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Abstract: D2D coded caching, originally introduced by Ji, Caire, and Molisch, significantly improves
communication efficiency by applying the multi-cast technology proposed by Maddah-Ali and
Niesen to the D2D network. Most prior works on D2D coded caching are based on the assumption
that all users will request content at the beginning of the delivery phase. However, in practice, this
is often not the case. Motivated by this consideration, this paper formulates a new problem called
request-robust D2D coded caching. The considered problem includes K users and a content server with
access to N files. Only r users, known as requesters, request a file each at the beginning of the delivery
phase. The objective is to minimize the average and worst-case delivery rate, i.e., the average and
worst-case number of broadcast bits from all users among all possible demands. For this novel D2D
coded caching problem, we propose a scheme based on uncoded cache placement and exploiting
common demands and one-shot delivery. We also propose information-theoretic converse results
under the assumption of uncoded cache placement. Furthermore, we adapt the scheme proposed by
Yapar et al. for uncoded cache placement and one-shot delivery to the request-robust D2D coded
caching problem and prove that the performance of the adapted scheme is order optimal within a
factor of two under uncoded cache placement and within a factor of four in general. Finally, through
numerical evaluations, we show that the proposed scheme outperforms known D2D coded caching
schemes applied to the request-robust scenario for most cache size ranges.

Keywords: coded caching; device-to-device; request-robust; order-optimal scheme

1. Introduction

In recent years, the demand for user throughput has greatly increased by applications
based on fifth-generation (5G) mobile networks [1], such as short videos, self-driving vehi-
cles, the Metaverse, etc. Fortunately, the data of such applications can be pre-stored in the
user’s storage during low-network consumption periods, preventing network congestion
during peak hours. This approach is known as caching [2]. There are typically two phases
in the caching process [3]. Before knowing any user requests, the server fills the users’
caches in the placement phase during off-peak hours. The delivery phase follows in peak
hours. The delivery signals will be designed and transmitted from terminals like the server
or the users to satisfy all user demands when they are revealed. Technology for caching
has advanced quickly in recent years, and it is currently regarded as one of the effective
methods for relieving the congestion of wireless networks.

Traditional caching ignores the processing capability of the users, and therefore,
the contents cached by the users and the signals transmitted by the server are both uncoded.
In contrast to traditional caching, coded caching [3], proposed by Maddah-Ali and Niesen,
uses a combination of coded multi-casting and device caching to simultaneously fulfill
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multiple requests through coded transmissions. The coded caching strategy works for
the prototypical network topology called the single shared-link network, e.g., vehicular
networks [4]. Both the cache contents of the users and the delivery signal from the server
are allowed to be coded in the coded caching problem. The aim is to design a caching and
delivery scheme that minimizes the average and worst-case delivery rate, which is defined
as the average and worst-case number of broadcast bits among all possible user requests.
When the optimal caching and delivery scheme that achieves the lowest worst-case delivery
rate can be found for any user cache size, the optimal tradeoff between rate and memory
for the system is determined. If each user directly stores a subset of the files’ bits in its
cache without coding, it is referred to as an uncoded cache placement scheme; otherwise, it
is referred to as a coded cache placement scheme. The original problem [3] studied in coded
caching is centralized, assuming that all users present during the placement phase will each
make a request for a file at the beginning of the delivery phase. Decentralized coded caching
[5–7] also considers the possibility of users leaving or turning off during the delivery phase
and explores less coordinated caching strategies.

Taking self-driving vehicles as an example: one promising approach to improve the
communication efficiency is through the use of device-to-device (D2D) communication,
which allows the users to directly exchange information with each other without the need
for a server like a base station. This can be particularly useful in situations where the
traditional infrastructure is limited or unavailable, such as in remote or rural areas. To solve
the coded caching problem in these scenarios, a framework is proposed by Ji et al. in [8] for
D2D coded caching. In the placement phase, similar to coded caching [3], the server fills
the users’ caches before the users make any requests. In the delivery phase, when the users
reveal their demands, the server is disconnected from the users and it is up to the users to
communicate with each other so that each user can decode the file it requested using the
signals transmitted by the other users and the contents of its local cache. For the centralized
D2D coded caching problem, the caching strategy of [3] (Algorithm 1), which is uncoded, is
widely used in the placement phase, e.g., in [8,9] and so on. In [8], a novel delivery scheme
was provided that is appropriate for the D2D scenario. Additionally, a well-known D2D
coded caching converse was proposed in [8], and it has been demonstrated that, when the
memory size is large, the proposed D2D caching and delivery scheme is order optimal
within a constant factor. It is difficult to find the optimal caching and delivery scheme and
the corresponding optimal rate–memory tradeoff for the centralized D2D coded caching
problem. However, there are many researchers who try to find the fundamental limits
of the centralized D2D coded caching problems under certain assumptions or additional
constraints, e.g., [9,10].

With concern to the timeliness of the communication, one-shot delivery, which is defined
to satisfy the condition that each user can decode any bit of its requested file from its
own cache and the transmitted signal from at most one other user, is proposed in [9]
for the centralized D2D coded caching problem. For example, one self-driving vehicle
may quickly decode the requested map data after receiving the signals transmitted by
another self-driving vehicle, without waiting for all the considered vehicles to complete
the transmission of signals. The proposed caching and delivery scheme in [9] is optimal
under the constraint of uncoded cache placement and one-shot delivery, and it is order
optimal within a factor of two if the converse of the shared-link coded caching problem
with uncoded cache placement [11] is used as the lower bound and order optimal within a
factor of four compared to the general D2D coded caching converse results.

In addition to [9], many other researchers study variants of the D2D coded caching
problems, such as allowing for coded placement with three users [10], private caching [12],
private caching with a trusted server [13,14], distinct cache sizes [15], finite file packeti-
zations [16], finite-length analysis [17], secure coded caching [18], secure delivery [19],
wireless multi-hop D2D networks [20,21], partially cooperative D2D communication
networks [22,23], constructions of placement delivery arrays (PDAs) [24], and so on.
Among these papers, most of them assume that all users will request content at the begin-
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ning of the delivery phase. However, in practice, this may not be true. For example, when
assisted self-driving vehicles within a certain range carry out D2D communication, they
may not request at the same time or some of them may be driven manually and do not
need to access high-definition map data. In these situations, waiting for all users to request
content will waste time, and setting the requests of the users who do not request some
arbitrary file demand will waste communication resources. Note that in these scenarios,
even though the users may not request data, they are still available to participate in the
delivery phase by transmitting signals that are functions of their cached contents.

Hence, in this paper, we propose and study a new problem called request-robust D2D
coded caching, where in the delivery phase, though all users in the placement phase are still
present and may help with the transmission, some of them do not request any files. It is not
known in the placement phase the number or identity of the users who do not request files.
This problem is not the same as the decentralized D2D coded caching problem [8], where
users who leave or turn off during the delivery phase do not make file requests, nor do they
participate in the delivery. Note that this problem is similar to the user inactivity problem
in the D2D caching setting [9,22], where each user may independently have a probability
of being inactive, i.e., they do not make a file request at the beginning of the delivery phase.
However, in the request-robust D2D coded caching problem, inactive users still help in the
delivery phase by transmitting signals, whereas in the user inactivity problem, they do not.

1.1. Main Contributions

The main contributions of the paper can be summarized as follows:

(1) For the request-robust D2D coded caching problem, we adapt the scheme from [9]
for uncoded cache placement and one-shot delivery and call the adapted scheme the
adapted Yapar–Wan–Schaefer–Caire (YWSC) scheme.

(2) In order to find better performance, we present a new achievable scheme based on
the uncoded cache placement and exploiting common demands [11] and one-shot
delivery [9]. The caching strategy is the same as that proposed by Maddah-Ali and
Niesen in [3] (Algorithm 1), while the delivery strategy divides the sub-files into
three categories, and different delivery signals are designed for each category. We
call the new scheme the three-category-based scheme. This scheme was presented in the
conference version of this paper [25].

(3) We propose an information-theoretic lower bound under uncoded cache placement
based on seeking the converse of a problem called coded caching with inactive users.
The problem of coded caching with inactive users was proposed in [26], where users
are inactive with a certain probability in the traditional coded caching problem of [3].
Hence, the converse for the problem of coded caching with inactive users can serve as
a converse for the request-robust D2D coded caching problem. Note that [26] only
considers the optimization of the cache replication parameter and does not provide a
converse for the caching and delivery scheme.

(4) We prove that the performance of the adapted YWSC scheme is order optimal within
a factor of two under the assumption of uncoded cache placement and within a factor
of four in general.

(5) Through numerical evaluation, we show that the three-category-based scheme out-
performs the adapted YWSC scheme, as well as other known D2D coded caching
schemes [3] applied to the request-robust scenario.

1.2. Notations

Throughout this paper, H(·) represents the entropy of random variables, | · | represents

the cardinality of a set, ⊕ denotes finite field addition, we let X \Y △
= {x ∈ X |x ̸∈ Y},

[x : y : z]
△
= {x, x + y, x + 2y, ..., z}, [x : y] = [x : 1 : y] and [n] = [1 : n]. For two integers x,

and y, if x < y or x ≤ 0, we let (y
x) = 0.
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2. System Model and Related Background
2.1. System Model

We study the request-robust D2D coded caching problem, which is defined in the follow-
ing. We consider a D2D coded caching system (see Figure 1) where a server is connected to

a fixed content file database of N files,W △
= (W1, ..., WN). Each file consists of F bits. There

are K users in the system, each with a cache of size MF bits. We focus on the non-trivial

scenario where M ≤ N. Let K be the set of user indices, i.e., K △= [K].

Figure 1. System model for request-robust D2D coded caching problem when there are 3 users.
In this realization, User 2 does not request. Solid and dotted lines indicate placement and delivery
phases, respectively.

The system operates in two phases. In the placement phase, each user’s cache is filled
by the central server, which does not know the number of users or the identities of the
users requesting files in the other phase. Denote the content in the cache of User k as Zk,
k ∈ K. In the delivery phase, some of the K users will make file requests while others
will not. We denote the set of users making file requests as R, R ⊆ K. Each user in R
will request a single file. Let r denote the number of users requesting files, i.e., r ≜ |R|,
and we assume that the file requests, i.e., which user requests which file and which users
are not requesting any files, are known to all K users. Each of the K users will send a signal
that will be received by the users in R. It is required that each user in R can decode its
requested file by using the signals received and its own cache content. Note that Figure 1 is
different from [9] (Figure 1), i.e., there exists a user who does not request any file in Figure 1,
while in [9] (Figure 1), all users request files.

More specifically, a caching and delivery scheme for this system consists of

1. K caching functions
φk : [2F]N → [2MF], k ∈ K,

which map the N files into cache contents of the users, denoted by Zk = φk(W1, ..., WN),
k ∈ K. Thus, we have the following entropy constraint:

H(Zk|W1, W2, ..., WN) = 0, k ∈ K.

2. K ∑K
r=1 (

K
r )Nr encoding functions

ϕ
DR
k : [2MF]→ [2Rk F], k ∈ K.

where DR is the set of file requests made by the users inR. For example, if there are
K = 4 users, and Users 1 and 3 do not request files during the delivery phase,
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the request vector is D{2,4} = (d2, d4). The encoding function ϕ
DR
k denotes the

mapping of User k from its cached content to the signal it transmits, which is denoted

as XDR
k , i.e., XDR

k
△
= ϕ

DR
k (Zk). Thus, we have

H(XDR
k |Zk) = 0, k ∈ K. (1)

We assume the signal XDR
k consists of RDR

k F bits. The signals transmitted by all K
users consist of RDRF bits, i.e., RDR = ∑K

k=1 RDR
k .

3. ∑K
r=1 (

K
r )rNr decoding functions

ψ
DR
k : [2MF]× [2F ∑u∈K\{k} R

DR
u ]→ [2F], k ∈ R,

which is the decoding function used by User k. For example, if there are K = 4
users, and Users 1 and 3 do not request any file during the delivery phase, the de-
coded files at Users 2 and 4 are Ŵd2 = ψ

(d2,d4)
2 (Z2, X(d2,d4)

1 , X(d2,d4)
3 , X(d2,d4)

4 ) and

Ŵd4 = ψ
(d2,d4)
4 (Z4, X(d2,d4)

1 , X(d2,d4)
2 , X(d2,d4)

3 ), respectively.

