system.

4. Examples

Let us now test the above considerations with concrete scenarios. We start with the
situation in which the system has only two levels (qubit) and the unitaries are rotations
around the x and y axes of the Bloch sphere (Section 4.1.1). Still in the qubit scenario,
we then consider general U(2) unitaries in Section 4.1.2. In the continuation, we pass to
the case in which the system consists of a quantum harmonic oscillator in two different
combinations of unitaries, (i) both being displacement operators (Section 4.2.1) and (ii) one
unitary being the displacement operator and the other the squeeze operator (Section 4.2.2).
In all parts, units are such that h̄ = kB = 1.

4.1. Two-Level Systems

We consider the case in which both the system and the control are represented by
two-level systems (qubits). In such a case, the individual Hamiltonian of the system is
written as

HS =
ω

2
(1S − σz

S), (31)

where 1S is the identity operator living in the Hilbert space of the system, and σz
S is

the “z” Pauli matrix in HS. The Hamiltonian of the control is similar, but it contains a
non-diagonal term,

HC =
ω

2
(1C − σz

C) + t|0⟩⟨1|C + t∗|1⟩⟨0|C, (32)

with the same identity and Pauli operators as before, but now living in HC, and
t = |t|eiθ ∈ C is connected to the probability that the control qubit will jump from one state
to the other. For simplicity, we consider that system and control are resonant (ωS = ωC = ω)
and the total Hamiltonian is a non-interacting one, HSC = HS ⊗ 1C + 1S ⊗ HC. The initial
state of the system is taken to be the Gibbs state,

ρS =
e−βHS

ZS
=

(
1

1+e−βω 0
0 1 − 1

1+e−βω

)
, (33)

with ZS = tr{e−βHS} and β the inverse temperature of the system. Moreover, the control
is initially prepared in a generic pure state, ρC = |ψ⟩⟨ψ|C, with |ψ⟩C = cos(θC/2)|0⟩C +
eiφC sin(θC/2)|1⟩C, and θC ∈ [0, π], φC ∈ [0, 2π]. The initial joint state is a non-correlated,
product state ρSC = ρS ⊗ ρC. We then consider two different scenarios for the unitaries:
(i) they correspond to rotations around the x and y axes in the Bloch sphere and (ii) general
U(2) unitaries (which themselves are decomposed as rotations in the Bloch sphere).

4.1.1. Rotation Operators

First, we start with unitaries as rotations around the x and y axes in the Bloch sphere,

U1 = Rx(αx) = e−iσxαx/2, U2 = Ry(αy) = e−iσyαy/2, (34)

where σx and σy are Pauli matrices, and αx, αy ∈ [0, 2π] are the angles of rotation. The final
state after applying QS is then denoted ρ′SC = UQSρSCU†

QS, with UQS as in Equation (1).
With all that, it is possible to calculate
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∆QS =
ω

2

[
1 − cos αx cos αy +

|t|
ω

sin αx sin αy sin θC sin(θ + φC)
)

tanh
(

βω

2

)]
− 2|t| cos(θ + φC) sin θC sin2

(αx

2

)
sin2

(αy

2

)
.

(35)

This expression is plotted in Figure 1 in the case that the state of the control corresponds to
the pure state, |+⟩ = (|0⟩+ |1⟩)/

√
2. As expected from the calculations in Section 3, when

the Hamiltonian of the control is diagonal in the computational basis (|t| = 0), the energy
of the system plus control is always higher than the initial energy after applying quantum
switch, for whatever inverse temperature β. As the value of |t| is increased, it is possible
to reach lower final energy for a range of β, meaning that the state of system plus control
is activated.

|t|=0.0, θ=0
|t|=0.2, θ=0
|t|=0.4, θ=0
|t|=0.6, θ=0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.6

-0.4

-0.2

0.0

0.2

0.4

β

Δ
Q
S

Figure 1. Plot of ∆QS as a function of β, for fixed ω = 1.0, αx = π/2, αy = π and different values of t,
when the unitaries are rotations around the x and y axes. As it is evidenced by the plots, for |t| = 0,
no activation occurs (∆QS ≥ 0). However, as |t| increases, more energy can be extracted from system
plus control, and for a larger range of inverse temperatures β.

