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Abstract: We present a modified version of the Szilard engine, demonstrating that an explicit
measurement procedure is entirely unnecessary for its operation. By considering our modified
engine, we are able to provide a new interpretation of Landauer’s original argument for the cost of
erasure. From this view, we demonstrate that a reset operation is strictly impossible in a dynamical
system with only conservative forces. Then, we prove that approaching a reset yields an unavoidable
instability at the reset point. Finally, we present an original proof of Landauer’s principle that is
completely independent from the Second Law of thermodynamics.
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1. Introduction

Since the inception of thermodynamics, a delicate tension between physics and infor-
mation has been unfolding. On the one hand, it is generally believed that knowledge of
a system’s evolution will not, by itself, change that evolution. Simultaneously, what an
observer can do with a system (i.e., extract work or decrease entropy) does depend upon
the knowledge they possess. Since the Second Law of thermodynamics, roughly speaking,
requires that the thermodynamic entropy of a closed system can only increase, a paradox
emerges: can an intelligent being circumvent the laws of thermodynamics?

The first recognition of this paradox was by Maxwell, who described how the entropy of a
gas could be decreased by “the intelligence of a very observant and neat-fingered being” [1]. In
a thought experiment, Maxwell imagined this being opening and closing a massless shutter
between two vessels of gas at equilibrium. With knowledge of the paths and velocities of
all the molecules, the intelligent being can selectively let fast-moving molecules pass to one
side and slow-moving molecules to the other. As a temperature difference grows between
the two vessels, the entropy of the system decreases. This intelligent being became known
as Maxwell’s Demon.

Since the Second Law of thermodynamics forbids such decreases of entropy in closed
systems, there must be a way of accounting for the Demon’s information about the system.
Such was the thought of Leo Szilard, who in 1929 created an engine that permits easier
analysis of the connection between information and thermodynamics [2]. A depiction of
Szilard’s engine is presented in Figure 1.

In contrast to the Maxwell’s Demon thought experiment, Szilard’s engine contains
only one particle in a closed vessel kept at temperature Tb. A movable partition is inserted
in the centre of the vessel, creating two sub-chambers, which we take here to be equal
volumes Vl = Vr =

1
2 Vtotal . The partition also confines the particle to one side of the vessel.

Several assumptions are made in the analysis of the Szilard engine:
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1. The partition can be inserted or removed from the chamber at a fixed position with
zero energy cost.

2. When the partition is removed from the chamber, it can be slid left and right with zero
energy cost.

3. The heat bath at temperature T is infinitely large.
4. The practical difficulties (i.e., constructing a particular mechanical assembly) of ex-

tracting work from a single particle may be ignored.
5. During expansion, the partition can be moved slowly enough to be considered quasi-

static, so nonequilibrium and transitory effects may be ignored.
6. The pulleys exert no force in equilibrium other than to redirect the tension of the

string.

To justify assumptions 1 and 2, one may note that when the partition is not in con-
tact with the particle, the partition may be moved by conservative forces alone (i.e., any
kinetic energy transferred to the partition may be recovered when slowing it to a halt).
Assumptions 3–5 are, strictly speaking, idealizations. Assumption 6 is weaker than assum-
ing that the pulleys are massless and frictionless (typical for dynamics problems), and is
hardly a step from their real behavior. Szilard made assumptions 1–5 either implicitly or
explicitly, and here we add assumption 6 for our analysis [2].

Figure 1. A depiction of the classic Szilard engine.

Following Szilard, we start with the partition at the midpoint of the chamber. If the
piston is positioned correctly, then work can be extracted from this engine by a quasi-static
isothermal expansion. For a single particle, this work is given in Joules by:

W =
∫ Vf

Vi

P dV (1)

=
∫ Vf

Vi

NkT
V

dV (2)

= NkT ln
Vf

Vi
(3)

= (1)kT ln
Vtotal

1
2 Vtotal

(4)

= kT ln 2 (5)

where N is the number of particles (in this case 1), k is the Boltzmann constant, and T is
the temperature in degrees Kelvin. It may seem dubious to use thermodynamic quantities
to describe a single particle. However, this is justified if we imagine time-averaging the
particle’s behavior, as is common practice in such idealizations [3].