Correct decoding by the users requesting files is given by Ŵdk
= Wdk

, k ∈ R, or
in other words,

H(Wdk
|Zk, XDR

[K]\{k}) = 0, k ∈ R, (2)

which is called the decodability constraint. We find that by combing (1) and (2), one can
decode any file by knowing the cache of all users, i.e.,

H(W[N]|Z[K]) = 0. (3)

which implies that we are interested in the case where KM ≥ N.
For any caching and delivery scheme that satisfies the decodability constraint, for a

fixedR with size r, we define DR as the set of all possible demands {1, · · · , N}r. We are
interested in two performance metrics: one is with respect to the average performance,
and the other is with respect to the worst performance. More specifically, the average
performance is defined as follows: we assume that the request vector DR is uniformly
distributed on DR. Then, the average delivery rate with respect to the uniform demand
RRave,req-rob is defined as

RRave,req-rob = EDR [R
DR ].

For a given r, we define the maximum average delivery rate with respect to the uniform
demand Rr

ave,req-rob, where the maximum is over all request setsR with size r, i.e.,

Rr
ave,req-rob = max

R:|R|=r
RRave,req-rob

The worst-case performance is defined as follows: first, the worst-case delivery rate
RRworst,req-rob is defined as

RRworst,req-rob = max
DR

RDR .

For a given r, we define the maximum worst-case delivery rate Rr
worst,req-rob, where the

maximum is over all request setsR with size r, i.e.,

Rr
worst,req-rob = max

R:|R|=r
RRworst,req-rob.
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We would like to design caching and delivery schemes such that Rr
ave,req-rob and

Rr
worst,req-rob are both the smallest for every r = 1, 2, · · · , K. As can be seen, this is a

multi-objective optimization.
For easy presentability of the results, following the notation of [11], we denote Ne(DR)

as the number of distinct files in a request vector DR. DR\{k} and Ne(DR\{k}) are denoted
as the request vector of users R \ {k} and the number of distinct files requested by all
requesters but User k, respectively.

2.2. Preliminaries

In this subsection, we briefly summarize the related approaches, namely the uncoded
symmetric placement scheme in [3] and the problem of coded caching with inactive users,
which are critical for building our results for the request-robust D2D coded caching prob-
lem.

2.2.1. Uncoded Symmetric Placement Scheme

First, we introduce the uncoded symmetric placement scheme, which is useful for our
scheme proposed in Section 4.

Definition 1. (Maddah-Ali Niesen [MAN] Uncoded Symmetric Placement Scheme): Define t as
t = KM/N. When t is an integer, we have the MAN uncoded symmetric placement scheme as
follows: Each file Wn is divided into (K

t ) disjoint sub-files denoted by Wn,T , where n ∈ [N], T ⊆ K,
|T | = t, and H(Wn,T ) = F/(K

t ). Each user k caches all the bits of the sub-files Wn,T , n ∈ [N],
for all T ∋ k. Since each file includes (K−1

t−1 ) sub-files with T ∋ k, each user k satisfies the memory
constraint H(Zk) = NF(K−1

t−1 )H(Wn,T ) = NFt/K = MF.

For the convenience of understanding and reference, we give the algorithm of this
scheme in Algorithm 1.

Algorithm 1 MAN Uncoded Symmetric Placement Scheme (N, K, M, W[N])

1: t← KM/N
2: T ← {T ⊆ [K] : |T | = t}
3: for n ∈ N do
4: Divide file Wn into disjoint sub-files (Wn,T : T ∈ T) with equal size
5: end for
6: for k ∈ [K] do
7: Zk ← (Wn,T : n ∈ [N], T ∈ T, k ∈ T )
8: end for

The uncoded symmetric placement scheme is the optimal achievable placement
scheme both for the shared-link model with uncoded cache placement [3] and D2D work
with uncoded cache placement and one-shot delivery [9], which reveals that regardless
of the number of users, using the uncoded symmetric placement scheme can satisfy the
optimal rate of these models in all cases. Due to the superiority of the uncoded symmetric
placement scheme, we use the scheme as the placement scheme in our scheme proposed in
Section 4.

2.2.2. Problem of Coded Caching with Inactive Users

We denote our original D2D model with r users of K users requesting files indepen-
dently inW as System 1. In order to derive the converse of System 1, we consider another
system model named coded caching with inactive users, denoted as System 2. This is the model
where a central server responds to the users’ requests, and some of the users do not request
any files in the delivery phase. The central server connects to the whole file database.

The placement phase of System 2 is exactly the same as that of System 1. Thus,
in System 2, Equation (3) is still satisfied. The delivery phase of System 2 is different from
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that of System 1. Specifically, in System 1, the codewords are transmitted by the users,
while in System 2, the codewords are transmitted by the central server. Since the central
server has the whole database and connects to all K users, while in System 1, each user only
caches a subset of the whole database and only connects to other K− 1 users, the optimal
maximum average and worst-case delivery rate in System 2, denoted as Rr∗

ave,inactive and
Rr∗

worst,inactive, can not be larger than the delivery rate in System 1, respectively. In other
words, we have the following inequality:

Rr∗
ave,req-rob ≥ Rr∗

ave,inactive, (4)

Rr∗
worst,req-rob ≥ Rr∗

worst,inactive. (5)

3. Main Result

In this section, we present the main results of this work. We propose two achievable
schemes for the request-robust D2D coded caching problem in Theorems 1 and 2. We further
propose a converse for the problem of coded caching with inactive users in Theorem 3,
which also serves as a converse result to the request-robust D2D coded caching problem.
Theorem 4 compares the performance gap between the achievability result in Theorem 1
and the converse result in Theorem 3 and shows that they are within a multiplicative gap.

The first achievable scheme is obtained by adapting the achievable scheme in [9] with
uncoded cache placement and one-shot delivery to the request-robust D2D coded caching
problem. More specifically, the adaptation is performed by assigning the users, who do not
request, a demand that is most requested by the requesters. We call the adapted scheme
the adapted Yapar–Wan–Schaefer–Caire (YWSC) scheme. We denote the adapted request
vector as D′K and the adapted request vector of users K \ {k} as D′K\{k}. Hence, we have
Ne(D′K) = Ne(DR) and obtain Theorem 1 as follows:

Theorem 1. For the request-robust D2D coded caching problem, the optimal maximum average
delivery rate with respect to the uniform demand is upper bounded by

Rr∗
ave,req-rob ≤ED′K

{
K(K−1

t )−∑K
i=1 (

K−1−Ne(D′K\{i})
t

)− f
[
(K−r

t )− (K−r−1
t )

]
t(K

t )

}
, (6)

when t = KM
N is an integer in [K], where f is an integer equal to one if and only if each requester

demands a distinct file, i.e., Ne(DR) = r; otherwise, f = 0. When t /∈ [K], Rr∗
ave,req-rob is upper

bounded by the lower convex envelope of the values in (6) for integer values of t ∈ [K].
For the maximum worst-case delivery rate, we have

Rr∗
worst,req-rob ≤max

D′K

{
K(K−1

t )−∑K
i=1 (

K−1−Ne(D′K\{i})
t

)− f
[
(K−r

t )− (K−r−1
t )

]
t(K

t )

}
, (7)

=



K(K−1
t )−(K−r)(K−r−1

t )−r(K−r
t )

t(K
t )

, r ≤ N,

K(K−1
t )−(2N−r)(K−N

t )−(K+r−2N)(K−1−N
t )

t(K
t )

, otherwise,

K[(K−1
t )−(K−1−N

t )]
t(K

t )
, r ≥ 2N,

(8)

where t = KM
N is an integer in [K]. When t /∈ [K], Rr∗

worst,req-rob is upper bounded by the lower
convex envelope of the values in (7) for integer values of t ∈ [K].

Proof. The proof of Theorem 1 is provided in Appendix A.
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Theorem 1 is a simple adaptation of an existing scheme; in order to improve its
performance, we propose a new scheme, called the three-category-based scheme, and obtain
Theorem 2 as follows:

Theorem 2. For the request-robust D2D coded caching problem, the optimal maximum average
delivery rate with respect to the uniform demand is upper bounded by

Rr∗
ave,req-rob ≤EDR

{
∑

min{t−1,r−1}
i=max{1,t+r−K} (

K−r
t−i )

[
( r

i+1)− (r−Ne(DR)
i+1 )

]
(K

t )

+
(K−r

t )Ne(DR)

(K
t )

+
r(r−1

t )−∑i∈R (
r−1−Ne(DR\{i})

t )

t(K
t )

}
, (9)

where t = KM
N is an integer in [K]. When t /∈ [K], Rr∗

ave,req-rob is upper bounded by the lower convex
envelope of the values in (9) for integer values of t ∈ [K].

Then, for the maximum worst-case delivery rate, we have

Rr∗
worst,req-rob ≤max

DR

{
∑

min{t−1,r−1}
i=max{1,t+r−K} (

K−r
t−i )

[
( r

i+1)− (r−Ne(DR)
i+1 )

]
(K

t )

+
(K−r

t )Ne(DR)

(K
t )

+
r(r−1

t )−∑i∈R (
r−1−Ne(DR\{i})

t )

t(K
t )

}
, (10)

=



∑
min{t−1,r−1}
i=max{1,t+r−K} (

K−r
t−i )(

r
i+1)

(K
t )

+
r(K−r

t )

(K
t )

+
r(r−1

t )

t(K
t )

, r ≤ N,

∑
min{t−1,r−1}
i=max{1,t+r−K} (

K−r
t−i )[(

r
i+1)−(

r−N
i+1 )]

(K
t )

+
N(K−r

t )

(K
t )

+
r(r−1

t )−(2N−r)(r−N
t )−2(r−N)(r−1−N

t )

t(K
t )

, otherwise,

∑
min{t−1,r−1}
i=max{1,t+r−K} (

K−r
t−i )[(

r
i+1)−(

r−N
i+1 )]

(K
t )

+
N(K−r

t )

(K
t )

+
r[(r−1

t )−(r−1−N
t )]

t(K
t )

, r ≥ 2N,

(11)

where t = KM
N is an integer in [K]. When t /∈ [K], Rr∗

worst,req-rob is upper bounded by the lower
convex envelope of the values in (10) for integer values of t ∈ [K].

Proof. In proving Theorem 2, we propose a new scheme, i.e., the three-category-based
scheme, where the sub-files are divided into three categories and different delivery signals
are designed for each category. The detailed proof can be found in Section 4.

Remark 1. In Section 5, we numerically compare the delivery rates of the three-category-based
scheme and the adapted YWSC scheme, and it can be seen that the proposed three-category-based
scheme outperforms the adapted YWSC scheme in all cases cited (see Section 5 for the cited cases
and comparison results).

In the following theorem, we characterize a converse for the request-robust D2D coded
caching problem.

Theorem 3. For the request-robust D2D coded caching problem, the optimal maximum average
delivery rate with respect to the uniform demand and under the constraint of uncoded placement is
lower bounded by:

Rr∗
ave,req-rob ≥ EDR

[
( K

t+1)− (K−Ne(DR)
t+1 )

(K
t )

]
, (12)



Entropy 2024, 26, 250 9 of 33

where t = KM
N is an integer in [K], where DR is uniformly distributed over DR. When t /∈ [K],

Rr∗
ave,req-rob is lower bounded by the lower convex envelope of the values in (12) for integer values of

t ∈ [K].
Then, for the maximum worst-case delivery rate, we have that the optimal maximum worst-case

delivery rate under the constraint of uncoded placement is lower bounded by

Rr∗
worst,req-rob ≥

( K
t+1)− (K−min{r,N}

t+1 )

(K
t )

, (13)

where t = KM
N is an integer in [K]. When t /∈ [K], Rr∗

worst,req-rob is lower bounded by the lower
convex envelope of the values in (13) for integer values of t ∈ [K].

Proof. Similar to [9], we use the converse of the central server version, i.e., System 2, as a
converse for the request-robust D2D coded caching problem when the converse is under
the constraint of uncoded placement. The detailed proof is provided in Appendix B.