Now, passing to the case that the control is measured by means of a projector in state
|ψM⟩C = sin(θM/2)|0⟩C + eiφM sin(θM/2)|1⟩C, we have the following necessary (but not
sufficient) conditions for state activation:

sin θC ̸= 0, sin θM ̸= 0, (36)

tan(φC + φM) ̸= (cot αx cot αy − csc αx csc αy) sinh βω, (37)

and
ω sin θC sin θM

2(1 + eβω)2 ((e2βω − 1)(1 − cos αx cos αy) cos(φC + φM)

+ 2eβω sin αx sin αy sin(φC + φM)) < 0.
(38)

These become simplified when β → 0 (i.e., the Gibbs thermal state corresponds to the
maximally mixed state ρS = 1S/2) and αx = αy = α; then, the last two conditions become

tan(φC + φM) ̸= 0 (39)

and
sin θC sin θM sin(φC + φM) < 0; (40)

then, if we set, for example, θC = π/2 and φC = 0—which corresponds to state |+⟩⟨+|C—
we obtain φM ̸= 0, π and sin θM sin φM < 0, meaning that we must have φM ∈ ]π, 2π[ for
possible state activation.

In this simplified scenario (state of the control |+⟩⟨+|C, β → 0 and αx = αy = α), ∆S,M
becomes

∆S,M =
ω sin φM

2 cos φM + 4 cos φM cot α csc α + 4 csc2 α csc θM
, (41)

which clearly has a minimum for θM = π/2 (remember that θM ∈ ]0, π[ ). Then, we plot,
in Figure 2, angle φM for which we obtain minimum ∆S,M as well as the values of the
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latter as a function of φM for different values of α. Here, as a matter of fact, the previous
conditions for state activation are not only necessary, but also sufficient, since when β → 0,
the “causally ordered” energy differences are equal to zero: ∆12 = ∆21 = 0.
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3.0

3.5

4.0

4.5

5.0

5.5

6.0

αx=αy=α
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2
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0.0

φM

Δ
S
,M

Figure 2. Plots of the value of φM (in radians) for which ∆S,M is minimum (left) and of ∆S,M as a
function of φM (in radians) for different α (right). In both, we consider the state of the control to be
equal to |+⟩⟨+|C (θC = π/2, φC = 0), ω = 1.0, θM = π/2 and β → 0.

4.1.2. General U(2) Unitaries

In the most general scenario, unitary operations in L(H2), with H2 being the Hilbert
space of Dimension 2 (qubits), can be written in the generic U(2) representation group [44],

Uk = eiαk Rz(λk)Ry(γk)Rz(δk), k = 1, 2, (42)

with αk, λk, γk, δk ∈ R and Ry, Rz are rotations around the y and z axis of the Bloch sphere,
respectively. Unfortunately, compact expressions cannot be obtained here, but numerically
we can try to find combinations of αk, λk, γk, δk that minimize ∆QS for a given combination
of ω, β and t (actually αk do not matter in this case) given a certain state of the control,
which we take to be the |+⟩⟨+|C state. In Figure 3, we find the plots of the minimum value
of ∆QS as a function of |t| for a few inverse temperatures, β, and angles, θ. We see that for
each |t| > 0, it is always possible to reach negative ∆QS, and curiously, all the points with
the same angle, θ, converge to the same line with a well-defined slope, irrespective of the
inverse temperature, β. Then, we might take the simplifying scenario when β → 0:

∆β→0
QS = −

(
−12 + ϵ(λ1, γ1, δ1, λ2, γ2, δ2)

16

)
cos θ |t|, (43)

where
min ϵ(λ1, γ1, δ1, λ2, γ2, δ2) ≡ −20 (44)

such that the minimum value of the energy difference of system plus control is totally
determined by the off-diagonal term of the Hamiltonian of the control, t (of course, it
happens for different combinations of λk, γk and δk).
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Figure 3. Minimum values achieved by ∆QS as a function of |t|, for fixed ω = 1.0 and for different
inverse temperatures (β = 0 on the left, β = 0.1 on the middle and β = 0.2 on the right) and angles θ.
For each point, a different combination of λk, γk, δk leads to the minimum value of ∆QS. Here, the
state of the control is set to be the |+⟩⟨+|C state (θC = π/2, φC = 0). Curiously, the slopes of the
dashed lines from the plots do not depend on β, but solely on θ.

On the other hand, we have the situation after measuring the control qubit. Again, no
simple analytical expression can be obtained. Nonetheless, the numerical minimization
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of ∆S,M is performed depending on the state of the control and of the measurement basis.
For instance, we consider the situation when the state of the control is the |+⟩⟨+|C state
(θC = π/2 and φC = 0) and the measurement state is on the xy plane (θM = π/2). Then,
the plot of the minimum value of ∆S,M for different inverse temperatures β, as a function
of φM, is found in Figure 4. It shows that when we use basis {|+⟩, |−⟩}, corresponding to
φM = 0 and φM = π, respectively, to measure the control qubit, no state activation can be
achieved, for whatever values of λk, γk and δk. Moreover, since min ∆S,M changes with the
inverse temperature up to a constant, we take β → 0, and then ∆S,M becomes

