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Abstract: We commonly encounter the problem of identifying an optimally weight-adjusted version
of the empirical distribution of observed data, adhering to predefined constraints on the weights. Such
constraints often manifest as restrictions on the moments, tail behavior, shapes, number of modes, etc.,
of the resulting weight-adjusted empirical distribution. In this article, we substantially enhance the
flexibility of such a methodology by introducing a nonparametrically imbued distributional constraint
on the weights and developing a general framework leveraging the maximum entropy principle and
tools from optimal transport. The key idea is to ensure that the maximum entropy weight-adjusted
empirical distribution of the observed data is close to a pre-specified probability distribution in terms
of the optimal transport metric, while allowing for subtle departures. The proposed scheme for
the re-weighting of observations subject to constraints is reminiscent of the empirical likelihood
and related ideas, but offers greater flexibility in applications where parametric distribution-guided
constraints arise naturally. The versatility of the proposed framework is demonstrated in the context
of three disparate applications where data re-weighting is warranted to satisfy side constraints on the
optimization problem at the heart of the statistical task—namely, portfolio allocation, semi-parametric
inference for complex surveys, and ensuring algorithmic fairness in machine learning algorithms.

Keywords: complex surveys; demographic parity; entropy; optimal transport; portfolio allocation

1. Introduction

The maximum entropy principle [1,2] states that in situations characterized by un-
certainty and limited prior knowledge-guided constraints, the optimal choice among all
feasible probability distributions is the probability distribution that is the least informative
or most uniformly spread. This idea is at the heart of numerous statistical tasks and has
permeated into every corner of modern machine learning research. Prominent instances of
such constrained entropy maximization include applications in image reconstruction [3],
ill-posed inverse problems [4], portfolio optimization [5], generalized methods of mo-
ment models [6], natural language processing [7], network analysis [8], and reinforcement
learning [9], to name a few. We refer the readers to Cover and Thomas [10], Kardar [11] for
book-length reviews.

For maximum entropy inference, the specified constraints imposed on the probability
distributions frequently manifest as constraints pertaining to moments [6], tail characteris-
tics [12], distributional shapes [13], modal counts, and similar properties. In many cases,
however, constructing constraints with the desired level of flexibility is challenging, if not
unfeasible—refer to Sections 3 and 5 for specific examples in the context of inference in
complex surveys and moment conditions based on portfolio optimization, respectively. On
a related note, a recent article [14] introduced a flexible framework for the introduction of
more elaborate constraints on probability distributions in the context of conducting robust
Bayesian inference.

In this article, we offer a novel solution to this problem via introducing a probability
distribution-guided constrained entropy maximization framework that not only offers
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versatility but also enhances the interpretability of the inferential output. The main concept
revolves around ensuring that a weight-adjusted empirical distribution of the observed
data closely aligns with a predetermined family of probability distributions, measured
through a statistical distance [15]. Importantly, the family of probability distributions is
potentially continuous, but any weighted-adjusted empirical distribution of the observed
data is discrete. This eliminates the possibility of adopting many common statistical
discrepancies, e.g., Kullback–Leibler, total variation, or Hellinger’s distance, to place the
probability distribution-guided constraints. In practice, we need to exercise extreme care
to ensure that our choice is tailored to the application of interest. For homogeneity of
exposition across all scenarios in this article, we consider the Wasserstein metric [16,17].

The idea of data re-weighting is, of course, not new. Ref. [18] suggested elevating the
likelihood of individual observations using data-driven weights, to conduct robust infer-
ence under mild model misspecification. Ref. [19] proposed a data re-weighting scheme
to align the data with a different target distribution, enabling inference under covariate
shifts. Other compelling ideas involving re-weighting can be found in fair learning [20],
natural language processing [21], variational tempering [22], etc. Complementing the
existing literature, we propose a versatile data re-weighting framework, borrowing from
the maximum entropy principle and optimal transport, that is useful in a multitude of
statistical tasks.

The rest of the paper is organized as follows. The general framework of the pro-
posed probability distribution-guided constrained entropy maximization is introduced in
Section 2. Sections 3–5 present applications of our methodology in the context of semi-
parametric inference in complex surveys, in ensuring demographic parity in machine
learning algorithms, and entropy-based portfolio optimization, respectively. Finally, we
conclude with a discussion.

2. General Framework

Let [a] denote the set of integers {1, . . . , a}. Let Ω denote the set of all possible discrete
distributions ω with atoms s = (s1, . . . , sm)T. The entropy of the discrete probability
distribution ∑m

i=1 wiδsi (·) is defined by

Hm(w) = −
m

∑
i=1

wi log wi,

where δ is Dirac’s delta function. The entropy Hm(w) is a measure of randomness, which is
maximized at the discrete uniform distribution with wi = 1/m for all i. In many statistical
tasks, the core challenge constitutes optimizing a functional F : Ω → Ω′ with respect to
ω subject to a constraint ω ∈ Ω0(⊂ Ω). A simple example is when s = (s1, . . . , sm)T is the
observed sample itself. Then, the set Ω is simply characterized by the class of weighted
empirical distributions of the observed data,

Ω =
{

ω =
m

∑
j=1

wj δsj(·) :
m

∑
j=1

wj = 1, wj ≥ 0, j ∈ [m]
}

.

In the following, we shall provide more general examples where the constraint set Ω0 can
be identified with a subset of an (m − 1)-dimensional probability simplex Sm−1 = {w :
∑m

i=1 wi = 1, wi > 0, i ∈ [m]}, for some m ∈ {1, 2, . . .}.
Given s = (s1, . . . , sn)T, parametric inference constitutes approximating the empirical

distribution (1/n)∑n
i=1 δsi (·) via a parametric family of distributions { fθ : θ ∈ Θ}, and learn-

ing the parameter θ from data. Such procedures often fall prey to model misspecification [23],
leading to untrustworthy inferences. To avoid complete model specification, a popular
class of semi-parametric approaches [24] operate under a milder assumption that the
weight-adjusted empirical distribution ∑n

i=1 wiδsi (·) satisfies moment restrictions of the
form ∑n

i=1 wi g(si, θ) = 0, where g is a vector of known functions on Rd × Θ. In numerous
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instances, achieving such moment-based constraints with the intended degree of flexibility
proves to be arduous, if not practically impossible—we elaborate on this more in the sequel.
To that end, in this article, we offer a middle ground between the fully parametric and semi-
parametric moment condition models that allows for flexible modeling assumptions while
enjoying coherent interpretability similar to parametric inference. We propose to operate
under a restriction of the form D(∑n

i=1 wiδsi (·), fθ) ≤ ε, where D is a statistical distance and
ε is a user-defined hyperparameter. Our goal is to infer θ while allowing for mild deviations
from the parametric model fθ , and ε measures the maximum allowable discrepancy.