We compare the rate achieved by the adapted YWSC scheme from Theorem 1 and
the converse present in Theorem 3 and obtain a multiplicative gap result of Theorem 4 as
follows:

Theorem 4. For the request-robust D2D coded caching problem, the upper bounds of the optimal
maximum average and worst-case rates from Theorem 1 are order optimal within a factor of two
under the constraint of uncoded cache placement and within a factor of four in general.

Proof. The proof of Theorem 4 is given in Appendix D.

Remark 2. It is hard to analytically prove that the rate achieved by the three-category-based scheme
from Theorem 2 outperforms the rate achieved by the adapted YWSC scheme from Theorem 1 in all
cases. However, since in the numerical comparisons in Section 5 the three-category-based scheme
performs better than the adapted YWSC scheme in all cases cited, we conjecture that the rate achieved
by the three-category-based scheme from Theorem 2 and the converse present in Theorem 3 also
follow the multiplicative gap characterized by Theorem 4.

4. A Novel Achievable Scheme, i.e., Proof of Theorem 2

In this section, we present an achievable scheme for the request-robust D2D coded
caching problem. The scheme achieves the rate stated in Theorem 2. We will first provide a
general achievable scheme, which is based on uncoded cache placement and exploiting
common demands [11] and one-shot delivery [9]. Then, we will characterize the perfor-
mance of the proposed scheme and show that for any requester setR and corresponding
request vector DR, the proposed three-category-based scheme achieves the rate

RDR
req-rob =

∑
min{t−1,r−1}
i=max{1,t+r−K} (

K−r
t−i )

[
( r

i+1)− (r−Ne(DR)
i+1 )

]
(K

t )

+
(K−r

t )Ne(DR)

(K
t )

+
r(r−1

t )−∑i∈R (
r−1−Ne(DR\{i})

t )

t(K
t )

, (14)

which, with the explicit characterization of the maximum worst-case delivery rate in
Section 4.2, immediately proves Theorem 2. Finally, we will provide an example to aid in a
better understanding of the proposed three-category-based scheme.

4.1. General Scheme

For the placement phase, because the central server does not know the number of
requesters r, we use the highly adaptable MAN uncoded symmetric placement scheme
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described in Definition 1, denoted asMMAN. In the following, we restrict to integer values
of t ∈ [1 : K]. For cache size M where t = KM/N is not an integer, memory-sharing will be
performed [3,8].

For the delivery phase, let the set of requesters beR with size r. The r requesters each
demand a single file. The delivery strategy is divided into the following steps:

(a) Determining the leading requesters: Each user k ∈ K \R who does not request arbi-
trarily selects a subset of Ne(DR) requesters, denoted by U ′k = {u′k1 , ..., u′kNe(DR)

} ⊆ R,
that request Ne(DR) distinct files. Using the idea of leaders from [11], we name these
requesters as the leading requesters of User k.

(b) Splitting the sub-files into three categories: Recall that each sub-file is denoted as
Wn,T and is cached by only users in T . If T ⊆ K \ R, then this sub-file belongs to
the first category, which is the set of sub-files that are only cached by users who do
not request any files. If T contains some elements fromR and some elements from
K \R, then this sub-file belongs to the second category, which is the set of sub-files
that are cached by both requesters and non-requesters. Finally, if T ⊆ R, then this
sub-file belongs to the third category, which is the set of sub-files that are only cached
by users who make file requests.

The three categories may not all exist or be required by requesters, and it depends
on the value of r and t. When t ∈ [K − r + 1, K] or r = K, the first category does not
exist. When t = 1 or r = K, the second category does not exist, and when r = 1 or t = K,
the second category is not required. When t ∈ [r + 1, K], the third category does not exist,
and when t = r or r = 1, the third category is not required.

(c) Transmitting signals for the sub-files in the three categories: we will discuss the
delivery scheme for the sub-files in each of the three categories.

(i) For the sub-files in the first category needed by Requester k, k ∈ R, since these sub-
files are not cached in any of the requesters, the users in K \ R who cache these
sub-files transmit them in an uncoded form. Suppose Wdk ,T is requested by User
k ∈ R, T ⊆ K \ R, any of the t users in T can transmit the sub-file in an uncoded
form. However, we adopt the file-splitting strategy in [9] and allow each user in T to
transmit 1/t part of the sub-file, i.e., Wdk ,T is divided into t pieces, each consisting of

F
t(K

t )
numbers of bits. The pieces are denoted as Wdk ,T ,a, a ∈ T , and User a transmits

X1st,dk ,T
a = Wdk ,T ,a. (15)

We notice that Wdk ,T ,a may be needed by other requesters, i.e., there may be other
requesters that request file dk also. Hence, we let each user a transmit in sequence
X1st,dk ,T

a for all k ∈ U ′a. Hence, the rate of transmitting total bits for the sub-files in
the first category is

R1st =
t(K−r

t )Ne(DR)

t(K
t )

=
(K−r

t )Ne(DR)

(K
t )

, (16)

because for each T , every user a ∈ T transmits Ne(DR) F
t(K

t )
bits, and there are t users

in each T , and a total of (K−r
t ) number of T that are subsets of K \R.

(ii) Consider a sub-file in the second category needed by Requester k, k ∈ R, denoted as
Wdk ,T , where k /∈ T . Denote the set of elements in T that are in R as B, whose size
is denoted as i, and we have 1 ≤ i ≤ r− 1, because we know at least User k who is
requesting a file is not in T . Further denote the set of elements of T that are in K \R
as B̂, whose size is t− i, and we have 1 ≤ t− i ≤ K− r. Hence, T can be written as
T = B⋃ B̂. Furthermore, i must satisfy i ∈ [max{1, t + r− K}, min{t− 1, r− 1}].
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Consider the set B̄ ≜ {k}⋃B, which is a set consisting of i + 1 requesters. The sub-file
Wdx ,B̂⋃ B̄\{x} is needed for x ∈ B̄. We ask that this sub-file be transmitted by the t − i
non-requesters, and Wdx ,B̂⋃ B̄\{x} for any x ∈ B be divided into t− i equal-length disjoint

sub-pieces of F
(t−i)(K

t )
bits, which are denoted by Wdx ,B̂⋃ B̄\{x},b, where b ∈ B̂. Hence, if User

b ∈ B̂ transmits
X2nd,dx ,B̂⋃ B̄\{x}

b =
⊕
x∈B̄

Wdx ,B̂⋃ B̄\{x},b, (17)

the sub-piece retrieval can be accomplished for each requester in B̄ since User x has all the
sub-pieces on the RHS of (17), except for Wdx ,B̂⋃ B̄\{x},b.

We ask each user b ∈ K \R to transmit X2nd,dx ,B̂⋃ B̄\{x}
b in sequence, only if B̄ ∩ U ′b ̸=

∅, i.e., user b will not transmit if the set B̄ consists of only non-leading requesters. We
now count the amount of transmission for the second category. For a fixed i, the number
of B̂, which is of size t − i, is (K−r

t−i ). For each u ∈ B̂, the number of transmitted bits is

( r
i+1) − (r−Ne(DR)

i+1 ) times the size of a sub-piece, and there are a total of t − i users in B̂.
Hence, the rate of transmitting all the bits for the sub-files in the second category is

R2nd =
∑

min{t−1,r−1}
i=max{1,t+r−K} (

K−r
t−i )

[
( r

i+1)− (r−Ne(DR)
i+1 )

]
(K

t )
. (18)

The next lemma shows that the scheme proposed satisfies the decodability constraint,
even for the non-leading requesters.

Lemma 1. The scheme proposed for the sub-files in the second category satisfies the decodability
constraint, i.e., (2).

The proof of Lemma 1 is based on showing the equivalence of the designed scheme
and that in [11]. Hence, we state the following remark first:

Remark 3. Notice that when the sub-files are in the second category and the parameter t is fixed,
for each partition integer i, a user b ∈ B̂ generates its codewords exclusively from the sub-pieces
Wdk ,B̂∪B,b, and there exist (r

i) such sub-pieces in its cache. In addition, for any c ∈ B̂ \ {b}, we have
Wdk ,B̂∪Vb ,b ∩Wdl ,B̂∪V c ,c = ∅ for any V b,V c ⊆ R, |V b| = |V c| = i, k ∈ V b, l ∈ V c. That is to say,
users in B̂ generate their codewords based on non-overlapping libraries of size (t− i)N(r

i)
F

(t−i)(K
t )

=

N(r
i)F/(K

t ) bits. Also, observe that the cache of requester k contains (t− i)(r−1
i−1) such Wdk ,B̂∪Vb ,b

sub-pieces, which amount to N(t− i)(r−1
i−1)

F
(t−i)(K

t )
= N(r−1

i−1)
F
(K

t )
= Ni(r

t)
F

r(K
t )

bits.

Therefore, the proposed scheme is in fact composed of (t− i) shared-link models [3] each with
N files of size F′ = (r

i)F/(K
t ) bits and K′ = r users with caches of size M′ = Ni/r units each.

The corresponding parameter for each model is found to be t′ = K′M′
N = i. To ensure the existence of

sub-files in the second category, the partition integer must satisfy i ∈ [max{1, t + r−K}, min{t−
1, r− 1}]. Hence, for every i ∈ [max{1, t + r− K}, min{t− 1, r− 1}], summing the achievable
rates Rsl , which is defined as follows from [11]:

Rsl =
( K

t+1)− (K−Ne(d)
t+1 )

(K
t )

, (19)

of each b ∈ B̂ shared-link sub-system and replacing the shared-link system parameters F, K, M, t, and
Ne(d) with F′, K′, M′, t′, andNe(DR), respectively, we obtain (18).
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We now prove that for each partition integer i ∈ [max{1, t + r− K}, min{t− 1, r− 1}],
each requester k is able to decode the needed sub-files in the second category with the

partition integer i upon receiving the codewords X2nd,dk ,B̂⋃ B̄\{k}
b for all b ∈ B̂.

When k is a leading requester of the user b who does not request, i.e., k ∈ U ′b, it can de-

code any required sub-piece Wdk ,B̂∪P k ,b, where P k ⊆ R \ {k}, |P k| = i, from X2nd,dk ,B̂⋃P k

b ,
which is broadcast from user b by performing

Wdk ,B̂∪P k ,b =

⊕
x∈P k

Wdx ,B̂∪P k∪{k}\{x},b

⊕X2nd,dk ,B̂⋃P k

b ,

as can be seen from (17).
When k /∈ U ′b, it is less straightforward for the non-leading requester k to decode

the needed sub-files, because not all of the corresponding codewords X2nd,dk ,B̂⋃P k

b for its
required sub-pieces Wdk ,B̂∪P k ,b are directly broadcast from user b. However, Requester k
can generate these codewords simply based on the codewords received. To show this, we
reformulate the following Lemma 2 from [11] (Lemma 1), which is applied to the codewords
broadcast by the user b with the partition integer i.

Lemma 2. Given an integer t, a partition integer i, a subset B̂ ⊆ K \R of size t− i, a user b ∈ B̂,
and a set of leading requesters U ′b, for any subset Cb ⊆ R that includes U ′b, let V b

F be family of
all subsets V b of Cb such that each requested file in DR is requested by exactly one user in V b.
The following equation holds:

⊕
Vb∈Vb

F

X2nd,dk ,B̂⋃ {Cb\Vb}\{k}
b = 0, (20)

if each X2nd,dk ,B̂⋃ {Cb\Vb}\{k}
b is defined in (17).

Proof. As we mentioned in Remark 3, for the sub-files needed in the second category, when
the parameters t and i are fixed, the proposed scheme, in fact, corresponds to (t− i) shared-
link schemes. Thus, Ref. [11] (Lemma 1) can directly be applied to each b-th shared-link
scheme.

Let us now consider any subset B̄ of i + 1 non-leading requesters of user b such that
B̄ ∩ U ′b = ∅. Using (20), the following equation can be derived:

X2nd,dk ,B̂⋃ B̄\{k}
b =

⊕
Vb∈Vb

F\{U ′b}
X2nd,dk ,B̂⋃ {Cb\Vb}\{k}

b , (21)

where Cb = B′i ∪ U ′b. Equation (21) shows that the codeword X2nd,dk ,B̂⋃ B̄\{k}
b can be

directly computed from the broadcast codewords transmitted to all the leading requesters
of b, because all codewords on the RHS of (21) are directly broadcasted by user b. Hence,

each requester k can obtain the value X2nd,dk ,B̂⋃ B̄\{k}
b for any subset B̄ of i + 1 requesters

and can decode its demanded sub-pieces as discussed before. Hence, Lemma 1 is proved.