∆β→0
S,M = ω

f (λ1, γ1, δ1, λ2, γ2, δ2) sin φM
32 + g(λ1, γ1, δ1, λ2, γ2, δ2) cos φM

(45)

with complicated functions f (λ1, γ1, δ1, λ2, γ2, δ2) and g(λ1, γ1, δ1, λ2, γ2, δ2). Nonetheless,
we know their minimum value to be

min f (λ1, γ1, δ1, λ2, γ2, δ2) = −16 (46)

and
min g(λ1, γ1, δ1, λ2, γ2, δ2) ∼ −8.57. (47)

Here, the sin φM on the numerator shows how ∆β→0
S,M = 0 when φM = 0, π.
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Figure 4. Minimum value achieved by ∆S,M as a function of φM, when ω = 1.0, θC = θM = π/2
and φC = 0, for different β. For better visualization, we plot just a few points in order to show that
the minimum value of ∆S,M is a constant, except for φM = 0, π, when no state activation is possible
(min ∆S,M = 0).

4.2. Quantum Harmonic Oscillator

Continuing, now we pass to the situation in which the system is a one-mode quantum
harmonic oscillator and the control is still a two-level system (qubit). The Hamiltonian of
the control is the same as in the previous sections and the Hamiltonian of the system is

HS = ω

(
a†a +

1S
2

)
, (48)

where a (a†) is the annihilation (creation) operator, and as before, we consider that the
system and the control are resonant (same excitation energy ω). The total Hamiltonian
is simply the sum of the individual Hamiltonians, as no interaction is assumed between
system and control. The initial state of the control is the coherent ρC = |+⟩⟨+|C state
(θC = π/2, φC = 0) and the state of the system is the thermal Gibbs state,

ρS =
e−βHS

ZS
= (1 − e−βω)∑

n
e−βωn|n⟩⟨n|S, (49)

with ZS = tr{e−βHS} = 1/(eβω/2 − e−βω/2) being the partition function of the system and
|n⟩S being the energy eigenstate of the system containing n excitations. As usual, the initial
state of system plus control is the separable state ρSC = ρS ⊗ ρC.
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When it comes to the unitaries, we might consider different cases: (i) first when both
are displacement operators and (ii) second when one is a displacement operator and the
other the squeeze operator.

4.2.1. Displacement Operators

We start then with both unitaries being displacement operators, that is [45],

Uk = D(αk) = eαka†−α∗k a, for k = 1, 2, (50)

where αk = |αk|eiϕk ∈ C and a and a† annihilation and creation operators, respectively. We
find that

∆QS = ω|α′|2 + |t|
[
cos(θ − φC + 2|α1||α2| sin(ϕ1 − ϕ2))− cos(θ − φC)

]
sin θC, (51)

with α′ = α1 + α2 (detailed calculations can be found in Appendix A). This result is in-
teresting, as it shows that whenever α1 and α2 are parallel/anti-parallel in phase-space
(ϕ1 − ϕ2 = π m, m ∈ Z), ∆QS is always non-negative even with coherences in the control
state and |t| > 0. It reinforces the fact that these are indeed necessary, but not sufficient con-
ditions for state activation. Also, we see that ∆QS does not depend on inverse temperature
β, which is also something surprising. Plots of the previous equation for specific values
of parameters when ϕ1 − ϕ2 = π(2m − 1)/2, m ∈ Z can be found in Figure 5. These plots
show that the higher the |t|, the lower the |α1| and |α2| necessary for state activation.
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Figure 5. Plots of ∆QS for unitaries being displacement operators as a function of |α1| and |α2|,
for ω = 1.0, θC = π/2, φC = 0 (ρC = |+⟩⟨+|C), θ = 0, ϕ1 − ϕ2 = π/2 and for different values of |t|.
Dashed red lines in the plots show whenever ∆QS = 0, delimiting the borders of the regions where
state activation is possible and impossible.

The simplifying case in which ϕ1 − ϕ2 = π(2k − 1)/2, k ∈ Z, θ = 0, |α1| = |α2| = |α|
and θC = π/2, φC = 0 (ρC = |+⟩⟨+|C) leads to the following expression for ∆QS:

∆QS = 2
(

ω|α|2 − |t| sin2
(
|α|2

))
. (52)

The latter is plotted in Figure 6. It shows that state activation happens for a limited range
of |α|, depending on the value of |t|. Moreover, it is possible to determine the value of |α|
for which ∆QS is minimum. It corresponds to

|α|min =

√
π − arcsin(ω/|t|)

2
(53)

and it points to the fact that there are only solutions for ω ≤ |t| and when |t| >> ω,
|α|min ∼

√
π/2.
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Figure 6. The plots of ∆QS in the case that |α1| = |α2| = |α2|, ω = 1.0, θ = φC = 0 and ϕ1 − ϕ2 =

θC = π/2, and for different |t|. Clearly, it can be seen that activation of the system plus control state
is only possible for a range of |α|, with a specific |α|min leading to minimum ∆QS.

