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Abstract: Deep neural networks excel in supervised learning tasks but are constrained by the need for
extensive labeled data. Self-supervised learning emerges as a promising alternative, allowing models
to learn without explicit labels. Information theory has shaped deep neural networks, particularly
the information bottleneck principle. This principle optimizes the trade-off between compression and
preserving relevant information, providing a foundation for efficient network design in supervised
contexts. However, its precise role and adaptation in self-supervised learning remain unclear. In
this work, we scrutinize various self-supervised learning approaches from an information-theoretic
perspective, introducing a unified framework that encapsulates the self-supervised information-
theoretic learning problem. This framework includes multiple encoders and decoders, suggesting
that all existing work on self-supervised learning can be seen as specific instances. We aim to unify
these approaches to understand their underlying principles better and address the main challenge:
many works present different frameworks with differing theories that may seem contradictory. By
weaving existing research into a cohesive narrative, we delve into contemporary self-supervised
methodologies, spotlight potential research areas, and highlight inherent challenges. Moreover, we
discuss how to estimate information-theoretic quantities and their associated empirical problems.
Overall, this paper provides a comprehensive review of the intersection of information theory, self-
supervised learning, and deep neural networks, aiming for a better understanding through our
proposed unified approach.

Keywords: self-supervised learning; information theory; representation learning; deep neural networks

1. Introduction

Deep neural networks (DNNs) have revolutionized fields such as computer vision,
natural language processing, and speech recognition due to their remarkable performance
in supervised learning tasks [1–3]. However, the success of DNNs is often limited by the
need for vast amounts of labeled data, which can be both time-consuming and expensive
to acquire. By using unlabeled data, supervised learning costs can be reduced, especially in
fields that require expensive annotations. As an example, biomedical task labels must be
provided by domain experts, who are costly to hire. Besides the hiring cost, labeling tasks
are often labor-intensive. For example, video data labels require the review of many frames.
Self-supervised learning (SSL) emerges as a promising direction, enabling models to learn
from data without explicit labels by leveraging the underlying structure and relationships
within the data.

Recent advances in SSL have been driven by joint embedding architectures, such as
Siamese Nets [4], DrLIM [5,6], and SimCLR [7]. These approaches define a loss function
that encourages representations of different versions of the same image to be similar
while pushing representations of distinct images apart. After optimizing the surrogate
objective, the pre-trained model can be employed as a feature extractor, with the learned
features serving as inputs for downstream supervised tasks, like image classification,
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object detection, instance segmentation, or pose estimation [7–10]. Although SSL methods
have shown promising results in practice, the theoretical underpinnings behind their
effectiveness remain an open question [11,12].

Information theory has played a crucial role in understanding and optimizing deep neural
networks, from practical applications like the variational information bottleneck [13] to theoret-
ical investigations of generalization bounds induced by mutual information [14,15]. Building
upon these foundations, several researchers have attempted to enhance self-supervised
and semi-supervised learning algorithms using information-theoretic principles, such as
the Mutual Information Neural Estimator (MINE) [16] combined with the information
maximization (InfoMax) principle [17]. However, the plethora of objective functions, con-
tradicting assumptions, and various estimation techniques in the literature can make it
challenging to grasp the underlying principles and their implications.

In this paper, we aim to achieve two objectives. First, we propose a unified framework
that synthesizes existing research on self-supervised and semi-supervised learning from
an information-theoretic standpoint. This framework allows us to present and compare
current methods, analyze their assumptions and difficulties, and discuss the optimal
representation for neural networks in general and self-supervised networks in particular.
Second, we explore different methods and estimators for optimizing information-theoretic
quantities in deep neural networks and investigate how recent models optimize various
theoretical-information terms.

By reviewing the literature on various aspects of information-theoretic learning, we
provide a comprehensive understanding of the interplay between information theory,
self-supervised learning, and deep neural networks. We discuss the application of the
information bottleneck principle [18], connections between information theory and gener-
alization, and recent information-theoretic learning algorithms. Furthermore, we examine
how the information-theoretic perspective can offer insights into the design of better self-
supervised learning algorithms and the potential benefits of using information theory in
SSL across a wide range of applications.