(iii) Lastly, we consider the sub-files in the third category. Since all the sub-files needed for
delivery are only cached in the requesters, the transmission will happen only among
requesters. This is equivalent to the D2D coded caching model considered in [9],
and we adopt its achievable scheme with uncoded cache placement and one-shot
delivery, which we call the Yapar–Wan–Schaefer–Caire (YWSC) scheme.

More specifically, during the delivery phase, each sub-file is divided into t equal-length
disjoint sub-pieces of F

t(K
t )

bits, which are denoted by Wn,T ,i, i ∈ T . Further, each user i
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in requester set R, where |R| = r, selects an arbitrary subset of Ne(DR\{i}) users from
R \ {i}, denoted by U i = {ui

1, ..., ui
Ne(DR\{i})

}, which request Ne(DR\{i})) distinct files and

are referred to as leading demanders of user i. Then, for all subsets E i ⊆ R \ {i} of t users,
each user i transmits

X3rd
i = {Yi

E i}E i∩U i ̸=∅, (22)

where

Yi
E i =

⊕
k∈E i

Wdk ,{E i∪{i}}\{k},i. (23)

In other words, since all users k ∈ E i shall retrieve the needed sub-pieces Wdk ,{E i∪{i}}\{k},i
from the transmissions of User i, using the idea of leaders from [11], each user i only needs
to transmit in sequence the codewords Yi

E i for all subsets E i such that E i ∩U i ̸= ∅, i.e., X3rd
i .

As a result, when User k is a leading demander for User i, i.e., k ∈ U i, it can decode
any needed sub-piece Wdk ,Gk∪{i},i, where Gk ⊆ R \ {i, k}, |Gk| = t− 1, from Yi

Gk∪{k}, which
is transmitted from User i by performing

Wdk ,Gk∪{i},i =

⊕
x∈Gk

Wdx ,{Gk∪{i,k}}\{x},i

⊕Yi
Gk∪{k}.

When User k is not a leading demander for User i, using the equation⊕
V i∈V i

F

Yi
C i\V i = 0,

proved in [9] (Lemma 1), where subset C i ⊆ R \ {i} includes U i and V i
F denotes the family

of all subsets V i of C i such that each requested file in DR\{i} is requested by exactly one
user in V i, each user k can decode its requested sub-piece through obtaining the value Yi

E i ,
for any subset E i of t users such that E i ∩ U i = ∅, from the broadcast codewords by the
following equation:

Yi
E i =

⊕
V i∈V i

F\{U i}
Yi
C i\V i , (24)

where C i = E i ∪ U i. To sum up, for each i ∈ R \ {k}, User k decodes its requested sub-
pieces by following either one of the strategies above, depending on whether it is a leading
demander of User i or not.

For each user i ∈ R, the size of the transmitted signal amounts to (r−1
t )− (

r−1−Ne(DR\{i})
t )

times the size of a sub-piece. Hence, the rate of transmitting all the bits for the sub-files in
the third category is

R3rd =
r(r−1

t )−∑i∈R (
r−1−Ne(DR\{i})

t )

t(K
t )

, (25)

In other words, the equivalence of the above scheme and that of [9] can be seen in the
following remark:

Remark 4. For the sub-files in the third category, the proposed scheme is equivalent to that of [9].
The central server has a library of N files,

{
Wn,T

∣∣T ⊂ R, |T | = t
}

, and each file has F̃ ≜ (r
t)

F
(K

t )

bits. There are r D2D users in the system, each requesting a single file. Based on the MAN uncoded
symmetric placement scheme adopted, the placement is the same as [9], where each sub-file has the
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size of F
(K

t )
, which is equal to F̃

(r
t)

, and sub-file Wn,T is placed in users in T . Thus, each user caches a

total of N(r−1
t−1) sub-files. Hence, each user has a memory of

M̃ = N
(

r− 1
t− 1

)
F
(K

t )

bits, and we can check that

rM̃
NF̃

= t,

just as in [9]. Hence, for the sub-files in the third category, the equivalence between the proposed
cache placement scheme and that of [9] is established. In other words, corresponding to the parameters
(F, N, K, MF, t, and Ne(d)) in [9], which denote the file size, number of files, number of users,
cache size of each user, the parameter defined as t = KMF

NF , and the number of users requesting
different files, respectively, we have

(
F̃, N, r, M̃, t, and Ne(DR)

)
in our problem.

Summing up the three sub-schemes mentioned above, every requester can decode
its requested file. Meanwhile, combining the rate from (16), (18), and (25), the total rate of
this delivery scheme is RDR

req-rob = R1st + R2nd + R3rd, which results in the rate stated in (14).
The description of this subsection with the explicit characterization of the maximum worst-
case delivery rate in Section 4.2, directly proves Theorem 2. More specifically, since the
proposed scheme is symmetric with respect to the users, anyR with |R| = r will offer the
same average delivery rate RRave,req-rob and the same worst-case delivery rate RRworst,req-rob.

Remark 5. The difference in transmitting the sub-files in the three categories is that the transmis-
sions of the sub-files in the first and third categories both adopt the one-shot delivery scheme in [9],
while the transmission of the sub-files in the second category adopts the common demands scheme
in [11]. Moreover, the transmission of the sub-files in the first category is in uncoded form, while the
transmissions of the sub-files in the second and third categories are both with coded multi-casting
opportunity.

We formally write the three-category-based scheme in Algorithm 2.

Algorithm 2 Three-category-based Scheme (N, K, M)

procedure PLACEMENT(W1, ..., WN)
1: Apply Algorithm 1 MAN Uncoded Symmetric Placement Scheme (N, K, M, W[N])

end procedure
procedure DELIVERY(R, DR)

2: r ← |DR|
3: t← KM/N
4: Ne(DR)← the number of distinct elements in DR
5: for k ∈ [K] \ R do
6: U ′k ← {u′k1 , ..., u′kNe(DR)

}
7: end for
8: (i) For sub-files in the first category:
9: T ← {T ⊆ [K] \ R : |T | = t}

10: for T ∈ T do
11: for n ∈ [N] do
12: Divide sub-file Wn,T into t disjoint sub-pieces (Wn,T ,a : a ∈ T ) with equal size
13: end for
14: for a ∈ T do
15: for s ∈ U ′a do
16: User a transmit X1st,ds ,T

a = Wds ,T ,a
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17: end for
18: end for
19: end for
20: (ii) For sub-files in the second category:
21: for ∈ [max{1, t + r− K}, min{t− 1, r− 1}] do
22: B← {B̂ ⊆ [K] \ R : |B̂| = t− i}
23: for B̂ ∈ B do
24: for B ⊂ R : |B| = i do
25: for n ∈ [N] do
26: Divide sub-file Wn,B∪B̂ into t− i disjoint sub-pieces (Wn,B∪B̂,b : b ∈ B̂) with

equal size
27: end for
28: end for
29: for b ∈ B̂ do
30: for B̄ ⊆ R : |B̄| = i + 1 do
31: if B̄ ∩ U ′b == ∅ then
32: continue
33: else
34: User b transmits X2nd,dx ,B̂⋃ B̄\{x}

b =
⊕

x∈B̄
Wdx ,B̂∪B̄\{x},b

35: end if
36: end for
37: end for
38: end for
39: end for
40: (iii) For sub-files in the third category:
41: G← {G ⊆ [K] : |G| = t}
42: for n ∈ [N] do
43: for G ∈ G do
44: Divide sub-file Wn,G into t disjoint sub-pieces (Wn,G,i : i ∈ G) with equal size
45: end for
46: end for
47: for i ∈ R do
48: Ne(DR\{i})← the number of distinct elements in DR\{i}
49: U i ← {ui

1, ..., ui
Ne(DR\{i})

}
50: for E i ⊆ R \ {i} : |E i| = t users do
51: if E i ∩ U i == ∅ then
52: continue
53: else
54: User i transmits Yi

E i =
⊕

k∈E i
Wdk ,{E i∪{i}}\{k},i

55: end if
56: end for
57: end for
end procedure

4.2. The Maximum Worst-Case Delivery Rate

In this subsection, we characterize the performance of the proposed three-category-
based scheme for the maximum worst-case delivery rate. The characterization is based on
the observation that the binomial coefficient (n

m) demonstrates a strictly ascending pattern
with respect to n.

For the request-robust D2D coded caching problem, when N, K, M, r, and R do not
change, since the upper bound rate RDR

req-rob from (14) decreases as Ne(DR) decreases,
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the upper bound rate for the maximum worst-case delivery rate is the one at the maximum
value of Ne(DR), i.e.,

Ne(DR) = min{r, N}. (26)

Then, for r ≥ 2N, each file can be requested by at least two requesters, which leads
to Ne(DR\{i}), ∀i ∈ R having the maximum value of N. Hence, this case maximizes the

upper bound rate RDR
req-rob.

For r < 2N, a requester i may be the only user requesting a file or not, which leads
to Ne(DR\{i}) = Ne(DR)− 1 and Ne(DR\{i}) = Ne(DR), respectively. Hence, due to (26),

for r ≤ N, we have (
r−1−Ne(DR\{i})

t ) = 0, which proves the case where r ≤ N.
For N < r < 2N, we have Ne(DR) = N and then obtain that each file cannot be

requested by more than two requesters. Thus, due to a total of r requesters, there are 2N− r
requesters, each of which are the only users requesting a file while each of the remaining
2(r− N) requesters are not. Thus, we prove the case where N < r < 2N.

4.3. Example

To aid in better understanding, we provide an example to illustrate the proposed
scheme in Section 4.1.

Let us consider a case where N = 2, K = 6, and M = 2/3. Hence, t = KM/N = 2.
In the placement phase, each file is divided into (6

2) = 15 sub-files, and each sub-file’s index
is in T, where T is the family of all sets T such that T ⊂ [6], |T | = 2. The user k ∈ [6]
caches the following sub-files for each n ∈ {1, 2}:

Zk = {Wn,T |T ∈ T, k ∈ T }.

In the delivery phase, without a loss of generality, we consider only Users 1, 2, 3, and 4
as requesters, each requesting a single file, i.e., R = {1, 2, 3, 4}, and the request vector is
D{1,2,3,4} = (1, 2, 1, 1). Notice that r = 4 and Ne(D{1,2,3,4}) = 2. Requesters 1, 2, 3, and 4
need the following missing sub-files:

W1 \ Z1 = {W1,{2,3}, W1,{2,4}, W1,{2,5}, W1,{2,6}, W1,{3,4}, W1,{3,5}, W1,{3,6}, W1,{4,5}, W1,{4,6}, W1,{5,6}},
W2 \ Z2 = {W2,{1,3}, W2,{1,4}, W2,{1,5}, W2,{1,6}, W2,{3,4}, W2,{3,5}, W2,{3,6}, W2,{4,5}, W2,{4,6}, W2,{5,6}},
W1 \ Z3 = {W1,{1,2}, W1,{1,4}, W1,{1,5}, W1,{1,6}, W1,{2,4}, W1,{2,5}, W1,{2,6}, W1,{4,5}, W1,{4,6}, W1,{5,6}},
W1 \ Z4 = {W1,{1,2}, W1,{1,3}, W1,{1,5}, W1,{1,6}, W1,{2,3}, W1,{2,5}, W1,{2,6}, W1,{3,5}, W1,{3,6}, W1,{5,6}}.

In Step (a), determining the leading requesters without a loss of generality, we assume
that User 5 picks Users 1and 2 and User 6 picks Users 2and 3 as the leading requesters, i.e.,
U ′5 = {1, 2},U ′6 = {2, 3}.

In Step (b), we split the sub-files into three categories. More specifically, Wn,{5,6},
n ∈ [N] belong to the first category; Wn,{1,5}, Wn,{1,6}, Wn,{2,5}, Wn,{2,6}, Wn,{3,5}, Wn,{3,6},
Wn,{4,5}, Wn,{4,6}, n ∈ [N] belong to the second category; and Wn,{1,2}, Wn,{1,3}, Wn,{1,4},
Wn,{2,3}, Wn,{2,4}, Wn,{3,4} belong to the third category.