Now, we check whether after measuring the control in basis |ψM⟩C = cos(θM/2)|0⟩C +
eiφM sin(θM/2)|1⟩C the state of the system can be activated. Calculations (Appendix A) lead to

∆S,M = ω|α′|2 ≥ 0, ∀θC, φC, θM, φM, (54)

meaning that for any control state and any measurement state, applying displacement
operators in a quantum switch setup does not activate any passive state. This result is a
consequence of the fact that displacement operators have a particular commutation relation,

[D(α1), D(α2)] = (1 − χ)D(α1)D(α2), (55)

which shows that they almost commute, differing by complex number χ (where 0 ≤ |χ| ≤ 1).
The physical implication of this mathematical property is that, when applying displacement
operators in different orders to the thermal state, the final displaced state is the same in
both cases up to a global complex phase. This state is clearly passive as well, and no matter
which post-selection is chosen, no work can be extracted from it. Previously, it was not the
case, because the non-diagonal element of the Hamiltonian of the control allowed the use
of the coherence in the control for state activation.

4.2.2. Displacement Operator and Squeeze Operator

Moreover, we can choose two different unitaries to compose our QS. One unitary is
taken to be the displacement operator and the other one the squeeze operator [45]:

U1 = D(α) = eαa†−α∗a, (56)

U2 = S(z) = e(za†a†−z∗a a)/2, (57)

where α = |α|eiϕ, z = |z|eiξ ∈ C, and again a and a† are annihilation and creation operators,
respectively. Here, the calculations are even more lengthy, and, as previously, the details
are shown in Appendix B. The final energy difference of system plus control is

∆QS =
ω

2
+ ω|α|2 + ω cosh(2|z|)

2
+ 2ω⟨n⟩th sinh2 |z|

+ ω|α|2 cos2
(

θC
2

)
cos(ξ − 2ϕ) sinh(2|z|) + |t| sin θC Re{ei(φC−θ)(χ − 1)},

(58)

where
χ = ⟨γ|α⟩e−⟨n⟩th|α−γ|2 (59)

with ⟨n⟩th = 1/(eβω − 1) being the thermal boson occupation number, γ ariseing from the
combination of displacement and squeeze operators,

γ = |α|eiϕ cosh |z| − |α|ei(ξ−ϕ) sinh |z|, (60)
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and
⟨γ|α⟩ = eγ∗α−|α|2/2−|γ|2/2. (61)

The full expression is not easy to visualize; hence, we show by plots how ∆QS behaves with
the parameters assuming specific values (Figure 7). In comparison with the case of two
displacement operators, we see here that in order to achieve the activation of the Gibbs
thermal state, the value of |t| must be considerably higher (one order of magnitude above
ω and β).
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Figure 7. Plots of ∆QS for unitaries being the displacement and squeeze operators as a function of
|α| and |z|, in the case that ω = β = 1.0, θC = π/2, φC = 0 (ρC = |+⟩⟨+|C), θ = ϕ = ξ = 0 and for
different values of |t|: (left) |t| = 0, (center) |t| = 20 and (right) |t| = 30. Dashed red lines represent
the situation when ∆QS = 0, delimiting the borders of the regions where state activation is possible
and impossible.

After measuring the control qubit in state |ψM⟩C = cos(θM/2)|0⟩C + eiφM

sin(θM/2)|1⟩C, the final energy difference of the system, as shown in Appendix B, is
equal to

∆S,M =
1

NM

[
ω

4
(1 + cos θC cos θM)(2|α|2 + (2⟨n⟩th + 1)(cosh(2|z|)− 1))

+ ω|α|2 cos2
(

θC
2

)
cos2

(
θM
2

)
cos(ξ − 2ϕ) sinh(2|z|)

+
1
2

sin θC sin θM Re{∆Fei(φC+φM)}
]

,

(62)

with
∆F = ωχ(γ∗α + (2γ∗α − |γ|2 − |α|2)⟨n⟩th − |α − γ|2⟨n⟩2

th), (63)

NM =
1
2
(1 + cos θC cos θM + sin θC sin θM Re{χei(φC+φM))}, (64)

and χ the same as before (Equation (59)). From now on, we analyze two cases: (i) ξ − 2ϕ = 0:

∆0
S,M =

1
N0

M

[
ω

4
(1 + cos θC cos θM)(2|α|2 + (2⟨n⟩th + 1)(cosh(2|z|)− 1))

+ ω|α|2 cos2
(

θC
2

)
cos2

(
θM
2

)
sinh(2|z|)

− ω|α|2
2

sin θC sin θMe−2|z|−|α|2e−|z|(2⟨n⟩th+1)(cosh |z|−1)

×
(
⟨n⟩2

th(e
2|z| − 2e|z| + 1) + ⟨n⟩th(e2|z| − 2e|z| + |α|2e−2|z|)− e|z|

)
cos(φC + φM)

]
,

(65)

where

N0
M =

1
2

(
1 + cos θC cos θM + sin θC sin θMe−2|α|2 sinh2(|z|/2)(cosh |z|−sinh |z|) cos(φC + φM)

)
, (66)
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and (ii) ξ − 2ϕ = π:

∆π
S,M =

1
Nπ

M

[
ω

4
(1 + cos θC cos θM)(2|α|2 + (2⟨n⟩th + 1)(cosh(2|z|)− 1))

− ω|α|2 cos2
(

θC
2

)
cos2

(
θM
2

)
sinh(2|z|)− ω|α|2

2
sin θC sin θMe−

|α|2
2 (e|z|−1)2(2⟨n⟩th+1)

×
(
⟨n⟩2

th(e
2|z| − 2e|z| + 1) + ⟨n⟩th(|α|2e4|z| − 2e|z| + 1)− e|z|

)
cos(φC + φM)

]
,

(67)

with

Nπ
M =

1
2

(
1 + cos θC cos θM + sin θC sin θMe−

|α|2
2 (e|z|−1)2(2⟨n⟩th+1) cos(φC + φM)

)
. (68)

The plots of these expressions can be found in Figure 8. They show that, when ξ − 2ϕ = 0,
the state of the system can be activated after performing the measurement on the |−⟩⟨−|
state (φM = π). In this case, we must be careful; as |z| and |α| proceed to zero, denominator
N0

M tends to zero faster; then, the denominator and divergences occur. When measuring
with other angles, φM, no state activation occurs. On the other hand, for ξ − 2ϕ = π, it
is possible to obtain ∆π

S,M < 0 for all φM (here, as before, the φM = π case must be taken
with care).
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Figure 8. Plots of ∆0
S,M (first row) and ∆π

S,M (second row) as functions of |α| and |z|, for ω = β = 1.0,
θC = π/2, φC = 0 (ρC = |+⟩⟨+|C), θM = π/2 and four different φM : 0, π/2, π, 3π/2 (each column).
As in previous plots, the dashed red lines indicate when ∆0,π

S,M = 0. Here, it can be seen that when
ξ − 2ϕ = 0 (first row), the only situation when state activation is achieved is when the measurement
state is the |−⟩⟨−| state (φM = π). Nonetheless, this is a delicate scenario, since for low |α| and |z| the
value of the denominator converges to zero faster than the numerator (possible divergence). On the
other hand, when ξ − 2ϕ = π (second row), it is always possible to activate the state of the system,
where caution must also must be taken when φM = π.

As a last scenario to be evaluated, we consider when β → ∞, which corresponds to

⟨n⟩th → 0 (69)

and the Gibbs thermal state tends asymptotically to the ground state, ρS → |0⟩⟨0|S. Then,
Equations (65) and (67) are simplified accordingly. The final expressions are plotted in
Figure 9 in the case that the magnitude of the displacement and the squeeze are the same,
|α| = |z|, ρC = |+⟩⟨+|C and θM = π/2. The plots show that in this limit, it is impossible to
achieve state activation for any chosen measurement state when ξ − 2ϕ = 0. Nevertheless,
in the situation that ξ − 2ϕ = π, we can obtain negative values of ∆π

S,M for any of the chosen
measurement angles φM. Here, as before, when |α| = |z| → 0 and we measure in the
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|−⟩⟨−| state (φM = π), the values of ∆0,π
S,M diverge. Finally, it is noticeable that φM = π/2

and φM = 3π/2 lead to the same results.
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Figure 9. Plots of ∆0
SM (left) and ∆π

SM (right) when β → ∞ as functions of |α| = |z|, for ω = 1.0,
θC = π/2 and φC = 0 (ρC = |+⟩⟨+|C), θM = π/2, as well as for different values of φM. In this
situation, we see that when ξ − 2ϕ = 0, no state activation is possible, for whatever choice of
measurement state. On the other hand, when ξ − 2ϕ = π, all the measurement choices enable state
activation. For both, cases φM = π/2 and φM = 3π/2 coincide, and when |α| = |z| → 0 there is
divergence of ∆0,π

S,M.