In order to position the piston correctly, however, a measurement must be made to
determine which side of the partition the particle occupies. Thus, Szilard argued, we must
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associate k ln 2 units of entropy with the measurement, in order to account for the work we
are able to extract as a result. Szilard writes:

If we do not wish to admit that the Second Law has been violated, we must
conclude that the intervention which establishes the coupling between y and x,
the measurement of x by y, must be accompanied by a production of entropy [2].

Since these words were put down in 1929, the story has remained much the same. The
only major change was made by Landauer, who suggested that the erasure of information
was specifically what generated heat. In particular, Landauer wrote that the energy cost
we must pay when erasing this measurement equals or surpasses kT ln 2 [4]. Thus, the
cost of erasing our measurement ultimately saves the Second Law from the Demon’s wiles.
Notably, realizations of the Szilard engine have been confirmed in experiment [5].

Surprisingly, the question of whether measurement is necessary at all to operate
Szilard’s engine seems completely absent from the literature. This consideration does not
appear to have crossed Szilard’s mind, or the minds of any subsequent authors. While we
would be delighted to find out we overlooked an analysis somewhere, our search through
the literature did not reveal any previous discussion of this question. We present our
modified engine to demonstrate one way the engine could work without us measuring.

2. Modified Szilard Engine

In Figure 2, the modified Szilard engine is shown. The only difference between the
setups in Figures 1 and 2 is the positioning of the piston and the use of a second pulley.
Importantly, the piston does not have to be moved to a different location to extract work
from the engine in Figure 2, regardless of the side the particle is on. Thus, since the side the
particle is on does not matter to the action of the engine, the measurement is superfluous.

Figure 2. Our modified Szilard engine.

2.1. Work Extraction Protocol

The most likely objection to our modified engine in Figure 2 is that work cannot
actually be extracted by it; work can only be extracted in a directed manner. Since the
modified engine does not allow for knowledge of which way the partition should move,
no sort of directed expansion is possible. Note, however, that the necessity of directing the
expansion (thus the necessity of measuring) is exactly what is under question to begin with.
We cannot assume a priori that this is impossible simply because it is unfamiliar.

To shed some more light on the analysis of work extraction, consider the following
common description of quasi-static compression and expansion. Imagine a pile of sand
placed on top of a piston against which gas is compressed. By adding a single grain of sand
to the pile, the gas compresses slightly and reaches a new equilibrium. Grain-by-grain, the
gas can be compressed to any desired amount. Likewise, grains can be removed one-by-one
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and the pile of sand will rise to find a new equilibrium. Assuming a constant temperature,
the work performed on the sand during this compression or expansion is given as:

W =
∫ x f

xi

F · dx (6)

=
∫ x f

xi

−m(x)g · dx (7)

=
∫ x f

xi

P(x)A · dx (8)

=
∫ Vf

Vi

NkT
V

dV (9)

= NkT ln
Vf

Vi
(10)

where x is the piston’s displacement, F is the force on the gas, and m(x) is the mass
of the sand pile as a function of displacement. In Equation (8), since the system is in
equilibrium, we may use P(x)A = −m(x)g. In Equation (9), we use the fact that A · dx is a
change in volume dV. Unsurprisingly, the final expression in Equation (10) is equivalent to
Equation (3). Thus, as long as we may remove grains of sand one-by-one from a piston, we
may extract work in a quasi-static manner.

Can grains of sand be placed on the piston in Figure 2 as easily as they could for
Szilard’s engine? Upon close inspection, we see nothing that would prevent this. Sure,
the gravitational force from a single grain is orders of magnitude greater than the average
pressure from a single particle, but the same challenge is faced by Szilard’s engine. For
both cases, in principle, nothing prevents the design of a piston with enough mechanical
advantage that the average force exerted by the particle will reach equilibrium with the
gravitational force of a reasonably sized pile of sand. Moreover, we made assumption 4 to
secure us against such practical challenges. Thus, we conclude that work can be extracted
by quasi-static expansion of the engine shown in Figure 2.

To be fully explicit about the cycle we imagine for Figure 2, we specify the following
four steps, beginning with the partition at the midpoint of the chamber:

1. ‘Grains of sand’ are placed on the piston.
2. The partition is inserted into the chamber (with no energy cost, per assumption 1).
3. ‘Grains of sand’ are removed yielding a quasi-static expansion.
4. The partition is removed from the chamber and brought back to the midpoint (with

no energy cost, per assumption 2).