In Step (c) of delivering signals, for the sub-files belonging to the first category, i.e., sub-
files only cached by Users 5 and 6, after splitting these sub-files into two equal-length
sub-pieces, from (15), we know that User 5 transmits

W1,{5,6},5, W2,{5,6},5,

and User 6 transmits

W1,{5,6},6, W2,{5,6},6,
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which are all directly needed by the requesters. The rate R1st = 1/30× 2× 2 = 2/15, which
coincides with (16).

For the sub-files in the second category, since i must satisfy i ∈ [max{1, t + r −
K}, min{t− 1, r− 1}], in this example, we only need to consider i = 1, which means that
t− i = 1. The fact that t− i = 1 means that none of these sub-files need to be further split.
Take, for example, User 1 inR; it requires the sub-file W1,{2,5}. Thus, T = {2, 5} = B⋃ B̂,
where B = {2} and B̂ = {5}. Consider the set B̄ = {1}⋃B = {1, 2} of i + 1 = 2 users.
Following from (17), if User {5} transmits

W1,{2,5} ⊕W2,{1,5},

both Users 1 and 2 will be able to obtain the sub-file they want, i.e., W1,{2,5} and W2,{1,5},
respectively. Similarly, we may consider all four users inR and the sub-files that each of
them need. We find that if User {5} transmits

W1,{2,5} ⊕W2,{1,5}, W1,{3,5} ⊕W1,{1,5},

W1,{4,5} ⊕W1,{1,5}, W2,{3,5} ⊕W1,{2,5},

W2,{4,5} ⊕W1,{2,5}, W1,{4,5} ⊕W1,{3,5},

and User {6} transmits

W1,{2,6} ⊕W2,{1,6}, W1,{3,6} ⊕W1,{1,6},

W1,{4,6} ⊕W1,{1,6}, W2,{3,6} ⊕W1,{2,6},

W2,{4,6} ⊕W1,{2,6}, W1,{4,6} ⊕W1,{3,6},

all the requesting users will be able to decode the necessary sub-files of the second category.
However, recall that U ′5 = {1, 2} and U ′6 = {2, 3}. Hence, the signal W1,{4,5} ⊕W1,{3,5}
corresponds to B̄ = {3, 4, 5}, which has zero intersection with U ′5. Hence, W1,{4,5} ⊕
W1,{3,5} need not be transmitted and can be calculated due to the fact that

(W1,{3,5} ⊕W1,{1,5})⊕ (W1,{4,5} ⊕W1,{1,5})⊕ (W1,{4,5} ⊕W1,{3,5}) = 0.

Similarly, W1,{4,6} ⊕W1,{1,6} need not be transmitted due to the fact that

(W1,{3,6} ⊕W1,{1,6})⊕ (W1,{4,6} ⊕W1,{3,6})⊕ (W1,{4,6} ⊕W1,{1,6}) = 0.

Hence, the rate R2nd = 1/15× 5× 2 = 2/3, which coincides with (18).
For the sub-files in the third category, User 1 has R \ {1} = {2, 3, 4}, which means

Ne(DR\{1}) = 2. Suppose User 1 picks the leading demanders as U 1 = {2, 4}. Simi-
larly, User 2 has R \ {2} = {1, 3, 4}, which means Ne(DR\{1}) = 1. Suppose User 2
picks the leading demanders as U 2 = {3}. User 3 has R \ {3} = {1, 2, 4}, which means
Ne(DR\{1}) = 2. Suppose User 3 picks the leading demanders as U 3 = {1, 2}, and User 4
has R \ {4} = {1, 2, 3}, which means Ne(DR\{1}) = 2. Suppose User 4 picks the leading
demanders as U 1 = {2, 3}.

Since t = 2, we split the sub-files in the third category into two equal-length sub-pieces.
For User 1, E1 is of size t = 2 and is a subset of R \ {1} = {2, 3, 4}. Hence, possible E1s
can be {2, 3}, {2, 4}, and {3, 4}, which all satisfy the condition of non-zero intersection with
U 1 = {2, 4}. Hence, from (22) and (23), User 1 transmits

Y1
{2,3} = W2,{1,3},1 ⊕W1,{1,2},1, Y1

{2,4} = W2,{1,4},1 ⊕W1,{1,2},1, Y1
{3,4} = W1,{1,4},1 ⊕W1,{1,3},1.

Similarly, User 3 transmits

Y3
{1,2} = W1,{2,3},3 ⊕W2,{1,3},3, Y3

{1,4} = W1,{3,4},3 ⊕W1,{1,3},3, Y3
{2,4} = W2,{3,4},3 ⊕W1,{2,3},3,
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and User 4 transmits

Y4
{1,2} = W1,{2,4},4 ⊕W2,{1,4},4, Y4

{1,3} = W1,{3,4},4 ⊕W1,{1,4},4, Y4
{2,3} = W2,{3,4},4 ⊕W1,{2,4},4.

As for User 2, E2 is of size t = 2 and is a subset ofR \ {2} = {1, 3, 4}. Hence, possible E2s
can be {1, 3}, {1, 4}, and {3, 4}. Recall that U 2 = {3}; hence, only {1, 3} and {3, 4} satisfy
the condition of non-zero intersection with U 2 = {3}. Hence, from (22) and (23), User 2
transmits

Y2
{1,3} = W1,{2,3},2 ⊕W1,{1,2},2, Y2

{3,4} = W1,{2,4},2 ⊕W1,{2,3},2.

The signal Y2
{1,4} = W1,{2,4},2 ⊕W1,{1,2},2 does not need to be transmitted and can be

calculated since Y2
{1,3} ⊕ Y2

{3,4} ⊕ Y2
{1,4} = 0 (cf. (24)). Hence, the rate R3rd = 1/30× (3×

3 + 2) = 11/30, which coincides with (25).
Thus, the total delivery rate achieved by the proposed scheme for the case

R = {1, 2, 3, 4} and the request vector is D{1,2,3,4} = (1, 2, 1, 1) is 2
15 + 2

3 + 11
30 = 7

6 . In
this case, if we directly use the YWSC scheme [9] by assigning Users 5 and 6 a demand
that is the same as Users 1, 3, and 4, i.e., all six users make file requests, and the demand
vector is d = {1, 2, 1, 1, 1, 1}, then according to [9] (Equation (14)), the delivery rate is
6×10−(3×5+6)

30 = 13
10 . If we assign Users 5 and 6 with some other demands, the delivery

rate will be even higher. Hence, we see that for the request-robust D2D coded caching
problem, the proposed scheme performs better than directly applying the YWSC scheme
for this example.

The reason why the proposed three-category-based scheme has better performance is
that directly applying the YWSC scheme may contain information that is useful for users
who do not request files, which is useless for requesters and difficult to be excluded. We
provide more details in the following remarks:

Remark 6. When each user requests a single file (r = K), our proposed scheme corresponds to the
one originally presented in [9]. The improvement in our scheme is that when r < K, we take full
advantage of the users who do not request files so that the broadcast codewords are only useful to the
requesters. Moreover, through the numerical comparison in Section 5, we find that letting the users
who do not request files broadcast pieces of sub-files in the first and second categories, i.e., sub-files
in {Wn,A|A ∋ {k}, k ∈ K \R}, incurs a much smaller rate than letting all the users participate
in broadcasting the required pieces of sub-files in all three categories.

Remark 7. The proposed scheme is symmetric in the placement phase. As mentioned in [9] (Remark
6), under the constraints of uncoded cache placement, the shared link models in [11,27] showed
the optimality of symmetry in the placement phase [3]. This symmetry happens in the placement
phase before the requesters are identified and reveal their demands, and any asymmetry in the
placement will certainly not result in a better worst-case rate. However, due to the file-categorization
step (i.e., Step (b)), the delivery phase of the proposed scheme is asymmetric, while if the value of
Ne(DR\{i}) is the same for every i ∈ R, the delivery phase of directly applying the YWSC scheme
(i.e., the adapted YWSC scheme (see Appendix A for the specific scheme)) is symmetric. Interestingly,
the asymmetric delivery phase of the proposed scheme outperforms the possibly symmetric delivery
phase of directly applying the YWSC scheme both for the maximum average and worst-case delivery
rate in all cases cited, as shown in Section 5.

Remark 8. The delivery phase of the proposed scheme is actually one-shot, which is defined in [9]
as meaning that each user k can recover the i-th needed bit denoted as Wk

dk
(i) from its own cache

and the transmission of a single other user whose index is jk(i), i.e., H(Wk
dk
(i)|Xjk(i), Zk) = 0

holds. One-shot delivery allows all users to participate in the transmission without causing users to
repeatedly broadcast the same codeword. However, it is difficult to confirm whether the proposed
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scheme is optimal under the constraint of uncoded cache placement and one-shot delivery since the
delivery scheme as mentioned in Remark 7 is asymmetric.

Remark 9. The rate achieved by the three-category-based scheme from (14) outperforms the rate
achieved by the adapted YWSC scheme from (A1) in some specific cases. For example, for r = 2 and
the maximum worst-case delivery rate, when t ∈ [2, K− 1], r ≤ N, we have

RDR
adapted-YWSC|r=2,t∈[2,K−1],r≤N =

K(K−1
t )− (K− 2)(K−2−1

t )− 2(K−2
t )

t(K
t )

(27)

=
(2K− t− 1)(K−2

t−1 )

t(K
t )

>
(2K− t− 2)(K−2

t−1 )

t(K
t )

=
(K−2

t−1 )(
2

1+1)

(K
t )

+
2(K−2

t )

(K
t )

= RDR
req-rob|r=2,t∈[2,K−1],r≤N , (28)

where (27) is from (8) and (28) is from (11). Meanwhile, when t ∈ [2, K− 1], r > N, i.e., N = 1,
we have

RDR
adapted-YWSC|r=2,t∈[2,K−1],N=1 =

K
[
(K−1

t )− (K−2
t )
]

t(K
t )

(29)

=
1

(K
t )
· K(K− 2)!

t!(K− t− 1)!

>
1

(K
t )
· (K− 1)!

t!(K− t− 1)!

=
(K−2

t−1 )(
2

1+1)

(K
t )

+
(K−2

t )

(K
t )

= RDR
req-rob|r=2,t∈[2,K−1],N=1, (30)

where (29) is from (8) and (30) is from (11). Moreover, t ≥ K, i.e., M ≥ N, is trivial, and when
t = 1, the three-category-based scheme and the adapted YWSC have the same performance. Hence,
for r = 2 and the maximum worst-case delivery rate, the three-category-based scheme outperforms
the adapted YWSC scheme for all values of K, N, t.

5. Numerical Evaluations

In this section, we compare the rate–memory tradeoff of the three-category-based
scheme, the adapted YWSC scheme, and the achievable schemes in [8], adapted to the
request-robust D2D coded caching scenario. The adaptation is performed by assigning
the users, who do not request, a demand that is most requested by the requesters. We
also plot the converse bounds on the optimal average and worst-case delivery rate of the
request-robust D2D coded caching problem in Theorem 3.