Inference under moment condition models often involves computing the maximum
entropy weight-adjusted empirical distribution of (s1, . . . , sn)T that satisfies some pre-
specified moment conditions [6,25]. That is, for every θ ∈ Θ, we calculate ∑n

i=1 w⋆
i (θ) δsi (·),

where w⋆(θ) = arg maxw∈Sn−1
Hn(w), subject to ∑n

i=1 wig(si, θ) = 0. Under the proposed
framework, we too appeal to the maximum entropy principle and compute the maximum
entropy weight-adjusted empirical distribution of s that satisfies the parametric distribution-
guided constraint. That is, for every θ ∈ Θ, we calculate ∑n

i=1 w⋆
i (θ) δsi (·), where

w⋆(θ) = arg max
w∈Sn−1

Hn(w) subject to D
(

fθ ,
n

∑
i=1

wi δsi (·)
)
≤ ε, (1)

where D is a statistical distance, and ε is a user-defined parameter. In the ensuing applica-
tions in this article, we often solve the dual optimization problem for operational ease. In
this case, for each θ ∈ Θ and λ ≥ 0, we calculate ∑n

i=1 w⋆
i (θ) δsi (·) such that

w⋆(θ) = arg max
w∈Sn−1

[
Hn(w)− λ D

(
fθ ,

n

∑
i=1

wi δsi (·)
)]

. (2)

The parameter λ controls the extent of departure from the guiding parametric distribution.
One pivotal aspect yet to be addressed within the proposed framework is that a weight-

adjusted empirical distribution is discrete, but, in the context of a specific problem, the
guiding distribution fθ is potentially continuous. For instance, in Section 5, in the context
of entropy-based portfolio allocation, fθ takes the form of a skew normal distribution [26].
This precludes the utilization of several standard statistical distances, such as total varia-
tion, Hellinger’s distance, χ2 distance, etc., for the implementation of the distance-based
constraint. In this article, due to its versatility, we employ the Wasserstein metric [17]
with the L2 cost as the distance measure D. To that end, we briefly recall some relevant
facts about the 2-Wasserstein metric. The Wasserstein space P2(Rd) is defined as the set
of probability measures µ with finite moment of order 2, i.e., {µ :

∫
Rd∥x∥2dµ(x) < ∞},

where ∥ · ∥ is the Euclidean norm on Rd.

Definition 1. For p0, p1 ∈ P2(Rd), let π(p0, p1) ⊂ P2(Rd × Rd) denote the subset of joint
probability measures (or couplings) ν on Rd × Rd with marginal distributions p0 and p1, re-
spectively. Then, the 2-Wasserstein distance W2 between p0 and p1 is defined as W2

2 (p0, p1) =

infν∈π(p0,p1)

∫
Rd×Rd ∥y0 − y1∥2 dν(y0, y1).

Importantly, if both p0, p1 ∈ P2(R) with quantile functions F−1
0 , F−1

1 , we have a highly

tractable expression [27]: W2
2 (p0, p1) =

∫
[0,1]

[
F−1

0 (q)− F−1
0 (q)

]2dq. This is heavily utilized
in the subsequent sections. With this, we have all the essential components to delve into
the specific applications of interest.

The central idea of re-weighting observations subject to constraints is reminiscent of the
empirical likelihood framework (EL; [28–31]) for conducting non-parametric inference. An
EL approximates the underlying distribution with a discrete distribution supported at the
observed data points and obtains the induced maximum likelihood of the parameter of in-
terest defined through constraints, by effectively profiling out the nuisance parameters. Qin
and Lawless [32] hugely expanded the scope of EL by integrating it with estimating equa-
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tions. EL has also been adapted to the dependent data setup; see Nordman and Lahiri [33]
for a detailed review in the context of time series data. Operationally, EL-based meth-
ods enjoy great computational simplicity. The computation of the EL at θ ∈ Θ amounts
to solving the convex optimization problem {maxw ∑n

i=1 log wi | wi > 0, ∑n
i=1 wi = 1,

∑n
i=1 wig(si, θ) = 0}. On the theoretical side, [34] demonstrated that the EL estimator

exhibits desirable higher-order asymptotic properties in a well-specified setup. Newey and
Smith [34] also showed that the EL estimator may not be

√
n-convergent when g(·) is un-

bounded. On the other hand, Schennach [35] showed that the exponentially tilted empirical
likelihood (ETEL) attains the same asymptotic bias and variance as EL, as well as retaining√

n-convergence under model misspecification. ETEL minimizes the Kullback–Leibler
divergence of this discrete distribution with the empirical distribution of the observed
data subject to satisfying the estimating equation. Operationally, ETEL-based methods
continue to enjoy the same computational simplicity as EL, since its computation at θ ∈ Θ
amounts to solving the convex optimization problem {maxw ∑n

i=1 −wi log wi | wi > 0,
∑n

i=1 wi = 1, ∑n
i=1 wig(si, θ) = 0}.

The direct application of the ETEL optimization routine to our setup is challenging as
the moment conditions describing the parameters of general parametric models, especially
those beyond exponential families, can be quite cumbersome or even unavailable. Instead,
our approach proceeds by constraining a weighted empirical distribution of the observed
data ∑n

i=1 wiδsi to be close to the parametric model Fθ with respect to a statistical metric.
The key advantage of the proposed framework lies in the greater flexibility that it offers
compared to existing EL or ETEL procedures based on moment conditions. Let us explain
this with the application of the proposed framework to the portfolio optimization problem.
Volatility Feedback Theory [36] posits that market volatility can influence subsequent
returns. Specifically, it suggests that periods of high volatility can lead to skewed returns,
where extreme price movements are more likely to occur. This theory underscores the idea
that heightened volatility tends to be associated with increased risk and uncertainty in
financial markets, potentially resulting in non-normal return distributions characterized
by asymmetry and fat tails. Skewed returns indicate that the probability of extreme
events, either positive and negative, is higher than what would be expected under a
normal distribution. Consequently, skew normal distributions are routinely utilized to
model observed returns [37,38]. This is an example where a distributional constraint arises
naturally, explaining the added utility of the proposed framework.