The attentive reader should immediately be suspicious of these four steps. If carried
out exactly as written, we would have extracted a definite quantity of work while spending
no energy in a complete engine cycle. Clearly, such a situation would violate the Second
Law, and the Kelvin statement in particular. Without question, something is amiss. As we
expose what that is in the next few sections, we will discover exactly where the cost of
erasure comes from, and illuminate the precise link between energy and information.

2.2. Considering Information

At this point, it is natural to wonder what happened to the information. It seems to
have played no role thus far—and precisely characterizing its role was our motivation from
the start. Is it encoded in the engine somehow?

Upon closer inspection, we find that the position of the partition (or equivalently, the
position of the string), carries the information about the particle’s original position. Let x
represent the (horizontal) position of the partition, with the starting position being x = 0,
and the positive direction being to the right. After one expansion, if the particle started on
the left, then we will have x > 0, and if the particle started on the right, then we will have
x < 0. Thus, the sign of x, taking two possible values, can be treated as a bit of memory
that stores the measurement of the particle’s initial side.
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The reader may feel some unease with interpreting the partition’s position as a ‘mea-
surement’, for this is certainly an unfamiliar way of thinking about measurement. However,
consider Szilard’s description of measurement in his 1929 paper:

For brevity we shall talk about a “measurement”, if we succeed in coupling the value of a
parameter ys (for instance the position coordinate of a pointer of a measuring instrument)
at one moment with the simultaneous value of a fluctuating parameter xs of the system, in
such a way that, from the value ys, we can draw conclusions about the value that xs had
at the moment of the “measurement”. (The s subscripts were added to distinguish
Szilard’s notation from ours.) [2]

We contend this description accords exactly with the common intuition of what a measure-
ment is: a coupling between one variable and another, such that the one informs an observer
of the other. Thus, by letting ys = sign(x), and letting xs represent the original side of
the particle, the value of xs can be concluded from the value of ys. Thus, the description
justifies the interpretation of the partition’s location as representing a measurement.

At face value, this reinterpretation seems to offer little value, as it appears we are in
the same position as with Szilard’s original engine. Namely, our work extraction protocol
generates information, which must be accounted for in the analysis. However, we are in
fact at a great advantage since now informational concepts are on the same playing field as
the dynamics; we can analyze this information strictly using the tools of physics. In doing
so, we will find a better reason for the link between energy and information than simply
not wanting to admit that the Second Law has been violated.

3. Landauer’s Original Argument

Landauer’s principle states that the act of erasing one bit of information necessarily
carries an energy cost of kT ln 2. With our modified engine, we are now in a position to
fully explain the reason for this cost, pinpoint its source, and demonstrate its generality.
However, before turning attention to the reset operation (step 4) of our modified engine
in Figure 2, it will be most helpful to remind ourselves of Landauer’s argument for why
erasure is necessarily dissipative. He considers a single particle in a bistable potential well,
then asks whether we can reset the particle to the ONE state with a single time-varying
force. He writes:

Since the system is conservative, its whole history can be reversed in time, and we will
still have a system satisfying the laws of motion. In the time-reversed system we then have
the possibility that for a single initial condition (position in the ONE state, zero velocity)
we can end up in at least two places: the ZERO state or the ONE state. This, however,
is impossible. The laws of mechanics are completely deterministic and a trajectory is
determined by an initial position and velocity. (An initially unstable position can, in
a sense, constitute an exception. We can roll away from the unstable point in one of at
least two directions. Our initial point ONE is, however, a point of stable equilibrium.)
Reverting to the original direction of time development, we see then that it is not possible
to invent a single F(t) which causes the particle to arrive at ONE regardless of its initial
state [4].