We consider the cases where the value of K is from 1 to 60. For a fixed K, we consider
that the value of N is from 1 to K. The performance metrics are the maximum average
delivery rate with respect to the uniform demand and the maximum worst-case delivery
rate, i.e., Rr

ave,req-rob and Rr
worst,req-rob. We find that, in these cases, our proposed three-

category-based scheme outperforms the adapted YWSC scheme and the adapted schemes
of [8] for all possible r.
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Take the example where N = 10, K = 30. As shown in Figure 2, the performance of
the proposed scheme is given by the red solid line when r = 20 and the purple solid line
with dots when r = 5. These lines are plotted according to the right-hand side (RHS) of
(9) and (10). The performance of the adapted YWSC scheme is given by a blue dash–dot
line when r = 20 and a cyan dash–dot line with dots when r = 5. These lines are plotted
according to the RHS of (6) and (7). The proposed converse is given by the black dotted line
when r = 20 and the orange dotted line with asterisks when r = 5. Since the achievable rate
in [8] is independent of the demand, the performance of the adapted scheme from [8] does
not change with the value of r and is given by the green dashed line. For the maximum
worst-case rate, we also provide the lower bound in [8] adapted to the request-robust D2D
coded caching scenario with the brown dashed line with dots. It can be seen that our
proposed scheme outperforms the adapted YWSC scheme and adapted scheme of [8] in
this case; meanwhile, the proposed converse is rather tight compared to the adapted lower
bound in [8].
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Figure 2. Consider the request-robust D2D coded caching problem from Section 2.1 where
N = 10 and K = 30. The figure above is for the tradeoff between memory size and the maxi-
mum worst-case delivery rate for different requester numbers. The figure below shows the tradeoff
between memory size and the maximum average delivery rate under uniform demand for different
requester numbers. The scheme and converse proposed by Ji et al. [8] are both adapted to this
request-robust D2D scenario.
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6. Conclusions

In this paper, we propose a new problem called request-robust D2D coded caching,
where in the delivery phase, though all users in the placement phase are still present, some
of them do not request any files. We presented an achievable scheme for this problem based
on uncoded cache placement and exploiting common demands and one-shot delivery.
The caching strategy is the same as that proposed by Maddah-Ali and Niesen, while
the delivery strategy divides the sub-files into three categories, and different delivery
signals are designed for each category. We also characterized information-theoretic lower
bounds for the request-robust D2D coded caching problem under the constraint of uncoded
cache placement. The lower bounds are both for the maximum average delivery rate
under uniform demand and the maximum worst-case delivery rate. We adapt the scheme
proposed by Yapar et al. for uncoded cache placement and one-shot delivery to the request-
robust D2D coded caching problem. The adaptation is performed by assigning the users,
who do not request, a demand that is the most requested by the requesters. The performance
of the adapted scheme is proved to be order optimal within a factor of two under uncoded
cache placement and within a factor of four in general. Finally, by numerical evaluation,
we show that the proposed scheme outperforms the known D2D coded caching schemes
applied to the request-robust scenario.
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Appendix A. Adapted Yapar–Wan–Schaefer–Caire Scheme, i.e., Proof of Theorem 1

In this section, we present another achievable scheme that adapts the YWSC scheme
from [9] for the request-robust D2D coded caching problem. The scheme achieves the rate
stated in Theorem 1 .

We will first provide the general achievable scheme, which is based on the uncoded
cache placement and exploiting one-shot delivery [9]. Then, we will characterize the perfor-
mance of the proposed scheme and show that for any requester setR and corresponding
request vector DR, the adapted YWSC scheme achieves the rate

RDR
adapted-YWSC =

K(K−1
t )−∑K

i=1 (
K−1−Ne(D′K\{i})

t
)− f

[
(K−r

t )− (K−r−1
t )

]
t(K

t )
, (A1)

where D′K is the request vector of all the users after adaption, and f is an integer equal
to one if and only if each requester demands a distinct file; otherwise, f = 0. The rate
RDR

adapted-YWSC with the explicit characterization of the maximum worst-case delivery rate
in Appendix A.2 immediately proves Theorem 1. Finally, we will provide an example to
aid in a better understanding of the adapted YWSC scheme.
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Appendix A.1. General Scheme

Similar to Section 4.1, for the placement phase, we still useMMAN described in Definition 1.
In the following, we restrict to integer values of t ∈ [1 : K]. For cache size M where
t = KM/N is not an integer, memory-sharing will be performed [3,8].

For the delivery phase, let the set of requesters beR with size r. The r requesters each
demand a single file. We find that the YWSC scheme from [9] is highly adaptable for the
request-robust D2D coded caching scenario. The adaptation is performed by assigning the
users, who do not request, a demand that is the most requested by the requesters. If there
are multiple demands that are the most requested, the users, who do not request, would
be assigned one of the demands. Recall that we denote the adapted request vector as D′K,
and the adapted request vector of users K \ {k} as D′K\{k}. For example, if K = N = 4,
R = {1, 2}, D{1,2} = {1, 4}, we have D′{1,2,3,4} = {1, 4, 1, 1} or D′{1,2,3,4} = {1, 4, 4, 4}.
Obviously, Ne(D′K) = Ne(DR) and Ne(D′K\{k}) ≥ Ne(DR\{k}) for each k ∈ R.

Next, to adapt the YWSC scheme for the system model, the delivery strategy is divided
into the following steps:

(a) Determining the leading demanders: Recall that each sub-file is denoted as Wn,T and
is cached by only users in T . Each sub-file is divided into t equal-length disjoint sub-
pieces of F

t(K
t )

bits, which are denoted by Wn,T ,i, i ∈ T . Further, each user i selects an ar-

bitrary subset of Ne(D′K\{i}) users from K \ {i}, denoted by U i = {ui
1, ..., ui

Ne(D′K\{i})
},

which request Ne(D′K\{i})) distinct files and are referred to as leading demanders of
user i.

Without a loss of generality, we assume that the leading demanders of each user i are
determined from the requesters as much as possible and are denoted by Ū i. For example,
for K = N = 3,R = {1, 2}, D{1,2} = {1, 3}, D′{1,2,3} = {1, 3, 1}, the leading demander of

User 2 in the assumption is Ū 2 = {1} and should not be {3}, while the leading demander
of User 1 is Ū 1 = {2, 3}.
(b) Pre-transmitting signals: Then, for all subset E i ⊆ K \ {i} of t users, each user i

prepares for transmitting:

XYWSC
i = {Yi

E i}E i∩U i ̸=∅, (A2)

where

Yi
E i =

⊕
k∈E i

Wdk ,{E i∪{i}}\{k},i, (A3)

which is the same as (23). In other words, since all users k ∈ E i shall retrieve the
needed sub-pieces Wdk ,{E i∪{i}}\{k},i from the transmissions of User i, using the idea of
leaders from [11], each user i only need to transmit in sequence the codewords Yi

E i for
all subsets E i such that E i ∩ U i ̸= ∅, i.e., XYWSC

i .
(c) Removing unwanted codewords: We notice that the codewords that are only useful

for the users, who do not request, are unwanted codewords and do not need to be
transmitted. Next, we will remove the unwanted codewords.

Recall that each user i only prepares for transmitting the codewords Yi
E i where E i ∩

Ū i ̸= ∅. For user i, when Ū i ∩ K \ R = ∅, the signal XYWSC
i does not have unwanted

codewords. When Ū i ∩K \R ̸= ∅, the signal XYWSC
i may have the codewords Yi

E i where
E i ⊆ K\R, which are only useful for the users, who do not request, and should be removed.
Obviously, if and only if each requester demands a distinct file, we have Ū i ∩K \R ̸= ∅
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for only one requester i in R. Hence, for all subsets E i ⊆ K \ {i} of t users, each user i
transmits

Xadapted-YWSC
i = {Yi

E i}E i∩Ū i ̸=∅,E i⊈K\R,

where Yi
E i is defined in (A3).

As a result, when Requester k is a leading demander for User i, i.e., k ∈ U i, it can
decode any needed sub-piece Wdk ,Gk∪{i},i, where Gk ⊆ K \ {i, k}, |Gk| = t− 1, from Yi

Gk∪{k},
which is transmitted from User i, by performing

Wdk ,Gk∪{i},i =

⊕
x∈Gk

Wdx ,{Gk∪{i,k}}\{x},i

⊕Yi
Gk∪{k}.

When Requester k is not a leading demander for User i, using the equation⊕
V i∈V i

F

Yi
C i\V i = 0,

proved in [9] (Lemma 1), where subset C i ⊆ K \ {i} includes Ū i and V i
F denotes the family

of all subsets V i of C i such that each requested file in D′K\{i} is requested by exactly one

user in V i, each user k can decode its requested sub-piece through obtaining the value Yi
E i

for any subset E i of t users such that E i ∩ Ū i = ∅ from the broadcast codewords by the
following equation:

Yi
E i =

⊕
V i∈V i

F\{Ū i}

Yi
C i\V i ,

where C i = E i ∪ Ū i. To sum up, for each i ∈ K \ {k}, Requester k decodes its requested
sub-pieces by following either one of the strategies above depending on whether it is a
leading demander of User i or not.

For each user i ∈ K, the size of the transmitted signal amounts to (K−1
t )− (

K−1−Ne(D′K\{i})
t

)

times the size of a sub-piece. Meanwhile, if we have Ū i ∩K \R ̸= ∅ for only one requester
i inR, the size of the removed unwanted codewords amounts to (K−r

t )− (K−r−1
t ) times the

size of a sub-piece. Hence, the rate of transmitting total bits coincides (A1).
For the convenience of understanding, we give the algorithm of the adapted YWSC

scheme in Algorithm A1.

Algorithm A1 Adapted YWSC Scheme (N, K, M)

procedure PLACEMENT(W1, ..., WN)
1: Apply Algorithm 1 MAN Uncoded Symmetric Placement Scheme(N, K, M, W[N])

end procedure
procedure DELIVERY(R, DR)

2: r ← |DR|
3: t← KM/N
4: Assign the users, who do not request, a demand that is the most requested by the

requesters and has D′K ← DR
5: G← {G ⊆ [K] : |G| = t}
6: for n ∈ [N] do
7: for G ∈ G do
8: Divide sub-file Wn,G into t disjoint sub-pieces (Wn,G,i : i ∈ G) with equal size
9: end for

10: end for
11: for i ∈ K do
12: Ne(D′K\{i})← the number of distinct elements in D′K\{i}
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13: Ū i ← {ui
1, ..., ui

Ne(D′K\{i})
} fromR as much as possible

14: for E i ⊆ K \ {i} : |E i| = t users do
15: if E i ∩ Ū i == ∅ then
16: continue
17: else if E i ⊆ K \R then
18: continue
19: else
20: User i transmits Yi

E i =
⊕

k∈E i
Wdk ,{E i∪{i}}\{k},i

21: end if
22: end for
23: end for
end procedure

Appendix A.2. The Maximum Worst-Case Delivery Rate

In this section, we characterize the performance of the adapted YWSC scheme for the
maximum worst-case delivery rate. The characterization is based on the observation that
the binomial coefficient (n

m) demonstrates a strictly ascending pattern with respect to n.
Again, the adaptation is performed by assigning the users, who do not request, a

demand that is the most requested by the requesters, and we have Ne(D′K) = Ne(DR).
Meanwhile, f from (A1) is an integer equal to one if and only if each requester demands
a distinct file, i.e., Ne(DR) = r; otherwise, f = 0. Hence, for the request-robust D2D
coded caching problem, when N, K, M, r, and R do not change, since the upper bound
rate RDR

adapted-YWSC from (A1) decreases as Ne(D′K) decreases, the upper bound rate for
the maximum worst-case delivery rate is the one at the maximum value of Ne(D′K), i.e.,
Ne(D′K) = min{r, N}.

Then, for r ≥ 2N, each file can be requested by at least two users, which leads to
Ne(D′K\{k}), ∀k ∈ K having the maximum value of N. Meanwhile, in this case, f = 0.

Hence, this case maximizes the upper bound rate RDR
adapted-YWSC.

For r < 2N, User k may be the only user requesting a file or not, which leads to
Ne(D′K\{k}) = Ne(D′K)− 1 and Ne(D′K\{k}) = Ne(D′K), respectively. Due to the adaption,
for r ≤ N, there are r− 1 users, each of which are the only users requesting a file while
each of the remaining K− r + 1 users are not. Meanwhile, in the case r ≤ N, Ne(D′K) = r
and f = 1. Thus, we prove the case where r ≤ N.

For N < r < 2N, we have Ne(D′K) = N. Then, for DR, we obtain that each file
cannot be requested by more than two requesters. Thus, due to a total of K users, there are
2N − r users, each of which are the only users requesting a file while each of the remaining
K + r− 2N users are not. Meanwhile, in this case, f = 0. Thus, we prove the case where
N < r < 2N.

Appendix A.3. Example

To aid in better understanding, we provide an example to illustrate the adapted YWSC
scheme in Appendix A.1.

Let us consider a case where N = 2, K = 4, and M = 1. Hence, t = KM/N = 2. In the
placement phase, each file is divided into (4

2) = 6 sub-files, and each sub-file’s index is in T,
where T is the family of all sets T such that T ⊂ [4], |T | = 2. The user k ∈ [6] caches the
following sub-files for each n ∈ {1, 2}:

Zk = {Wn,T |T ∈ T, k ∈ T }.