The added flexibility potentially comes at a cost. The constraint of the form D( fθ , ∑n
i=1

wi δsi (·)) ≤ ε is non-linear in the weights, posing a greater computational challenge in
computing the ETEL. However, we find that augmented Lagrangian methods [39,40] and
conic solvers [41] via the R interface [42] of constrained non-linear optimization solvers (for
example, NLopt (Johnson [43]) and CVX (Grant and Boyd [44])) serve our purpose in the
class of problems that we consider.

On the theoretical front, it is indeed interesting to study the asymptotic properties of
the ETEL estimator under our distributional constraint and compare it to the asymptotic
properties of the ETEL estimators with moment constraints that were eluded to earlier.
Such study, however, will come with unique challenges due to the potentially non-convex
nature of the set {(w1, . . . , wm)T : D( fθ , ∑n

i=1 wi δsi (·)) ≤ ε, ∑m
j=1 wj = 1, wj ≥ 0, j ∈ [m]

}
.

In particular, the asymptotic bias and higher-order variance of the ETEL estimator subject to
moment-based constraints are obtained via obtaining the stochastic expansions of the ETEL
estimator of the parameter of interest and the Lagrange multiplier [34]. These stochastic
expansions are in turn obtained by first studying the consistency and asymptotic normality
of the estimator as prerequisites. To develop similar large-sample properties for the ETEL
estimator subject to distributional constraints, the existing techniques are not directly useful.
We need to devise appropriate regularity conditions to develop the required stochastic
expansions from scratch. Thus, it is well beyond the scope of the current article and presents
an opportunity for future investigations.
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An instance of application of the proposed framework emerges within the realm of
semi-parametric inference in complex survey data [45,46]. In survey sampling, we wish
to infer about a collection of features of a finite population P := {Xi, i ∈ [N]}. We are
provided with a non-representative sample (x1, . . . , xn) obtained from P via a complex
survey, and the corresponding survey weights π = (π1, . . . , πn), 0 < πi < ∞. In the
general framework, this task involves finding the optimal ω ∈ Ω0 ⊂ Ω such that

Ω =
{

ω =
n

∑
j=1

wjδsi (·) :
n

∑
j=1

wj = 1, wj ≥ 0, j ∈ [n]
}

,

where (s1, . . . , sn) = (x⋆1, . . . , x⋆n) is an i.i.d. pseudo-sample of size n obtained from the complex
survey sample (x1, . . . , xn), via weighted finite population Bayesian bootstrap [47–49] to adjust
for the survey weights, and m = n. The restriction Ω0 is dictated by the parametric model
that the analyst posits on finite population P to infer about the features of interest in the
finite population.

The next application in this article deals with the issue of ensuring demographic parity [50,51]
in machine learning algorithms. Suppose that we have data (xi, yi, ai) ∈ X × Y × {S, T}
for n individuals on covariate x ∈ Rp, continuous response y ∈ R, and protected/sensitive
attribute A with labels {S, T}. For the sake of simplicity in exposition, we further assume
that ai = S, i ∈ [nS], ai = T, i ∈ [n] \ [nT ] and n = nS + nT . The goal is to learn a predictive
rule, h : X × {S, T} → Y , that satisfies the specific notion of demographic parity. Refer to
Section 4 for details. We shall see that this task involves finding the optimal ω ∈ Ω0 ⊂ Ω
such that

Ω =
{

ω =
nT

∑
j=1

wnS+j δsj(·) :
nT

∑
j=1

wnS+j = 1, wnS+j ≥ 0, j ∈ [nT ]
}

,

where sj = −L(θ(T) | xj), j ∈ [n] \ [nS] is the negative of the loss function utilized to learn
the predictive rule h for individuals with a = T, and θ(T) are the associated parameters.
The optimality of ω and restriction Ω0 are determined by the notion of demographic
parity utilized.

An application of a slightly modified version of the general framework is identified in
portfolio allocation problems [5,52,53], where the goal is to identify the optimal atoms of the
discrete distributions, rather than the weights assigned to the atoms. This task translates to
finding the optimal ω ∈ Ω0 ⊂ Ω such that

Ω =
{

ω =
1
n

n

∑
i=1

δsi (·) :
d

∑
j=1

wj = 1, wj ≥ 0, j ∈ [d]
}

,

where si = ∑d
j=1 wjri,j, i ∈ [n]; refer to Section 5 for details. The optimality criterion and

the restriction Ω0 are driven by the fund manager’s portfolio allocation objectives and the
assumed model for the return distribution, respectively.

3. Semi-Parametric Inference in Complex Surveys

Survey data [45,46] commonly arise from complex sampling methods such as stratifi-
cation and multistage sampling, wherein individuals in the finite population have unequal
probabilities of inclusion in the sample. Prominent instances of extensive surveys imple-
menting these methodologies include the National Health and Nutrition Examination
Surveys (NHANES), the British Household Panel Survey (BHPS), the Household Income
and Labour Dynamics in Australia (HILDA) survey, etc. In complex surveys, the survey
sample lacks representativeness, since the individuals with varying demographic charac-
teristics in the finite population of interest have varying probabilities of selection in the
sample. Consequently, traditional methods of inference and estimation result in bias and
the poor coverage of estimators.
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A prevalent approach to addressing this challenge entails carefully exploiting the
sampling weights available with complex survey datasets. These weights could be used
to rectify the biases introduced by the unequal probability sampling and enable us to
create pseudo-equal probability samples from the population. If a survey participant falls
within a demographic group with a low probability of selection or response, their weight
is increased accordingly. Commonly, the available information only includes the survey
dataset and the associated sampling weights for each unit in the sample. That is, there
is limited or no information available about the complex sampling methodology or the
precise technique employed to derive these weights. This situation presents a compelling
inferential challenge, which we shall delve into further in the following discussion.