Landauer’s first point is that for a conservative system, the history can be reversed in
time. A classical mechanical system is conservative if there exists a potential function V
such that

F(x, t) = −∇V(x) (11)

where F is the net force vector, x is position, and t is time [6]. In such a system, Newton’s
equations are time reversal invariant since the forces depend only on position and not time.
Thus, F(x, v, t) = F(x,−v,−t). Recognizing this fact is critical to the rest of the argument.
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The dynamics of such a system are described by the second order ordinary differential
equation:

ẍ = −∇V(x)
m

(12)

where m is the mass. (Equation (12) and the following arguments are written for a one-
dimensional system for the sake of simplicity, although extending them to multiple di-
mensions would be relatively straightforward. In addition, the arguments can be made
mutatis mutandis in general coordinates using Lagrangian mechanics, also neglected for
simplicity). With such dynamics in mind, Landauer then states that, in the time-reversed
system, for a single initial condition, we can end up in two places, which is impossible.
This fact can be seen as a direct consequence of the Existence and Uniqueness Theorem for
Ordinary Differential Equations, also known as the Picard–Lindelöf Theorem [7].

Theorem 1 (The Existence and Uniqueness Theorem; Picard–Lindelöf). Let R ⊆ R×Rn be
a closed rectangle with (t0, x0) ∈ R. Let f : R → Rn be continuous in t and Lipschitz continuous
in x. Then, there exists some ε > 0 such that the initial value problem

ẋ(t) = f (t, x(t)), x(t0) = x0 (13)

has a unique solution, x(t) on the interval [t0 − ε, t0 + ε].

To apply the theorem to the dynamics in Equation (12), we set

x =

[
x
v

]
=

[
x
ẋ

]
(14)

f (t, x(t)) =
[

v(t)
−∇V(x)/m

]
(15)

then it follows that, so long as ∇V(x) is Lipschitz continuous, then a unique solution x(t)
is guaranteed to exist on some interval including t0. If we set t = t0 at the moment of reset,
then the reverse dynamics of the reset operation will yield two nonunique solutions to
the same initial value problem. Thus, if we allow reset under conservative dynamics, we
violate the Existence and Uniqueness Theorem. This is another crucial fact to recognize for
the argument.

Landauer then notes that an unstable equilibrium constitutes an exception in some
sense. This point is actually quite nuanced, and we will treat it comprehensively in the
following analysis. For now, we simply mention that it will play an instrumental role in
proving the cost-of-erasure bound, and will constitute the precise location where this cost
is paid.

Finally, again considering the possibility of a reset operation, Landauer writes “if,
however, we permit the potential well to be lossy, this becomes easy” [4]. Here, lossy may
be taken as a synonym for nonconservative. Thus, the seeds of a rigorous argument are
laid: a reset operation is not possible under conservative dynamics due to the Existence and
Uniqueness Theorem, and therefore, it must involve nonconservative dynamics resulting
in an energy cost.

What remains is to explicitly demonstrate that the cost of erasing one bit has a par-
ticular lower bound, namely kT ln 2. Landauer’s approach was to include this bit in the
thermodynamical state space and conclude that its erasure decreased the system’s entropy
by k ln 2, thus generating kT ln 2 J of heat. While satisfying to some, the validity and gen-
erality of his conclusions remain highly controversial to this day [8–13]. In Section 5, we
will prove this lower bound directly by mechanical and statistical considerations alone,
providing what we hope is a satisfying and definitive conclusion to this controversy.
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4. Reset Operations with Conservative Forces

We now shift our gaze to step 4 of our modified Szilard’s engine cycle: removing
the partition from the chamber and returning it to the midpoint. At the end of step 3, the
partition can be in one of two places: the right side of the chamber, or the left side. In
step 4, we hope to bring the partition back to the midpoint regardless of which side it was
on. Thus, if we look closely at step 4, we should expect to catch the act of erasure on full
display, ready to be subjected to our scrutiny.

4.1. Approaching Reset

In Section 3, we demonstrated that a reset operation under conservative dynamics is
strictly impossible. In this section, we are going to try anyway, to see exactly what happens
when we get close. In particular, we will take the limit as we approach a reset operation,
with the constraint that we dissipate zero energy.

If we dissipate zero energy, we may not use any dissipative forces to return the
partition to the midpoint. Instead, we may only use conservative forces, which can be
expressed as the gradient of a potential function, defined by Equation (11). The challenge is
thus: can we invent some potential function, V(x), such that when the partition is subjected
to this V(x), the forces that are induced will return the partition to the midpoint, regardless
of whether it started on the right or left? Consider the potential function in Figure 3, where
we present one attempt at such a function.