In the delivery phase, without a loss of generality, we only consider Users 1 and 2,
as requesters, each requesting a single file, i.e., R = {1, 2}, and the request vector is
D{1,2} = (1, 2). Hence, we consider that the request vector after adaption is



Entropy 2024, 26, 250 25 of 33

D′{1,2,3,4} = (1, 2, 1, 1). Notice that r = 4 and Ne(D′{1,2,3,4}) = 2. Requesters 1 and 2
need the following missing sub-files:

W1 \ Z1 = {W1,{2,3}, W1,{2,4}, W1,{3,4}},
W2 \ Z2 = {W2,{1,3}, W2,{1,4}, W2,{3,4}}.

In Step (a), since t = 2, we split the sub-files into two equal-length sub-pieces. Further,
determining the leading demanders from the requesters as much as possible, without a loss
of generality, we assume that User 1 picks Users 1 and 3, User 2 picks User 1, User 3 picks
Users 1 and 2, and User 4 picks Users 1 and 2 as the leading demanders, i.e., Ū 1 = {2, 3},
Ū 2 = {1}, Ū 3 = {1, 2}, and Ū 4 = {1, 2}. Notice that Ne(D′K\{1}) = 2, Ne(D′K\{2}) = 1,
Ne(D′K\{3}) = 2, and Ne(D′K\{4}) = 2.

In Step (b), for User 1, E1 is of size t = 2 and is a subset of K \ {1} = {2, 3, 4}. Hence,
possible E1s can be {2, 3}, {2, 4}, and {3, 4}, which all satisfy the condition of non-zero
intersection with Ū 1 = {2, 3}. Hence, from (22) and (23), User 1 pre-transmits

Y1
{2,3} = W2,{1,3},1 ⊕W1,{1,2},1, Y1

{2,4} = W2,{1,4},1 ⊕W1,{1,2},1, Y1
{3,4} = W1,{1,4},1 ⊕W1,{1,3},1.

Similarly, User 3 pre-transmits

Y3
{1,2} = W1,{2,3},3 ⊕W2,{1,3},3, Y3

{1,4} = W1,{3,4},3 ⊕W1,{1,3},3, Y3
{2,4} = W2,{3,4},3 ⊕W1,{2,3},3,

and User 4 pre-transmits

Y4
{1,2} = W1,{2,4},4 ⊕W2,{1,4},4, Y4

{1,3} = W1,{3,4},4 ⊕W1,{1,4},4, Y4
{2,3} = W2,{3,4},4 ⊕W1,{2,4},4.

As for User 2, E2 is of size t = 2 and is a subset of K \ {2} = {1, 3, 4}. Hence, possible E2s
can be {1, 3}, {1, 4}, and {3, 4}. Recall that Ū 2 = {1}; hence, only {1, 3} and {1, 4} satisfy
the condition of non-zero intersection with U 2 = {1}. Hence, from (A2) and (A3), User 2
pre-transmits

Y2
{1,3} = W1,{2,3},2 ⊕W1,{1,2},2, Y2

{1,4} = W1,{2,4},2 ⊕W1,{1,2},2.

The signal Y2
{3,4} = W1,{2,3},2 ⊕W1,{2,4},2 does not need to be pre-transmitted and can be

calculated since Y2
{1,3} ⊕Y2

{1,4} ⊕Y2
{3,4} = 0 (cf. (24)).

In Step (c), removing unwanted codewords, we notice that the codeword Y1
{3,4} is only

useful for the users, who do not request, and hence are removed. The other codewords are
transmitted in the way of Step (b).

Thus, the total delivery rate achieved by the adapted YWSC scheme for the case
R = {1, 2} and D′{1,2,3,4} = (1, 2, 1, 1) is R{1,2}

adapted-YWSC = 2+3+3+2
12 = 5

6 , which coincides
with (A1). In this case, if we directly use the YWSC scheme [9] by assigning Users 3 and
4 a demand that is the same as User 1, then according to [9] (Equation (14)), the delivery
rate is 4×3−1

12 = 11
12 . If we assign Users 3 and 4 with some other demands, the delivery

rate will be the same. However, if we use the proposed three-category-based scheme from
Section 4.1, then according to (A1), the delivery rate is R{1,2}

req-rob = 2
3 . Hence, we see that for

the request-robust D2D coded caching problem, the proposed three-category-based scheme
performs better than the adapted YWSC scheme for this example.

The reason why the proposed three-category-based scheme and the adapted YWSC
scheme have better performance is in the following remark:

Remark A1. The achievable rate RDR
adapted-YWSC of our model is similar to the achievable rate

R∗(d,MMAN) of Yapar’s model [9]. The main difference is that the value of Ne(d\{i}) in
R∗(d,MMAN) depends on all the users’ request vector d, while the value of Ne(D′K\{i}) in
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RDR
adapted-YWSC depends on the r requesters’ request vector DR. When N, K, and M is the same,

for User i, there is Ne(D′K\{i}) ≤ Ne(d\{i}), and hence RDR
adapted-YWSC ≤ R∗(d,MMAN) for uni-

form demand distribution and the worst case. However, using the adapted YWSC scheme, the signal
Xadapted-YWSC

i may contain useless information. For example, in Appendix A.3, the signal Y1
{2,3}

contains the useless sub-piece W1,{1,2},1, which is transmitted for User 3, who does not request. We
find that removing useless sub-pieces does not affect the size of the rate but makes signals contain too
small uncoded sub-pieces. The proposed three-category-based scheme in Section 4 does not contain
useless information and maximizes the global gain brought from the code by utilizing the users, who
do not request, to transmit signals as much as possible.

Appendix B. Proof of Theorem 3

Appendix B.1. The Maximum Average Delivery Rate

In this subsection, we propose the converse bound given in Theorem 3 for the max-
imum average delivery rate of the request-robust D2D coded caching problem. Let us
consider the problem of coded caching with inactive users defined in Section 2.2.2 first.
For a problem of coded caching with inactive users with the rate Rinact, given the same
placement Z and requester demand vector DR as in Section 2.1, the encoding function on
the central server is

ϕ′DR : [2NF]→ [2RinactF],

and the delivery information X′ is denoted as X′ = ϕ′DR(W1, ..., WN). The r requesters
decode the request message according to caching content and delivery information, and the
decoding function is defined as

ψ
′DR
k : [2Mk F]× [2RinactF]→ [2F], k ∈ R.

The file decoded by User k is denoted as Ŵdk
= ψ

′DR
k (X′, Zk). If the error probability of this

system satisfies
P(Ŵdk

̸= Wdk
) ≤ ϵ,

we call the system ϵ-achievable.
Given DR and Z, we define the minimum achievable rate of the ϵ-achievable system

as RDR∗
ϵ,inact(Z). For a fixed R with size r, DR is defined as the set of all possible demands

{1, · · · , N}r. When DR is uniformly distributed on DR, given placement Z, the average
delivery rate with respect to the uniform demand RR∗ϵ,ave,inact(Z) is defined as

RR∗ϵ,ave,inact(Z) = EDR [R
DR∗
ϵ,inact(Z)].

For a given r, we define the maximum average delivery rate with respect to the uniform
demand, denoted as Rr

ave,inact, where the maximum is over all the request sets R with
size r. Then, the optimal maximum average delivery rate of the memory–rate tradeoff is
essentially the maximum average delivery rate for the minimum value given an arbitrary
cache size M, and at this rate, the user can decode the requested file with a sufficiently
large size without error; that is,

Rr∗
ave,inact = sup

ϵ>0
lim sup

F→+∞
min

Z
max
R:|R|=r

RR∗ϵ,ave,inact(Z).

Similarly, for a fixedR with size r, given placement Z, the worst-case delivery rate is

RR∗ϵ,worst,inact(Z) = max
DR

RDR∗
ϵ,inact(Z),
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and for a given r, the optimal maximum worst-case delivery rate we want to find is

Rr∗
worst,inact = sup

ϵ>0
lim sup

F→+∞
min

Z
max
R:|R|=r

RR∗ϵ,worst,inact(Z).

For the problem of coded caching with inactive users, we have the following results:

Theorem A1. For the problem of coded caching with inactive users with K users, a database of N
files, uncoded cache sizes of M files at each user, only r users as requesters demanding files during
the delivery phase, and parameter t = KM

N , we have

Rr∗
ave,inact = EDR

[
( K

t+1)− (K−Ne(DR)
t+1 )

(K
t )

]
, (A4)

for t ∈ K, where DR is uniformly random on DR = {1, ..., N}r and Ne(DR) denotes the number
of distinct requests in DR. When t /∈ K, Rr∗

ave,inact equals the lower convex envelope of the values in
(A4) for integer values of t ∈ K.

Moreover, for the worst-case rate, we have

Rr∗
worst,inact =

( K
t+1)− (K−min{r,N}

t+1 )

(K
t )

, (A5)

for t ∈ K. When t /∈ K, Rr∗
worst,inact equals the lower convex envelope of the values in (A5) for

integer values of t ∈ K.

Proof. The tight lower bounds of the average delivery rate and worst-case delivery rate
are derived in the rest of this section. The caching and delivery scheme that achieves the
optimal maximum average and worst-case rates is described in Appendix C.

Due to inequality (4), to prove Theorem 3, we just need to prove Theorem A1. Moti-
vated by [11], to lower bound the achievable average rate, we first introduce the concept
of demand-type division. For the problem of coded caching with inactive users with the
number of initial users K, the number of requesters r, and the fixed request setR, given the
request vector DR, we define sR(DR) as its statistics such that the ith element of sR(DR) is
equal to the number of the i-th most requested file. For example, when K = 6 and N = 4,
and during the delivery phase r = 4,R = {1, 2, 3, 4}, and DR = {1, 1, 3, 4}, the statistic for
DR is s{1,2,3,4}(DR) = (2, 1, 1, 0). For convenience, we simply the statistics sR(DR) as sR.
Then, we denote the set of all possible statistics by SR. Through this statistical method,
the set of request vectors DR can be divided into some subsets as type, and type DsR is
defined as the set of queries with statistics sR.

Note that for each request vector DR, the value of Ne(DR) only depends on its statistic
sR(DR), so for the same type of request vector, the rate is the same. For convenience,
the Ne(DR) of the type DsR is called Ne(sR).

Given the number of requesters r, the request set R, and the placement Z, for each
type DsR in the problem of coded caching with inactive users, the average delivery rate
RsR∗

ϵ,ave,inact(Z) is defined as

RsR∗
ϵ,ave,inact(Z) =

1
|DsR | ∑

DR∈DsR
RDR∗

ϵ,inact(Z),

For all types of request vectors, we have

Rr∗
ave,inact = sup

ϵ>0
lim sup

F→+∞
min

Z
max
R:|R|=r

EsR

[
RsR∗

ϵ,ave,inact(Z)
]
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≥ sup
ϵ>0

lim sup
F→+∞

max
R:|R|=r

EsR

[
min

Z
RsR∗

ϵ,ave,inact(Z)
]

. (A6)

Hence, the lower bound of Rr∗
ave,inact can be derived through bounding the minimum value

of RsR∗
ϵ,ave,inact(Z) for each type DsR individually. We use the following lemma to lower

bound the average rates within each type:

Lemma A1. Consider the problem of coded caching with inactive users with K initial users, N
files, MF cache sizes, r requesters, and request setR during the delivery phase; for each type DsR ,
the minimum value of RsR∗

ϵ,ave,inact(Z) is lower bounded by

min
Z

RsR∗
ϵ,ave,inact(Z) ≥ Conv

(
( K

t+1)− (K−Ne(sR)
t+1 )

(K
t )

)
−
(

1
F
+ N2

e (sR)ϵ
)

, (A7)

where Conv( f (t)) denotes the lower convex envelope of the following points: {(t, f (t))|t ∈
{0, 1, ..., K}}.

Proof. We notice that solving the fundamental limits of the problem of coded caching
with inactive users is essentially the caching problem defined in [11]. The only difference
between the problem of coded caching with inactive users and the caching problem defined
in [11] is the size of the request vector. Therefore, applying [11] (Lemma 2) and replacing the
caching problem parameters demand d; statistics of demand s; set of all possible statistics S ;
set of all possible demands D; and type of demand Ds with DR, sR(DR),SR,DR, and DsR ,
we obtain (A7).