Assume that we have a finite population P := {Xi, i ∈ [N]}, and we wish to in-
fer about a collection of features of P. We are provided with a non-representative sample
x = (x1, . . . , xn) obtained via a complex survey design, and the corresponding survey weights
π = (π1, . . . , πn), 0 < πi < ∞. It is assumed that the weights have been designed so that
πi is inversely proportional to the likelihood that the survey design selects an observation
with the same demographic characteristics as observation xi. That is, observations with a
lower probability of being selected than they would have under a simple random sampling
approach are assigned greater weight than they would receive in a simple random sampling
scenario. Conversely, observations with a higher probability of selection receive lower
weights than they would in a simple random sampling setup. The πis are scaled to ensure
that ∑n

i=1 πi = n.

3.1. Related Works

Pseudo-maximum likelihood (PMLE)-based approaches are very popular with regard
to conducting parametric inference with complex survey data, where we posit a parametric
model fθ to model P and θ encodes the features of interest of P . The pseudo-loglikelihood
of θ takes the form L(θ) = ∑n

i=1 πi log fθ(xi) [45,54]. The pseudo-likelihood estimate
of θ̂PMLE satisfies the first-order condition ∂L(θ)

∂θ = ∑n
i=1 πi

∂
∂θ log fθ(xi). Under a certain

regularity condition [23],

√
n(θ̂PMLE − θ0)

d→ N(0, H−1
π Vπ H−1

π ),

where θ0 is the true value of θ, and Hπ and Vπ are estimated by

Ĥπ =
1
n

n

∑
i=1

πi
∂2

∂θ∂θT log fθ(xi)
∣∣
θ=θ̂PMLE

,

V̂π =
1
n

n

∑
i=1

πi
∂ log fθ(xi)

∂θ

∂ log fθ(xi)

∂θT

∣∣
θ=θ̂PMLE

respectively.
As an alternative, a semi-parametric inference framework can be developed where

the feature of interest θ of the finite population P := {Xi, i ∈ [N]}, instead of a para-
metric family of distributions, as earlier, is described by the set of estimating equations
1
N ∑N

i=1 g(Xi, θ) = 0, with a vector of known functions g. This approach avoids the complete
parametric specification of the model, and it is widely utilized in statistics and economet-
rics [6,25]. Given a sample x = (x1, . . . , xn)T and survey weights x = (π1, . . . , πn)T, the
exponentially tilted empirical likelihood [55] is given by

LMCM(θ) =
{ n

∏
i=1

w⋆
i : w⋆ = arg max

w
Hn(w), w ∈ Sn−1,

n

∑
i=1

wi[πig(xi, θ)] = 0
}

.
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Here, and elsewhere, we use MCM as an acronym for the moment condition model. When
the convex hull of ∪n

i=1g(xi, θ) contains the origin, it leads to LMCM(θ) = ∏n
i=1 w⋆

i (θ), with

w⋆
i (θ) =

exp[πiλ(θ)
Tg(xi, θ)]

∑n
j=1 exp[πjλ(θ)Tg(xj, θ)]

and λ(θ) = arg minη n−1 ∑n
i=1 exp[πiη

Tg(xi, θ)]. When the convex hull condition is not
satisfied, LMCM(θ | x1, . . . , xn) is set to zero.

3.2. Proposed Methodology

Importantly, it is often difficult, if not impossible, to place more flexible constraints
on the parameter of interest via moment conditions. In this article, we intend to provide
additional flexibility to the ETEL framework via providing the scope for statistical distance-
based parametric distribution-guided constraints. However, it is not straightforward
to accomplish this in the context of complex survey data, due to the presence of the
survey weights. To carefully circumnavigate this issue, we first reconstruct M pseudo-true
populations of size N from the observed complex survey sample of size n via weighted
finite population Bayesian bootstraping [47–49] to adjust for the survey weights; next, we
draw an i.i.d. pseudo-sample of size n from each of the pseudo-true populations, and we
finally construct an ETEL based on each of the M pseudo-samples. Given the m-th i.i.d.
pseudo-sample (x⋆m,1, . . . , x⋆m,n), m ∈ [M], the exponentially tilted empirical likelihood with
a parametric distribution-guided constraint takes the form

LBDCM(θ) =

{ n

∏
i=1

w⋆
i : w⋆ = arg max

w
Hn(w), w ∈ Sn−1,

n

∑
i=1

wig(x⋆m,i, θ) = 0, W2
2

[ n

∑
i=1

wiδx⋆i
(·), fθ

]
≤ ε

}
,

where δ is the indicator function, fθ is the parametric distribution of choice, and ε is a
user-defined parameter denoting the maximum extent of departure from the parametric
distribution of choice. Here, and elsewhere, we use BDCM as an acronym for bootstrapped
distributionally constrained models. Importantly, the inference on the M pseudo-true samples
can be carried out in parallel. The final estimate of θ is obtained via combining the estimates
obtained from the M i.i.d. pseudo-samples.

3.3. Experiments

Based on the numerical experiments in [45], we design simulation studies to compare
the proposed distribution-guided entropy maximization approach with the popular pseudo-
likelihood approach. Suppose that the random variables (X, Z) jointly follow a bivariate
normal distribution with mean (µx, µz)′ = (0, 10)′, marginal variances (σ2

x , σ2
z )

′ = (4, 16)′,
and correlation ρ ∈ {0.1, 0.5, 0.8}. The variable X is the variable of interest; we aim to
estimate its mean µx and variance σ2

x . The variable Z is a selection variable, i.e., the
Z-value of a population unit determines the probability of inclusion of the unit in the
sample. Specifically, we posit that the inclusion probability of Xs in the sample is given
by π⋆

s = Φ(β0 + β1Zs), where Φ(·) is the cumulative distribution function of a standard
normal distribution. When a population unit is included in the sample, we observe xs
and assign a survey weight πs such that πs ∝ 1/π⋆

s . Importantly, we assume that we do
not directly observe Zs. The selected sample of size n is denoted as (x, π)′. We scale the
weights such that they sum up to 1, and we have πs =

(1/π⋆
s )

∑n
j=1(1/π⋆

j )
, s ∈ [n]. The objective

is to utilize (x, π)′ to estimate the population parameters of interest (µx, σ2
x).