Figure 3. A potential energy function, V(x), one might use to attempt a reset procedure using
conservative forces.

The ball represents the partition. The arrows showcase how the partition would be
brought back to the midpoint if it started on the left and the right. We find that when the
partition comes to rest at x = 0, it will be at an unstable equilibrium point. We now see in
greater detail why reset in a conservative system is impossible. If the partition starts exactly
at x = 0, then it will stay at x = 0 as long as there are no disturbances. If the partition
starts anywhere else, it will never come to rest at x = 0. This can be seen as another
consequence of the time reversal invariance property and the Existence and Uniqueness
Theorem, presented in Section 3.
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The presence of an unstable equilibrium at x = 0 is no coincidence and will play
an important role. It turns out that every system approaching a reset operation with
conservative forces will result in an unstable equilibrium at the reset point. We present
proof of this fact next.

4.2. General Proof of Instability

First, we define a parameter h that measures how close we are to executing a reset. To
be precise, consider two trajectories x1(t) and x2(t), and some equilibrium point xe, which
we will treat as our reset state. We characterize these trajectories as follows:

||x1(0)− x2(0)|| > 0 (16)

||
[

x1(τ)
v1(τ)

]
−

[
xe
0

]
|| ≤ h (17)

||
[

x2(τ)
v2(τ)

]
−

[
xe
0

]
|| ≤ h (18)

∇V(xe) = 0 (19)

where τ > 0 is some elapsed time. Equation (16) says that the two trajectories start in
different places, while Equations (17) and (18) specify how close our trajectories are to being
‘merged,’ and Equation (19) is simply the equilibrium condition. We take x1(0) and x2(0)
as given, meaning the starting points do not vary with h. Our goal is to investigate what
happens as h → 0. We will prove that, for any conservative system under these conditions,
the reset state is an unstable equilibrium. To begin, we turn to Lyapunov for a rigorous
definition of stability [14].

Definition 1 (Lyapunov Stability). Consider an autonomous dynamical system given by

ẋ = f (x(t)), x(0) = x0, (20)

where x(t) ∈ D ⊆ Rn denotes the system state vector, D is an open set containing the origin,
and f : D → Rn is a continuous vector field on D. Suppose f has an equilibrium at xe such that
f (xe) = 0.

This equilibrium is said to be Lyapunov stable, if, for every ε > 0, there exists a δ > 0 such
that, if ∥x(0)− xe∥ < δ, then for every t ≥ 0 we have ∥x(t)− xe∥ < ε.

Definition 2 (Instability). The equilibrium point xe is defined to be unstable if it is not Lyapunov
stable.

We write out our conservative system from Equation (12) as follows:

x(t) =
[

x(t)
v(t)

]
(21)

f (x(t)) =
[

v(t)
−∇V(x)/m

]
(22)

ẋ(t) =
[

ẋ(t)
v̇(t)

]
= f (x(t)) (23)

where v = ẋ is the velocity.

Theorem 2 (Instability of Conservative Reset). Let x1(t) and x2(t) be trajectories of a conserva-
tive system and let xe be a point. If x1(t), x2(t), and xe satisfy Equations (16)–(19), then in the
limit as h → 0, xe is an unstable equilibrium.
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Proof. We must show that it is not the case that for every ε > 0, there exists a δ > 0 such
that, if ||x(0)− xe|| < δ, then for every t ≥ 0 we have ||x(t)− xe|| < ε. Equivalently, we
will show that there exists an ε > 0 such that for every δ > 0, there exists a t ≥ 0 and x(0)
satisfying ||x(0)− xe|| < δ such that ||x(t)− xe|| ≥ ε.

Let x1(t) =
[

x1(t)
v1(t)

]
, x2(t) =

[
x2(t)
v2(t)

]
, and xe =

[
xe
0

]
. We then set

ε = max (||x1(0)− xe||, ||x2(0)− xe||) (24)

We may have that x1(0) = xe or x2(0) = xe, but these two conditions cannot both be
true, as this would violate Equation (16). Thus, our selection for ε always yields ε > 0.
Consider the reverse dynamics.