From (A6) and Lemma A1, the lower bound of Rr∗
ave,inact can be further derived as

Rr∗
ave,inact ≥ EsR

[
Conv

(
( K

t+1)− (K−Ne(sR)
t+1 )

(K
t )

)]
. (A8)

Because the sequence

cn =
( K

n+1)− (K−Ne(sR)
n+1 )

(K
n)

,

is convex, the order of the expectation and the Conv in (A8) can be switched. Therefore,
Rr∗

ave,inact is lower bounded by the rate defined in Theorem A1, which immediately proves
Theorem 3 for the maximum average delivery rate.

Appendix B.2. The Maximum Worst-Case Delivery Rate

Due to (5), to prove Theorem 3 for the maximum worst-case delivery rate, we just
need to prove Theorem A1 for the maximum worst-case delivery rate. Given the number of
requesters r, the request setR, and placement Z, for each type DsR in the problem of coded
caching with inactive users, we define the worst-case delivery rate RsR∗

ϵ,worst,inact(Z) as

RsR∗
ϵ,worst,inact(Z) = max

DR∈DsR
RDR∗

ϵ,inact(Z).

Note that

Rr∗
worst,inact = sup

ϵ>0
lim sup

F→+∞
min

Z
max
R:|R|=r

max
sR

RsR∗
ϵ,worst,inact(Z)

≥ sup
ϵ>0

lim sup
F→+∞

max
R:|R|=r

max
sR

min
Z

RsR∗
ϵ,worst,inact(Z).
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For each sR ∈ SR, using Lemma A1, we can know that

min
Z

RsR∗
ϵ,worst,inact(Z) ≥ min

Z
RsR∗

ϵ,ave,inact(Z)

≥ Conv

(
( K

t+1)− (K−Ne(sR)
t+1 )

(K
t )

)
−
(

1
F
+ N2

e (sR)ϵ
)

.

When N, K, M, r, andR do not change, since the worst-case delivery rate RsR∗
ϵ,worst,inact(Z)

decreases as Ne(sR) decreases, the optimal worst-case delivery rate is the one at the maxi-
mum value of Ne(sR). Meanwhile, there is

Ne(sR) ≤ min{r, N}. (A9)

Consequently,

Rr∗
worst,inact ≥ sup

ϵ>0
lim sup

F→+∞
max
R:|R|=r

max
sR

Conv

(
( K

t+1)− (K−Ne(sR)
t+1 )

(K
t )

)
−
(

1
F
+ N2

e (sR)ϵ
)

= Conv

(
( K

t+1)− (K−min{r,N}
t+1 )

(K
t )

)
.

Therefore, Rr∗
worst,inact is lower bounded by the rate defined in Theorem A1 for the maximum

worst-case delivery rate, which immediately proves Theorem 3 for the maximum worst-case
delivery rate.

Appendix C. Optimal Scheme for Problem of Coded Caching with Inactive Users
Achieved in Theorem A1

In this section, we present the optimal scheme for the problem of coded caching with
inactive users. The scheme achieves the rate stated in Theorem A1. We will characterize
the performance of the proposed scheme and show that for any requester set R and
corresponding request vector DR, the optimal scheme achieves the rate

Rinact =
( K

t+1)− (K−Ne(DR)
t+1 )

(K
t )

. (A10)

The rate Rinact with the explicit characterization of the maximum worst-case delivery rate
in (A9) immediately proves Theorem A1.

Similar to Section 4.1, we restrict to integer values of t ∈ K and use the MAN uncoded
symmetric placement scheme given in Definition 1 in the placement phase. For non-integer
values of t, the pair (M, Rinact) achieves the lower convex envelope of the achievable points
for integer values of t ∈ K.

For the delivery phase, the central server arbitrarily selects a subset of Ne(DR) re-
questers, denoted by Û = {û1, ..., ûNe(DR)}, that requests Ne(DR) distinct files, Û ⊆ R.
Following the idea of leaders from [11], we name these requesters as leaders.

Given an arbitrary subsetH of t + 1 users, each requester k ∈ H∩R needs the sub-file
Wdk ,H\{k}, which is known by all other users inH. Precisely, all the requesters k ∈ H ∩R
shall retrieve the needed sub-files Wdk ,H\{k} from the transmissions of the central server.
By letting the central server broadcast the codeword

YH =
⊕

x∈H∩R
Wdx ,H\{x}, where H∩R ̸= ∅, (A11)

this sub-file retrieval can be accomplished since each requester k ∈ H ∩ R has all the
sub-files on the RHS of (A11) except for Wdk ,H\{k}.
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In order to achieve the rate in (A10), the central server only needs to transmit the
codeword YH, which is useful for at least one leader, i.e., Xinact = {YH}H∩Û ̸=∅. The above

delivery scheme totally transmits ( K
t+1)− (K−Ne(DR)

t+1 ) codewords each with a size of F/(K
t )

bits, which achieves the rate in (A10).

Remark A2. We notice that the proposed scheme is in fact the shared-link model [3] with the same
file number N, file size F, user number K, cache size M, and corresponding parameter t. The only
difference is the size of the request vector. Replacing the shared-link system parameter Ne(d) in (19)
with Ne(DR), we obtain (A10).

We now prove that each requester can decode the file requested by the above delivery
scheme. When k is a leader, i.e., k ∈ Û , it can decode any required sub-file Wdk ,H′ , where
H′ ̸∋ k, |H′| = t, from YH′∪{k} by performing

Wdk ,H′ =

(⊕
x∈H′

Wdx ,H′∪{k}\{x}

)⊕
YH′∪{k}, (A12)

where YH′∪{k} is defined in (A11).
When k ∈ R \ Û , not all codewords YH′∪{k} are transmitted, and the requester k needs

to decode the required codewords not transmitted directly. We use Lemma A2 to explain
that the non-leader requester k can also decode all the required sub-files, even if the central
server does not transmit YH′∪{k}, whereH′ ∩ Û = ∅.

Lemma A2. Given the request vector DR and picking a set of leaders Û , for any set I ⊆ K, let VF
be the family of all subsets V of I such that each requested file in DR is requested by exactly one
user in V , and we have ⊕

V∈VF

YI\V = 0, (A13)

where YI\V is defined in (A11).

Proof. As mentioned in Remark A2, the proposed scheme for the problem of coded caching
with inactive users is actually the shared-link scheme. Thus, Lemma 1 in [11] can be directly
applied to the proposed scheme.

Consider any subset H of t + 1 non-leader users but containing requesters. From
Lemma A2, the codeword YH can be directly computed from the transmitted codewords
by using the following equation:

YH =
⊕

V∈VF\{Û}
YI\V , (A14)

where I = H ∪ Û , given the fact that all codewords on the RHS of (A14) are broadcast,
because each I \ V has a size of t + 1 and contains at least one leader. Hence, each requester
k can obtain the value YH for any subset H, where H ∩R ̸= ∅ of t + 1 users, and can
decode its demanded files as discussed in (A11). The proposed scheme for the problem of
coded caching with inactive users achieves the rate in (A10), which proves the achievability
of Theorem A1.

For the convenience of understanding, we give the algorithm of the caching and
delivery scheme with inactive users in Algorithm A2.

Algorithm A2 Caching and Delivery Scheme with Inactive Users(N, K, M)

procedure PLACEMENT(W1, ..., WN)
1: Apply Algorithm 1 MAN Uncoded Symmetric Placement Scheme(N, K, M, W[N])

end procedure
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procedure DELIVERY(R, DR)
2: t← KM/N
3: Ne(DR)← the number of distinct elements in DR
4: Û ← {û1, ..., ûNe(DR)}
5: forH ⊆ [K] : |H| = t + 1 do
6: ifH∩ Û == ∅ then
7: continue
8: else
9: Central server transmits YH =

⊕
x∈H:dx∈DR

Wdx ,H\{x}

10: end if
11: end for
end procedure

We provide an example to explain how the proposed scheme works.
Let us consider a case that N = 2, K = 3, M = 2/3, and t = KM/N = 1. In the

placement phase, each file is divided into (3
1) = 3 sub-files. The users k ∈ [3] cache the

following sub-files:

Z1 = {W1,{1}, W2,{1}}, Z2 = {W1,{2}, W2,{2}}, Z3 = {W1,{3}, W2,{3}}.

In the delivery phase, only User 1 and 2 as requesters request a single file, i.e.,R = {1, 2},
and the request vector is D{1,2} = (1, 1). Notice that r = 2 and Ne(D{1,2}) = 1.

Without a loss of generality, assume that the central server picks User 1 as the leader,
i.e., Û = {1}. Then, the central server transmits the following codewords:

Y{1,2} = W1,{2} ⊕W1,{1}, Y{1,3} = W1,{3},

without transmitting Y{2,3} = W1,{3}, this will cause Y{2,3} ⊕ Y{1,3} = 0 from (A13). No
matter what the leader central server picks, it can transmit one less codeword, denoted as
YH, whereH∩ Û = ∅, through this method.

From the transmitted codewords just mentioned, all the requesters can decode all their
needed files by performing (A12). The rate Rinact = 1/3× 2 = 2/3 and could be directly
calculated by (A10).

Remark A3. The proposed scheme for the problem of coded caching with inactive users is with
secure delivery [28] for t ≥ 1 and r ≥ 2, where the users who do not request and the external
wiretapper cannot decode any files since the transmitted codewords only consist of the sub-files
needed by requesters, and the sub-files whose index only consists of requesters would not be directly
transmitted and cannot be decoded.

Appendix D. Order Optimality of the Adapted YWSC Scheme in Appendix A.1
i.e., Proof of Theorem 4

As discussed in Remark 1, in this section, under the constraint of the uncoded cache
placement, we only compare the achievable rate RDR

adapted-YWSC from (A1) with the lower
bound rate for Rr∗

ave,req-rob and Rr∗
worst,req-rob from (12) and (13), respectively.

For the maximum average delivery rate, from (12), (A4), and (A10), we have that
EDR [R

DR
adapted-YWSC] ≥ Rr∗

ave,req-rob ≥ Rr∗
ave,inact = EDR [Rinact]. Furthermore, we observe that

Rinact ≥ t
t+1 RDR

adapted-YWSC by the following:

t
t + 1

RDR
adapted-YWSC ≤

1
t+1 K(K−1

t )− 1
t+1 ∑K

i=1 (
K−1−Ne(D′K\{i})

t
)

(K
t )
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=
( K

t+1)−∑K
i=1

1
K−Ne(D′K\{i})

(
K−Ne(D′K\{i})

t+1
)

(K
t )

≤
( K

t+1)−mini
K

K−Ne(D′K\{i})
(

K−Ne(D′K\{i})
t+1

)

(K
t )

≤
( K

t+1)− (K−Ne(DR)
t+1 )

(K
t )

(A15)

= Rinact,

where (A15) is because 1 ≤ Ne(DR\{i}) ≤ Ne(D′K\{i}) ≤ Ne(D′K) = Ne(DR) for all i ∈ [K].
Therefore, we have that

EDR [R
DR
adapted-YWSC] ≥ Rr∗

ave,req-rob ≥ Rr∗
ave,inact = EDR [Rinact]

≥ t
t + 1

EDR [R
DR
adapted-YWSC] ≥

1
2
EDR [R

DR
adapted-YWSC].

gives the same result, which is

max
DR

RDR
adapted-YWSC ≥ Rr∗

worst,req-rob ≥ Rr∗
worst,inact = max

DR
Rinact

≥ t
t + 1

max
DR

RDR
adapted-YWSC ≥

1
2

max
DR

RDR
adapted-YWSC,

which can be achieved for the maximum worst-case delivery rate by using similar steps.
These results prove that the achievable rate RDR

adapted-YWSC is order optimal within a factor
of two under the constraint of uncoded cache placement. In addition, by the proved
order optimality of the shared-link scheme within a factor of two [29] for allowing coded
placement, and as discussed in Remark A2 that the only difference between the delivery
scheme with inactive users and a shared-link scheme is the size of the request vector, it
immediately proves that the achieved rate is within a factor of four in general and completes
the proof of Theorem 4.
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