We generate N = 100, 000 values of (Xs, Zs) as a finite population. We set β0 = 0.1,
β1 = −1.8 and draw samples of sizes n ∈ {500, 1000, 1500, 2000, 2500} from the fi-
nite population. Under each data generating setup, we utilize 100 Monte Carlo simu-



Entropy 2024, 26, 249 8 of 18

lations. For the pseudo-maximum likelihood (PMLE) approach, we simply posit the model
fθ ≡ Normal(µx, σ2

x). For the proposed BCDM approach, we assume the moment con-
straint based on the function g(x, µx) = x − µx, and the Wasserstein distance constraint
based on the parametric family of distributions fθ ≡ Normal(µx, σ2

x). For each of the
replicates, we choose M = 500; to ensure the comparability of PMLE and BDCM, we
set ε = W2

2
[

∑n
i=1 1/nδx⋆i

(·), fθ̂

]
, where θ̂ is the estimate of θ obtained via PMLE. The bias

and the coverage of the pseudo-maximum likelihood and moment condition model-based
estimators for varying data generating mechanisms are presented in Table 1. A case study
with complex survey data from the National Health and Nutrition Examination Surveys
(NHANES) is provided later. .

Table 1. Average bias (=||(µ, σ2) − (µ̂, σ̂2)||) and coverage (within brackets) of the MLE, PMLE,
BPPE [56], and BDCM estimators for varying data generating mechanisms.

n ρ 0.1 0.5 0.8

500 MLE 0.19 (0.91) 0.68 (0.48) 1.11 (0.45)
BPPE 0.67 (0.82) 0.65 (0.72) 0.71 (0.78)
PMLE 0.16 (0.94) 0.16 (0.91) 0.16 (0.94)
BDCM 0.16 (0.92) 0.16 (0.93) 0.16 (0.95)

1000 MLE 0.16(0.87) 0.69(0.48) 1.11(0.42)
BPPE 0.15 (0.92) 0.18 (0.90) 0.18(0.92)
PMLE 0.11 (0.94) 0.10 (0.94) 0.10 (0.92)
BDCM 0.11 (0.93) 0.10 (0.94) 0.10 (0.96)

1500 MLE 0.15(0.84) 0.68(0.47) 1.11(0.42)
BPPE 0.12 (0.94) 0.10 (0.89) 0.12 (0.90)
PMLE 0.09(0.94) 0.08(0.94) 0.07 (0.93)
BDCM 0.09(0.94) 0.08(0.93) 0.08(0.94)

2000 MLE 0.15 (0.81) 0.68 (0.48) 1.10 (0.40)
BPPE 0.09 (0.92) 0.08 (0.92) 0.07(0.92)
PMLE 0.07(0.95) 0.07(0.95) 0.06(0.92)
BDCM 0.07 (0.95) 0.07 (0.97) 0.07 (0.97)

2500 MLE 0.15 (0.75) 0.68 (0.47) 1.10 (0.39)
BPPE 0.06(0.94) 0.07(0.88) 0.06 (0.92)
PMLE 0.06(0.96) 0.07 (0.94) 0.06 (0.92)
BDCM 0.06(0.97) 0.06 (0.95) 0.06 (0.94)

3.4. National Health and Nutrition Examination Surveys (NHANES) Data Analysis

The NHANES is a series of surveys designed to assess the health and nutritional
status of individuals in the United States. The data extracted are from the NHANES 2009–
2010 [46], and they contain information on binary indicators of high cholesterol, race, age,
etc., and survey weights for 8591 individuals. For this exercise, we assume that these 8591 in-
dividuals make up a finite population and obtain samples of size n ∈ {250, 500, 1000, 2000}
according to the survey weights. We fit a logistic regression to model the binary indicator of
high cholesterol as a function of race and age. For each n ∈ {250, 500, 1000, 2000}, we utilize
100 Monte Carlo simulations. For the distribution-guided entropy maximization approach,
we assume constraints on the score function of the logistic regression. The coverage of
the moment condition model-based estimates of the regression coefficients is presented in
Table 2.

Table 2. NHANES data. Bias = ||β − β̂|| and coverage of the moment condition model-based
estimates of the regression parameters for varying sample sizes.

n 250 500 1000 2000

Coverage 0.95 0.95 0.96 0.96

Bias 0.42 0.27 0.18 0.13
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4. Demographic Parity

Discrimination pertains to the unfair treatment of individuals based on specific demo-
graphic characteristics known as protected attributes. The goal of demographic parity or
statistical parity [50,51] in machine learning is to design algorithms that yield fair inferences
devoid of discrimination due to membership in certain demographic groups determined
by a protected attribute. First, we introduce the mathematical formalization of the notions
of demographic parity. To that end, we assume that X denotes the feature vector used
for predictions, A is the protected attribute with two levels {S, T}, and Y is the response.
Parity constraints are phrased in terms of the distribution over (X, A, Y). Two definitions
are in order.

Definition 2 (Demographic parity, [50]). A predictor h satisfies demographic parity under the
distribution over (X, A, Y) if h(X) is independent of the protected attribute A, i.e., P[h(X) ≥ z |
A = S] = P[h(X) ≥ z | A = T] = P[h(X) ≥ z], for all z.

Definition 3 (Demographic parity in expectation, [50] ). A predictor h satisfies demographic
parity under the distribution over (X, A, Y) if h(X) is independent of the protected attribute A, i.e.,
E[h(X) | A = S] = E[h(X) | A = T] = E[h(X)].

4.1. Proposed Methodology

Although the notions of demographic parity in Definitions 2 and 3 coincide when
we work with binary responses, the latter may be amenable to simple computational
algorithms [57] compared to the general definition. However, the notion of demographic
parity in expectation is somewhat prohibitive since one cannot control the predictor h
over its entire domain. For example, depending on the application of interest, we may
be solely interested in controlling the tails of the predictor [58]. Returning to our semi-
parametric inference framework, we offer a flexible as well as a computationally feasible
compromise between the notions in Definitions 2 and 3. To that end, we introduce the
notion of demographic parity in the Wasserstein metric next.