Case 1: if ||x1(0) − xe|| > 0 then set x(0) =

[
x1(τ)
−v1(τ)

]
. Then, x(τ) = x1(0) and

limh→0 ||x(0)− xe|| ≤ limh→0 h < δ for all δ > 0. Thus, for every δ > 0 there exists a t ≥ 0
such that

||x(t)− xe|| ≥ max (||x1(0)− xe||, ||x2(0)− xe||) = ε (25)

Case 2: if ||x2(0) − xe|| > 0, then set x(0) =

[
x2(τ)
−v2(τ)

]
. Then, x(τ) = x2(0) and

limh→0 ||x(0)− xe|| ≤ limh→0 h < δ for all δ > 0. Thus, for every δ > 0 there exists a t ≥ 0
such that

||x(t)− xe|| ≥ max (||x1(0)− xe||, ||x2(0)− xe||) = ε (26)

Thus, we have demonstrated that any equilibrium point at which two trajectories
merge in a conservative classical mechanical system is necessarily unstable. (Note that, in a
nonconservative system, the preceding argument fails, for the time-reversal property plays
a necessary role in setting x(0).) This result can easily be generalized to trajectories that
merge (anywhere) away from equilibrium, simply by viewing the trajectories in the proper
inertial or noninertial frame of reference (such that the merge point is an equilibrium in that
frame). Moreover, we did not require any assumption that either x1(0) ̸= xe or x2(0) ̸= xe.
As a result, even though the reset state in Figure 3 is distinct, our proof covers the case
of ‘reset to ONE’, which Landauer originally discussed [4]. To conclude, without any loss
of generality, we can view Figure 3 as stereotypical of any scheme to erase information
without spending energy.

5. Proof of Landauer’s Principle

In Section 4.2, we showed that performing a reset operation with only conservative
forces is not only impossible, but to even approach it we create an unavoidable instability at
the reset point. Fortunately, we can overcome both these difficulties if we are just willing to
spend a little energy. To determine how much energy we need to spend, consider Figure 4
below, which we will analyze in detail.

The system in Figure 4 is no longer conservative: we have placed a friction force,
labelled ‘Brake,’ at the x = 0 location to dissipate some small quantity of energy and ensure
the partition does not spontaneously slide away. Our intention with the brake is to ‘trap’
the partition at the reset point. The quantity of energy we dissipate is labelled by ϵ.

Our ultimate question is: what is the minimum value of ϵ such that we can reliably
perform a reset? At first glance it appears that our brake will have this desired effect for any
ϵ > 0. In other words, we can ‘trap’ the partition at x = 0 as long as we dissipate nonzero
energy; we imagine that once the partition falls into our trap, it simply will not have the
energy to spontaneously jump back out.
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Figure 4. An energy landscape one might implement to perform a reset with minimal energy loss.

This conclusion is compelling, and it would be true if the partition was at absolute
zero. If the partition has any significant thermal energy, however, it will constantly be
undergoing vibrations. We immediately see that if we make ϵ too small, the partition may
actually vibrate out of our trap. Fortunately for Landauer’s principle, these vibrations
place a lower limit on ϵ, meaning it cannot be arbitrarily close to zero. In our system, the
chamber is in thermal contact with a heat bath at temperature T. Thus, unless we pretend
there are other energy sources or sinks, we should find the partition at temperature T also.

When we consider the possibility of the partition vibrating out of our trap in the
context of our engine cycle for Figure 2, we face a startling and beautiful realization: the
entire engine cycle could work in reverse. In particular, consider the following alternate
steps, recalling that the partition starts at the midpoint:

1. The partition jumps away from the midpoint and comes to rest at either the right or
left of the chamber, then is inserted into the chamber.

2. ‘Grains of sand’ are placed on the piston, yielding a quasi-static compression.
3. The partition is removed from the chamber.
4. The grains of sand are removed from the piston.

Thus, we see that for a given value of ϵ, there will be some probability of the forward
cycle and some probability of the reverse cycle. Fundamentally, this means that the
measurement that was made may instead be unmade, and the work carried out on the sand
(by the gas) may instead be conducted on the gas (by the sand). Here, we are reminded
of the ratchet and pawl thought experiment, beautifully analyzed by Feynman [15]. The
ratchet and pawl appear more likely to proceed in one direction than another but are
ultimately found to be in equilibrium. We will prove Landauer’s principle by a similar
approach to the argument Feynman makes.