5. Conclusions

In this paper, we focus on the problem of quantifying state activation in scenarios
where quantum switch (QS) is applied. It is well known that passive state in quantum
thermodynamics cannot be activated by any unitary operations [38–42], needing extra
resources (e.g., coherences in the state) to be able to be used in thermodynamical tasks.
With the rapid advancement of indefinite causal order (ICO) research in its quantum switch
(QS) form [6–31], especially in the context of communication, computation and metrology,
the matter of its resourcefulness in performing thermodynamic tasks is still open, apart
from a few works on this topic [32–35]. We then put forward the result that QS by itself does
not ensure state activation, needing resources outside of itself to enable energy extraction
from passive states (Section 3). In order to activate the composite state of system plus
control, non-diagonal elements (in the computational basis defined by the action of QS)
on both the state of the control and the Hamiltonian of the control are necessary (but not
sufficient) conditions. The first corresponds to coherences and the second is related to the
inner transitions between the two states of the control. Moreover, when the latter does not
exist, it is still possible to activate the state of the system alone by measuring the state of
the control. The measurement that ensures energy extraction is case dependent (what is
the kind of system considered, what are the unitaries, etc.). In the examples (Section 4),
we then present different scenarios where state activation happens or does not happen,
always taking as a reference point for the state of the system the Gibbs thermal state. These
results point to the fact that, when considering thermodynamical tasks involving QS, a
very specific setup must always be considered, where all parameters are well controlled;
otherwise, it is difficult to predict whether QS is in fact bringing anything new to what is
already known in quantum thermodynamics.

This work points to a few future possible studies. First, it is still necessary to quantify
the energetic cost of measuring the control qubit. From Landauer’s principle, we know that
some finite dissipation of heat corresponds to every measurement. Thus, it is imperative to
compare this energetic cost to what is gained from state activation by means of measurement
of the control qubit. This comparison presents the situations where a net energetic gain
is obtained. Second, the QS is not the only example of indefinite causal order. Using
process matrices [3], we are able to devise situations where causal separability does not
hold and causal inequalities are violated [25]. Still, little is known about these scenarios,
including their possible use cases. An interesting open problem for the near future is thus
to understand how they act on passive states and whether they are capable of activating
such states without the need for extra resources.
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Appendix A. Displacement Operators

The joint energy variation of system plus control after applying the quantum switch of
two displacement operators is equal to (⟨1|HC|0⟩ = t∗, ⟨0|ρC|1⟩ = eiφC sin(θC/2) cos(θC/2)):

∆QS = ∆S + 2 Re{⟨0|ρC|1⟩⟨1|HC|0⟩(χ − 1)} (A1)

= ∆S + sin θC Re{eiφC t∗(χ − 1)}, (A2)

where

∆S = cos2
(

θC
2

)
E12 + sin2

(
θC
2

)
E21 − ES (A3)

with
E12 = tr{D(α2)D(α1)ρSD†(α1)D†(α2)HS}, (A4)

E21 = tr{D(α1)D(α2)ρSD†(α2)D†(α1)HS}, (A5)

ES = tr{ρS HS} (A6)

= ω(1 − e−βω)∑
n

e−βωn⟨n|
(

a†a +
1

2

)
|n⟩ (A7)

= ω

(
⟨n⟩th +

1
2

)
, (A8)

where
⟨n⟩th =

1
eβω − 1

is the thermal boson occupation number (or Bose–Einstein distribution with zero chemical
potential) and χ is connected to the cross-map unitary (check main text for definition).
Moreover,

E21 = tr{D(α1)D(α2)ρSD†(α2)D†(α1)HS} (A9)

=
ω

2
+ ω tr{ρSD†(α2)D†(α1)a†aD(α1)D(α2)}, (A10)

= ES + ω|α′|2 (A11)

where α′ := α1 + α2, and we use the fact that D†(α)a†D(α) = a† + α∗, D†(α)aD(α) =
a+α [45]. Similarly,

E12 = tr{D(α2)D(α1)ρSD†(α1)D†(α2)HS} (A12)

= ES + ω|α′|2. (A13)
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Moreover,

χ = tr{D(α2)D(α1)ρSD†(α2)D†(α1)} (A14)

= tr{eα∗1 α2−α1α∗2 D(α1)D(α2)ρSD†(α2)D†(α1)} (A15)

= eα∗1 α2−α1α∗2 , (A16)

in which we use the following relation [45]:

D(α2)D(α1) = eα∗1 α2−α1α∗2 D(α1)D(α2).