Definition 4 (Demographic parity in Wasserstein metric). A predictor h achieves demo-
graphic parity in the Wasserstein metric with bias ε, under the distribution over (X, A, Y), if
W2

2
[
FhS , FhT

]
≤ ε, where Fhk

is the empirical distribution of h under sub-population k, i.e.,
h(X) | A = k, k ∈ {S, T}.

Suppose that we have data (xi, yi, ai) ∈ Rd ×R×{S, T} for n individuals on p-dimensional
covariate x, univariate continuous response y, and the levels of the protected attribute a ∈ {S, T}.
For the sake of simplicity in exposition, we also assume that ai = S, i ∈ [nS] and ai = T,
i ∈ [n] \ [nS], where n = nS + nT . Next, we posit a predictive model yi = h(xi, θ(ai)

) +

ei, ei
i.i.d∼ N(0, σ2), i ∈ [n], where h is potentially non-linear and (θ(S), θ(T)) is the model param-

eter of interest to be estimated under the demographic parity constraint W2
2
[
FhS , FhT

]
≤ ε. In

particular, we consider the empirical CDF of h under sub-population S,
FhS = 1/nS ∑nS

i=1 δh(xiS)
(·), and a weighted empirical CDF of h under sub-population T,

FhT = ∑n
i=nS+1 wi δh(xiT)

(·). Here, δ is the Dirac delta measure. The goal is to infer about
(θ(S), θ(T), w), ensuring that the demographic parity constraint, i.e., FhS , FhT , is close with
respect to W2

2 , and, at the same time, the extent of re-weighting in FhT is minimal, i.e., the
entropy −∑n

i=nS+1 wi log wi is close to the maximal entropy log nT . A related idea in Jiang
et al. [59] deals with W1 constrained fair classification problems, but our approach of addi-
tionally re-weighting the observations offers more flexibility, with possible ramifications in
the study of fairness in misspecified models.



Entropy 2024, 26, 249 10 of 18

We achieve this through an in-model approach solving the optimization problem

max
w,θ(S) ,θ(T) ,σ2

[
− 1

nS

nS

∑
i=1

li(θ(S) | xi)−
n

∑
i=ns+1

wi li(θ(T) | xi)

− (1 − λ⋆)W2
2
[
FhS , FhT

]
− λ⋆

n

∑
i=ns+1

wi log wi

]
(3)

where ∑n
i=ns+1 wi = 1 and li(θ(ai)

| xi) = (yi − h(xi, θ(ai)
))2/2σ2, i ∈ [n]. For a resulting re-

weighting vector w⋆ = (w⋆
nS+1, . . . , w⋆

n)
′, we can obtain a fair prediction at a new x ∈ T via a

weighted kernel density estimate at x. As a competitor to the in-model scheme, motivated by
popular post-processing schemes to ensure fairness [60,61], we utilize a two-step procedure.
Step 1: We obtain model parameter estimates by (θ̂(S), θ̂(T), σ̂2) =

arg max
θ(S) , θ(T) , σ2

[
− 1

nS

nS

∑
i=1

li(θ(S) | xi)−
1

nT

n

∑
i=ns+1

li(θ(T) | xi)

]
(4)

followed by a post-processing step at (θ̂(S), θ̂(T), σ̂2) to obtain w⋆

Step 2:

arg max
w

[
− (1 − λ⋆) W2

2
[
FhS , FhT

]
− λ⋆

n

∑
i=ns+1

wi log wi

]
. (5)

A case study on algorithmic mental health monitoring is provided next. An additional
case study on algorithmic criminal risk assessment is also included.

4.2. Distress Analysis Interview Corpus (DAIC)

The Distress Analysis Interview Corpus (DAIC) [62] is a multi-modal clinical interview
collection, accessible upon request via the DAIC-WOZ (https://dcapswoz.ict.usc.edu/
(accessed on 16 October 2023)) website. Computer agents based on such clinical interviews
are deemed to be used to make mental health diagnoses in relation to certain employment
decisions, and concerns about the fairness of such tools with respect to the biological gender
of the individuals have been raised. Specifically, we focus on predicting the PHQ-8 score,
which captures the individual’s severity of depression, as a function of the individual’s
verbal signals during the clinical interviews, while biological gender serves as a protected
attribute. In particular, the Fourier series analysis of the speech signals of the individuals
yields verbal attributes of interest, which in turn could be potentially used in the diagnosis
of the individual’s severity of depression. Therefore, it is of interest to develop novel
methods to produce predictions while avoiding disparate treatment on the basis of biolog-
ical gender. More precisely, we wish to ensure that the demographic parity constraint is
satisfied here, which, in this context, simply dictates that the weighted empirical CDFs of
the biological gender-specific fitted PHQ-8 scores are identical or similar.

The PHQ-8 scores range from 0 to 27, with a score of 0–4 considered none or minimal,
5–9 mild, 10–14 moderate, 15–19 moderately severe, and 20–27 severe. In this application,
we work with the PHQ-8 (continuous response), biological gender (binary protected at-
tribute), and 17 derived audio/verbal features (continuous covariates) corresponding to
the n = 107 subjects. The PHQ-8 scores for the two biological genders show a clear discrep-
ancy. Therefore, we shall assess the relative performance of the in-model scheme (3) and
the two-step scheme (4) and (5) in ensuring demographic parity with respect to biological
gender (refer to Figures 1 and 2. As earlier, for the sake of simplicity of exposition, we use
linear regression (i.e., h is linear in the covariates) as our predictive model of choice. When
we fit the predictive model without any fairness constraint, the fitted empirical cumulative
distribution functions corresponding to the two biological genders are widely different.
Our in-model scheme, as well as the two-step, scheme significantly reduces the discrepancy
owing to its in-built fairness-based regularization. As noted earlier, the in-model scheme
provides lower bias since it performs the two-step optimization simultaneously.

https://dcapswoz.ict.usc.edu/
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Figure 1. Distress Analysis Interview Corpus. Empirical CDFs of fitted h for the two groups, with
no fairness constraint (W2 = 19.32), fair post-processing (W2 = 2.24), and fair model fitting with
(W2 = 0.79), respectively, at λ⋆ = 0.
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Figure 2. Distress Analysis Interview Corpus. Maximum likelihood estimates of the regres-
sion coefficients under both two-step and in-model schemes. In the in-model scheme, the es-
timates are slightly modified since the regression coefficients and the weights assigned to the
data are learned simultaneously. For details on the in-model and two-step approaches, refer to
Equations (3), (4), and (5), respectively.