Let X denote an autonomous physical system in contact with a heat bath at tempera-
ture T. Let xL, xR, and xe be memoryless states of X , representing the ZERO, ONE, and
RESET states. Let x(t) represent the system’s trajectory through these states over time.
Additionally, let EL, ER, and Ee represent the energy of states xL, xR, and xe, respectively,
with EL = ER. Finally, define EL − Ee = ER − Ee = ϵ to be the energy cost of reset. We
define these terms in full generality, applying to any system, though it may be helpful to



Entropy 2024, 26, 203 11 of 14

imagine xL corresponding to the partition at the left, xR to the partition at the right, and xe
to the partition at the midpoint.

Consider some time interval [ti, t f ]. Let

P(x(t f ) = xe | x(ti) = xL) = P(x(t f ) = xe | x(ti) = xR) = p ∈ (0, 1) (27)

P(x(t f ) = xL | x(ti) = xe) = P(x(t f ) = xR | x(ti) = xL) = q ∈ (0, 1) (28)

P(x(t f ) = xL | x(ti) = xL) = P(x(t f ) = xR | x(ti) = xR) = r ∈ (0, 1) (29)

These transition relations are represented graphically in Figure 5.

Figure 5. A graphical representation of the transition probabilities described by Equations (27)–(29).

To perform a reset, we should want the probability that the system goes into the reset
state to be greater than the probability that it leaves the reset state. Observe that if the
system is in xL or xR, the probability that it will move to xe (performing the reset) is p. On
the other hand, if the system is in xe, the probability that it will move to xL or xR (undoing
the reset) is 2q. We say X implements a reset if the former case is more probable than the
latter. Precisely, X implements a reset if

p > 2q (30)

When applied to our engine cycle, this constraint would enforce that the forward cycle
is more likely than the reverse.

Theorem 3 (Landauer’s Principle). If X implements a reset, then ϵ > kT ln 2.

Proof. Since xL, xR, and xe are memoryless states and X is autonomous, the transition
probabilities described by Equations (27)–(29) generate a Markov Chain. Since p ∈ (0, 1),
q ∈ (0, 1), and r ∈ (0, 1), it is easily verified that this chain is aperiodic and irreducible, and
thus has a stationary distribution. Let P(xL), P(xR), and P(xe) be the probabilities of each
state in the stationary distribution, which we can also consider as a statistical ensemble.

For the stationary distribution, we will have:

P(xe)(2q) = P(xL)(p) + P(xR)(p) (31)

P(xL)(p) + P(xL)(1 − p − r) = P(xe)(q) + P(xR)(1 − p − r) (32)

P(xR)(p) + P(xR)(1 − p − r) = P(xe)(q) + P(xL)(1 − p − r) (33)

Subtracting Equation (33) from (32), we obtain
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(P(xL)− P(xR))(1 − r) = (P(xR)− P(xL))(1 − p − r) (34)

(P(xL)− P(xR))(p) = 0 (35)

P(xL) = P(xR) (36)

Applying Equations (36)–(31), we obtain

P(xe)(2q) = 2P(xL)(p) (37)

P(xe)q = P(xL)p (38)

Now, recalling we must have p > 2q if X implements a reset, we obtain

P(xe)q > P(xL)(2q) (39)

P(xe) > 2P(xL) (40)

Equation (40) was the key relation we needed from the analysis of the Markov Chain.
Now, we will seek to write the stationary probability of states in terms of their energy. First,
observe that the expected energy of the statistical ensemble is given by:

⟨E⟩ = P(xL)EL + P(xR)ER + P(xe)Ee (41)

If the distribution over states is stationary, the energy of the statistical ensemble will
be constant. Then, there can be no net flow of thermal energy between X and the heat bath.
Thus, the stationary distribution is in thermal equilibrium with the heat bath.