Hence,

∆QS = ω|α′|2 + |t|(cos(θ − φC + 2|α1||α2| sin(ϕ1 − ϕ2))− cos(θ − φC)) sin θC. (A17)

After measuring the control qubit, the final state of the system contains coherence
terms which contribute to the final energy of the system. The final energy difference of the
system post measurement is written as

∆S,M =
1

NM

(
cos2

(
θC
2

)
cos2

(
θM
2

)
∆12 + sin2

(
θC
2

)
sin2

(
θM
2

)
∆21

+
1
2

sin θC sin θM Re{∆Fei(φC+φM)}
)

,
(A18)

where
NM =

1
2
(1 + cos θC cos θM + sin θC sin θM Re{χei(φC+φM))} (A19)

is a normalization constant and

∆12 := tr{D(α2)D(α1)ρSD†(α1)D†(α2)} − ES, (A20)

∆21 := tr{D(α1)D(α2)ρSD†(α2)D†(α1)} − ES, (A21)

∆F := FS − χES (A22)

FS being defined by

FS := tr{D(α2)D(α1)ρSD†(α2)D†(α1)HS}. (A23)

As a first step to calculate ∆S,M, we find that

FS = tr{D(α2)D(α1)ρSD†(α2)D†(α1)HS} (A24)

= χ tr{D(α1)D(α2)ρSD†(α2)D†(α1)HS} (A25)

= χE21 (A26)

= χ(ES + ω|α′|2), (A27)

and then
∆F = χω|α′|2. (A28)

The values of E12 and E21 are the same as before, hence

∆12 = ∆21 = ω|α′|2. (A29)

Finally, putting everything together,

∆S,M = ω|α′|2 ≥ 0, (A30)
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and then it is impossible to activate the state of the system by measuring the state of the
control, for any choice of the measurement state. This result is a consequence of the fact
that two displacement operators have a very specific commutation relation,

[D(α1), D(α2)] = (1 − eα∗1 α2−α1α∗2 )D(α1)D(α2). (A31)

The physical implication of this property is discussed in the main text.

Appendix B. Displacement Operator and Squeeze Operator

In the case that one of the unitaries is the displacement operator and the other is the
squeeze operator, the final energy difference is

∆QS = ∆S + sin θC Re{eiφC t∗(χ − 1)}, (A32)

where

∆S = cos2
(

θC
2

)
E12 + sin2

(
θC
2

)
E21 − ES (A33)

and
E12 = tr{S(z)D(α)ρSD†(α)S†(z)HS}, (A34)

E21 = tr{D(α)S(z)ρSS†(z)D†(α)HS}, (A35)

χ = tr{S(z)D(α)ρSS†(z)D†(α)}. (A36)

Applying relations D†(α)a†D(α) = a† + α∗, D†(α)aD(α) = a+ α, S†(z)a†S(z) = a† cosh |z|+
ae−iξ sinh |z| and S†(z)aS(z) = a cosh |z|+ a†eiξ sinh |z| [45], we find that

E21 = ω|α|2 + ω

2
(2⟨n⟩th + 1) cosh(2|z|), (A37)

E12 = E21 + ω|α|2 cos(ξ − 2ϕ) sinh(2|z|). (A38)

Therefore,

∆S = −ω

2
+ ω|α|2 + ω cosh(2|z|)

2
+ 2ω⟨n⟩th sinh2 |z|

+ ω|α|2 cos2
(

θC
2

)
cos(ξ − 2ϕ) sinh(2|z|).

(A39)

In order to calculate χ, we use the braiding relation, D(α)S(z) = S(z)D(γ), where
γ = |α|eiϕ cosh |z| − |α|ei(ξ−ϕ) sinh |z| [46]. We apply the P-representation of the thermal
state [45],

ρS =
∫

PT(η)|η⟩⟨η|d2η,

where |η⟩ is a coherent state and

PT(η) =
1

π⟨n⟩th
e−|η|2/⟨n⟩th ; (A40)

then,

χ =
∫

PT(η)⟨η|D†(γ)D(α)|η⟩d2η =
∫

PT(η)e
η
2 (γ

∗−α∗)e
η∗
2 (α−γ)⟨η + γ|η + α⟩d2η. (A41)

Hence, we evaluate the integral,

χ = ⟨γ|α⟩e−⟨n⟩th|α−γ|2 , (A42)

in which we use the fact that for tw coherent states [45]:

⟨α|β⟩ = eα∗β−|α|2/2−|β|2/2.
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Finally,

∆QS =
ω

2
+ ω|α|2 + ω cosh(2|z|)

2
+ 2ω⟨n⟩th sinh2 |z|

+ ω|α|2 cos2
(

θC
2

)
cos(ξ − 2ϕ) sinh(2|z|) + |t| sin θC Re{ei(φC−θ)(χ − 1)}.