4.3. COMPAS Recidivism Data Analysis

We consider a case study of algorithmic criminal risk assessment. We shall focus on the
popular COMPAS dataset [63], which includes information on the criminal history of de-
fendants in Broward County, Florida, available from the propublica website (https://www.
propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis (ac-
cessed on 16 October 2023)). For each individual, several features of the criminal history are
available, such as the number of past felonies, misdemeanors, and juvenile offenses; addi-
tional demographic information includes the sex, age, and ethnic group of each defendant.
We focus on predicting the two-year recidivism score y (continuous) as a function of the
defendant’s demographic information, except for race and criminal history x, while race
(categorical) serves as a protected attribute. Algorithms for the creation of such predictions
are routinely used in courtrooms to advise judges, and concerns about the fairness of such
tools with respect to the race of the defendants have been raised. Therefore, it is of inter-
est to develop novel methods to produce predictions while avoiding disparate treatment
on the basis of the protected attribute, race. More precisely, we wish to ensure that the
demographic parity constraint is satisfied, which, in this context, simply dictates that the
weighted empirical CDFs of the race-specific fitted recidivism scores are identical or similar.

For simplicity of exposition, we only consider two levels for the protected attribute
of race, namely African-American and non-African-American, and consider a sub-sample
of the entire dataset with 100 defendants corresponding to each level of the protected
attribute. As a covariate, for each defendant, we consider the demographic information—
sex (binary), age (continuous), and marital status (categorical)—and criminal status—legal
status (categorical), supervision level (categorical), and custody status (categorical). We
use linear regression (i.e., h is linear in the covariates) as our predictive model of choice;
the methodology readily extends to more complicated models. The raw recidivism scores

https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
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for African-Americans versus non-African-Americans show a clear discrepancy). We shall
assess the relative performance of the in-model scheme in (3) and the two-step scheme
in (4) and (5) in ensuring demographic parity with respect to the protected attribute of
race (refer to Figures 3 and 4). When we fit the predictive model without any fairness
constraint, the fitted empirical cumulative distribution functions corresponding to the two
sub-populations are widely different. Our in-model scheme, as well as the two-step scheme,
significantly reduces the discrepancy owing to the in-built fairness-based regularization.
As expected, the in-model scheme provides slightly lower bias since it performs the two-step
optimization simultaneously.
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Figure 3. COMPAS dataset. Empirical CDFs of fitted h for the two groups, with no fairness constraint
(W2 = 0.72), fair post-processing (W2 = 0.05), and fair model fitting with (W2 = 0.02), respectively,
at λ⋆ = 0.
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Figure 4. COMPAS dataset. Maximum likelihood estimates of the regression coefficients under both
two-step and in-model schemes. In the in-model scheme, the estimates are slightly modified since
the regression coefficients and the weights assigned to the data are learned simultaneously.

5. Entropy-Based Portfolio Allocation

We present an application of the proposed parametric distribution-guided entropy
maximization framework to portfolio allocation problems [5,52,53]. Portfolio optimization
is concerned with the allocation of an investor’s wealth over several assets to optimize
specific objective(s) based on historical data on asset returns. To elucidate the problem
clearly, let R(i) = (Ri,1, Ri,2, . . . , Ri,d)

′ be the excess returns on d risky assets recorded over
time i ∈ [n]. The portfolio (w1, . . . , wd) is a vector of weights that represents the investor’s
relative allocation of their wealth satisfying ∑d

i=1 wi = 1 and wi ≥ 0, i ∈ [d]. The goal is to
learn the (w1, . . . , wd) subject to specific constraints based on historical data.

5.1. Related Works

Markowitz’s mean variance optimization [53] is widely recognized as one of the
foundational formulations of the portfolio selection problem. The traditional mean variance
(MV) optimal portfolio weights [53] are obtained via

argmaxw
[
wTµ − λ

2
wTΣw

]
,
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such that ∑d
i=1 wi = 1, where µ = (µ1, . . . , µd)

T = (1/n)∑n
i=1 R(i) and Σ = (1/n)∑n

i=1(R(i) − µ)
(R(i) − µ)T are the mean and variance of the historical return, and λ > 0 is a risk aversion
parameter. Given a specific mean and covariance matrix, the Markowitz paradigm offers
an elegant approach to achieve an efficient allocation, where the pursuit of higher expected
returns inevitably entails greater risk. However, in this framework, it is essential either for
the asset returns to follow a normal distribution or for the utility to solely depend on the
first two moments.

Real-world financial returns, as indicated by empirical evidence [64], diverge from
normal distribution assumptions and commonly exhibit heavier tails and a lack of symme-
try. For instance, Volatility Feedback Theory [36] posits that market volatility can influence
subsequent returns. Specifically, it suggests that periods of high volatility can lead to
skewed returns, where extreme price movements are more likely to occur. This theory un-
derscores the idea that heightened volatility tends to be associated with increased risk and
uncertainty in financial markets, potentially resulting in non-normal return distributions
characterized by asymmetry and fat tails. Skewed returns indicate that the probability of
extreme events, either positive and negative, is higher than what would be expected under
a normal distribution. Consequently, skew normal distributions are routinely utilized to
model observed returns [37,38].