Since the stationary distribution is a statistical ensemble in thermal equilibrium with a
heat bath, it is exactly the canonical ensemble [16]. The probability distribution over states
as a function of energy (measured in Joules) is thus given by:

P(xi) =
e−

1
kT Ei

∑j e−
1

kT Ej
(42)

where k is Boltzmann’s constant, and T is the temperature in Kelvin. We then continue
from Equation (40):

e−
1

kT Ee

∑j e−
1

kT Ej
> 2

e−
1

kT EL

∑j e−
1

kT Ej
(43)

e−
1

kT Ee > 2e−
1

kT EL (44)

e
1

kT (EL−Ee) > 2 (45)

e
ϵ

kT > 2 (46)
ϵ

kT
> ln 2 (47)

ϵ > kT ln 2 (48)

6. Discussion

The result in Equation (48) is quite general. It is not limited to particles in boxes but
applies to any autonomous system in contact with a heat bath. Naturally, it is trivial to
extend the argument for the cost of erasure to any other logically irreversible function or
‘merging of computational paths.’ Moreover, for systems of multiple bits, the bound scales
exactly as expected. For instance, imagine the engine in Figure 2 was divided into four
quadrants rather than two chambers, thus generating a ‘measurement’ of two bits rather
than one. An isothermal expansion to four times the volume, by the same calculations as
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Equations (1)–(5), gives W = kT ln 4. The two bits would occupy four states that merge
into one; thus, Equation (30) would become p > 4q. With this, it is easy to recompute the
bound as ϵ > kT ln 4 = 2kT ln 2. By extension, the cost to erase n bits has a lower bound of
nkT ln 2. These results dovetail nicely with considerations of many-valued logic, where the
Landauer bound remains the same [17].

Interestingly, the case of equality (ϵ = kT ln 2) corresponds to the reset process having
equal likelihood of working forward or backward. In the context of our engine from
Figure 2, the forward cycle will be equally as likely as the backward cycle. This result
should not be surprising since a nearly identical consideration is used to demonstrate that
the ratchet and pawl cannot produce work at equilibrium [15].

With regard to the heat generated by erasure, we may now observe exactly where
it comes from. In the reset scheme of Figure 4, for instance, we see that the mechanical
energy of the partition had to be dissipated. In general, the source of heat will depend on
the memory device used, but it will be whatever form of energy facilitated the switch to the
reset state; this energy must be spent or else the same energy could facilitate a switch back.

We may gain a deeper intuition of this idea by the following analogy with regard to
the reverse dynamics. Imagine balancing on a nearly unstable equilibrium, such as that of
Figure 4 with ϵ = kT ln 2. If we stay perfectly atop, our total energy will not change. In the
presence of thermal vibrations, however, eventually, a disturbance will push us along one
trajectory or another. This ‘push’ is actually a small quantity of heat that (by starting our
motion) is converted to mechanical energy, in accordance with the conservation of energy.
As a result, we can view the entire backward cycle as an isothermal compression used to
cool the partition. Each cycle the engine operates in reverse, kT ln 2 work is performed on
the particle, and kT ln 2 heat is removed from the partition. In the forward direction then,
we see in great detail why the mechanical energy must be converted to heat.

7. Conclusions

In conclusion, we offer a definitive exorcism of Maxwell’s Demon by clarifying the
necessity of measurement in Szilard’s engine and presenting a proof of Landauer’s principle.
Remarkably, our proof is entirely independent of the Second Law. Nowhere did we require
any assumption that the Second Law is true or that it holds for our engine. Instead, we
compute the energy cost of erasure directly by mechanical and statistical means alone. Our
result instills greater confidence in the Second Law, as it sheds light on independent reasons
why perpetual motion machines are impossible even for Maxwell’s Demon.

We summarize our conclusions as follows. We showed that an explicit measurement
procedure is unnecessary to operate Szilard’s engine if we instead interpret the partition’s
location as bearing information. This reinterpretation shed light on how information can be
analyzed strictly using the tools of physics—dynamical systems theory in particular. Using
these tools, it follows that a reset operation in a conservative system is strictly impossible
due to the Existence and Uniqueness Theorem for ordinary differential equations. Worse,
to even approach a reset operation produces an unavoidable instability (in the sense of
Lyapunov) at the reset point. Practically, thermal vibrations at this instability allow the reset
operation to proceed in reverse, which becomes more likely as ϵ decreases. We showed
that when a reset operation is more likely to proceed forward than backwards, we must
have ϵ > kT ln 2. Finally, to the question of whether an intelligent being can circumvent the
Second Law by gathering and exploiting information, we answer no.
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