(A43)

Once again, after measuring the control qubit, the final state of the system has extra terms
added to the final energy of the system. The final energy of the system post measurement
is written as

∆S,M =
1

NM

(
cos2

(
θC
2

)
cos2

(
θM
2

)
∆12 + sin2

(
θC
2

)
sin2

(
θM
2

)
∆21

+
1
2

sin θC sin θM Re{∆Fei(φC+φM)}
)

,
(A44)

where
NM =

1
2
(1 + cos θC cos θM + sin θC sin θM Re{χei(φC+φM))}, (A45)

∆12 := tr{S(z)D(α)ρSD†(α)S†(z)} − ES, (A46)

∆21 := tr{D(α)S(z)ρSS†(z)D†(α)} − ES, (A47)

and
∆F := FS − χES, (A48)

FS being defined by

FS := tr{S(z)D(α)ρSS†(z)D†(α)HS} (A49)

= ω
χ

2
+ tr{S(z)D(α)ρSS†(z)D†(α)a†a}, (A50)

which, using the previous braiding relation, is equal to

FS = ω
χ

2
+
∫

PT(η)⟨η|D†(γ)a†aD(α)|η⟩d2η, (A51)

with

⟨η|D†(γ)a†aD(α)|η⟩ = e
η
2 (γ

∗−α∗)e
η∗
2 (α−γ)(η∗ + γ∗)(η + α)⟨η + γ|η + α⟩

since coherent states are eigenvectors of the annihilation operator,

a|α⟩ = α|α⟩.

Then, after computing the integral in the complex plane, we have

FS = ωχ

(
1
2
+ γ∗α + (1 + 2γ∗α − |α|2 − |γ|2)⟨n⟩th − |α − γ|2⟨n⟩2

th

)
(A52)

and
∆F = ωχ(γ∗α + (2γ∗α − |γ|2 − |α|2)⟨n⟩th − |α − γ|2⟨n⟩2

th). (A53)

Moreover, using the values of E12 and E21, we obtain

∆21 = ω|α|2 + ω⟨n⟩th(cosh(2|z|)− 1) + ω sinh2 |z| (A54)

∆12 = ∆21 + ω|α|2 cos(ξ − 2ϕ) sinh(2|z|) (A55)
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and finally

∆S,M =
1

NM

[
ω

4
(1 + cos θC cos θM)(2|α|2 + (2⟨n⟩th + 1)(cosh(2|z|)− 1))

+ ω|α|2 cos2
(

θC
2

)
cos2

(
θM
2

)
cos(ξ − 2ϕ) sinh(2|z|)

+
1
2

sin θC sin θM Re{∆Fei(φC+φM)}
]

,

(A56)

which takes cases (i) ξ − 2ϕ = 0:

∆0
S,M =

1
N0

M

[
ω

4
(1 + cos θC cos θM)(2|α|2 + (2⟨n⟩th + 1)(cosh(2|z|)− 1))

+ ω|α|2 cos2
(

θC
2

)
cos2

(
θM
2

)
sinh(2|z|)

− ω|α|2
2

sin θC sin θMe−2|z|−|α|2e−|z|(2⟨n⟩th+1)(cosh |z|−1)

×
(
⟨n⟩2

th(e
2|z| − 2e|z| + 1) + ⟨n⟩th(e2|z| − 2e|z| + |α|2e−2|z|)− e|z|

)
cos(φC + φM)

]
,

(A57)

where

N0
M =

1
2

(
1 + cos θC cos θM + sin θC sin θMe−2|α|2 sinh2(|z|/2)(cosh |z|−sinh |z|) cos(φC + φM)

)
(A58)

and (ii) ξ − 2ϕ = π:

∆π
S,M =

1
Nπ

M

[
ω

4
(1 + cos θC cos θM)(2|α|2 + (2⟨n⟩th + 1)(cosh(2|z|)− 1))

− ω|α|2 cos2
(

θC
2

)
cos2

(
θM
2

)
sinh(2|z|)

− ω|α|2
2

sin θC sin θMe−
|α|2

2 (e|z|−1)2(2⟨n⟩th+1)

×
(
⟨n⟩2

th(e
2|z| − 2e|z| + 1) + ⟨n⟩th(|α|2e4|z| − 2e|z| + 1)− e|z|

)
cos(φC + φM)

]
,

(A59)

with

Nπ
M =

1
2

(
1 + cos θC cos θM + sin θC sin θMe−

|α|2
2 (e|z|−1)2(2⟨n⟩th+1) cos(φC + φM)

)
. (A60)
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