Specifically, in the context of portfolio optimization, refs. [65,66] proposed to utilize
higher-order moments in the portfolio allocation problem. However, portfolios created
using sample moments of stock returns tend to be excessively concentrated in a small num-
ber of assets, which contradicts the fundamental principle of diversification. To that end,
several approaches are proposed in the literature that ensure the shrinkage of the portfolio
weights towards maximum diversification [5,67,68], i.e., they maximize the entropy of the
portfolio weights. In particular, ref. [5] proposed to obtain the portfolio weights solving
the optimization problem arg maxw Hd(w) subject to ∑d

i=1 wiµi ≥ µ0, wTΣw ≤ σ2
0 , such

that ∑d
i=1 wi = 1 and (µ0, σ2

0 ) are the target mean and variance of the portfolio return. In
essence, this approach constitutes obtaining the portfolio weight via entropy maximization
subject to moment-based constraints.

5.2. Proposed Methodology

Importantly, empirical evidence suggests that there is merit in modeling asset returns
via non-normal distributions [65,69], e.g., a skew normal distribution [26,70]. However,
it is often unfeasible to place more flexible constraints on the portfolio weights in terms
of moment conditions. In this section, we intend to provide additional flexibility to the
entropy-based portfolio optimization framework via providing the scope for statistical
distance-based parametric distribution-guided constraints. Our semi-parametric frame-
work provides a formidable alternative to the existing literature, since (a) we can flexibly
specify the distribution of the expected return and (b) the entropy provides direct handling
of portfolio diversity. We achieve this by obtaining portfolio weights via the optimization
problem arg maxw Hd(w) subject to W2

2
[ 1

n ∑T
i=1 δwT R(i)

(·), fθ0

]
≤ ε, such that ∑d

i=1 wi = 1.

Here, 1
n ∑n

i=1 δwT R(i)
(·) is the empirical distribution of the portfolio return, fθ is the centering

parametric family of the distribution of choice, θ0 is the fixed target value of θ, and ε is
a user-defined parameter. For practical purposes, it is useful to express the optimization
problem above as the following:

arg min
w

[
(1 − λ⋆)W2

2

(
1
n

n

∑
i=1

δwT R(i)
(·), fθ0

)
− λ⋆ bdHd(w)

]
(6)

such that ∑d
i=1 wi = 1 and bd = 1/ log d. This choice of bd is convenient since it ensures

that bdHd(w) ∈ [0, 1]. Further, the user-defined parameter λ⋆ ∈ [0, 1] controls the balance
between the portfolio diversity and the extent of deviation from the target distribution fθ0 .

For exposition in this article, we choose fθ0 to be a skew normal distribution [26]
with parameters θ = (ω, ζ, α)′. The probability density function of a skew normal dis-
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tribution SN(ζ, ω, α) is given by f (z) = 2
ω ϕ

( z−ζ
ω

)
Φ
(
α
( z−ζ

ω

))
, z ∈ R where ϕ(·) and Φ(·)

are, respectively, the probability density function and cumulative density function of the
standard normal distribution. For α = 0, we can recover the normal distribution as the
absolute value of skewness increases and the absolute value of α increases. For α > 0, the
distribution is left-skewed, and it is right-skewed for α < 0. If Z ∼ SN(ζ, ω, α), then we
have µ0 = E(Z), σ2

0 = Var(Z), γ0 = Skewness. This allows us to set (ζ, ω, α) to achieve
target θ0 = (µ0, σ2

0 , γ0) of the portfolio return distribution. This resulting skew normal
density with fully specified parameters then serves as the target distribution to calculate
the portfolio weights based on (6). The user can select any flexible probability distribution
to model the portfolio return and follow the prescribed procedure to compute the target
parameter values. The suggested methodology could potentially be utilized with more
versatile target distributions, such as the generalized skew normal distribution [71]. Nev-
ertheless, addressing this aspect is beyond the scope of the current paper, although it is a
promising avenue for future investigation.

5.3. Historical Stock Returns Data Analysis

We consider the stock returns data of 5 companies (AMZN, AAPL, XOM, T, MS) for
the period of January 2000 to December 2020, publicly available from Yahoo! Finance. The
data are aggregated at a monthly level. The goal is to compare the mean variance optimal
portfolio and the proposed parametric distribution-guided portfolio allocation framework.
First, we compute the mean variance optimal portfolio for varying values of the risk
aversion parameter λ ∈ [0, 10]. Figure 5 records the skewness, excess kurtosis, and number
of zero portfolio weights for the mean variance optimal portfolio for varying λ. We focus
on λ set at 1—a choice at which 3 out of 5 portfolio weights are 0, and the optimal portfolio
return distribution is negatively skewed and leptokurtic. This exposes the fact that, once
we have fixed the λ, the mean variance optimal portfolio optimization framework does
not offer direct control over the portfolio diversity, and we will potentially obtain portfolio
allocations concentrated on very few assets. Next, we fix the parameters of a skew normal
density θ = (ω, ζ, α)′ such that its mean, variance, and skewness match the quantities
of the mean variance optimal portfolio return at λ = 1. Finally, we compute the skew
normal distribution-guided maximum entropy portfolio for varying values of the balance
parameter λ⋆ ∈ [0, 1] in (6). Figure 6 presents the entropy of the portfolio weights and the
departure of the portfolio return distribution from the guiding skew normal distribution
as a function of λ⋆ ∈ [0, 1]. This showcases that, contrary to the mean variance optimal
portfolio allocation, here, the fund manager can choose a specific λ⋆ to ensure the desired
level of portfolio diversity, while maintaining fidelity towards a pre-specified distribution
of the portfolio return distribution.
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Figure 5. Limitations of mean variance optimal portfolio. (i) The skewness and excess kurtosis plots
provide evidence that the normality assumption for expected returns does not hold. (ii) A small value
of λ leads to zero weight to several assets.
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Figure 6. With a fixed target skew normal return, varying values of λ⋆ ∈ [0, 1] provide different
balances between diversity and departure from the target. The desired degree of diversification can
be achieved λ⋆ via a simple grid search on λ⋆ ∈ [0, 1].

6. Concluding Remarks

We introduce a nonparametrically oriented framework that aims to align the maximum
entropy weight-adjusted empirical distribution of observed data closely with a predefined
and potentially continuous probability distribution, while permitting mild deviations.
The framework’s versatility is showcased in three distinct applications. We anticipate
the proposed methodology’s utility in numerous other statistical tasks requiring data
re-weighting, e.g., robustness [18], covariate shifts [18], ill-posed inverse problems [4], etc.
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