In addition to the main structure of this paper, we dedicate a section to the challenges
and opportunities in extending the information-theoretic perspective to other learning
paradigms, such as energy-based models. We highlight the potential advantages of incor-
porating these extensions into self-supervised learning algorithms and discuss the technical
and conceptual challenges that must be addressed.

The structure of this paper is as follows. Section 2 introduces the key concepts in
supervised, semi-supervised, and self-supervised learning, information theory, and repre-
sentation learning. Section 3 presents a unified framework for multiview learning based on
information theory. We first discuss what an optimal representation is and why compression
is beneficial for learning. Next, we explore optimal representation in single-view super-
vised learning models and how they can be extended to unsupervised, semi-supervised,
and multiview contexts. The focus then shifts to self-supervised learning, where the opti-
mal representation remains an open question. Using the unified framework, we compare
recent self-supervised algorithms and discuss their differences. We analyze the assump-
tions behind these models, their effects on the learned representation, and their varying
perspectives on important information within the network.

Section 5 addresses several technical challenges, discussing both theoretical and
practical issues in estimating theoretical information terms. We present recent methods
for estimating these quantities, including variational bounds and estimators. As part of
Section 6, we examine a wide range of review papers that cover information theory and
self-supervised learning thoroughly. Section 7 concludes this paper by offering insights
into potential future research directions at the intersection of information theory, self-
supervised learning, and deep neural networks. Our aim is to stimulate further research
that leverages information theory to advance our understanding of self-supervised learning
and to develop more efficient and effective models for a broad range of applications.
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2. Background and Fundamental Concepts
2.1. Multiview Representation Learning

Multiview learning, which utilizes complementary information from multiple features
or modalities, has gained increasing attention and achieved great practical success. The mul-
tiview learning paradigm divides the input variable into multiple views from which the
target variable should be predicted [19]. Using this paradigm, one can eliminate hypotheses
that contradict predictions from other views and provide a natural semi-supervised and self-
supervised learning setting. A multiview dataset consists of data captured from multiple
sources, modalities, and forms but with similar high-level semantics [20]. This mechanism
was initially used for natural-world data, combining image, text, audio, and video measure-
ments. For example, photos of objects are taken from various angles, and our supervised
task is to identify the objects. Another example is identifying a person by analyzing the
video stream as one view and the audio stream as the other.

Although these views often provide different and complementary information about
the same data, directly integrating them does not produce satisfactory results due to biases
between multiple views [20]. Thus, multiview representation learning involves identifying
the underlying data structure and integrating the different views into a common feature
space, resulting in a high performance. In recent decades, multiview learning has been
used for many machine learning tasks and influenced many algorithms, such as co-training
mechanisms [21], subspace learning methods [22], and multiple kernel learning (MKL) [23].
Li et al. [24] proposed two categories for multiview representation learning: (i) multiview
representation fusion, which combines different features from multiple views into a single
compact representation, and (ii) the alignment of multiview representation, which attempts
to capture the relationships among multiple different views through feature alignment.
In this case, a learned mapping function embeds the data of each view, and the representa-
tions are regularized to form a multiview-aligned space. In this research direction, an early
study is the canonical correlation analysis (CCA) [25] and its kernel extensions [23,26,27].
In addition to CCA, multiview representation learning has penetrated a variety of learning
methods, such as dimensionality reduction [28], clustering analysis [29], multiview sparse
coding [30–32], and multimodal topic learning [33]. However, despite their promising
results, these methods use handcrafted features and linear embedding functions, which
cannot capture the nonlinear properties of multiview data.

Deep learning provides a powerful way to learn complex, nonlinear, and hierarchical
representations of data. By incorporating multiple hierarchical layers, deep learning algo-
rithms can learn complex, subtle, and abstract representations of target data. The success
of deep learning in various application domains has led to a growing interest in deep mul-
tiview methods, which have shown promising results. Examples of these methods include
deep multiview canonical correlation analysis [34] as an extension of CCA, multiview
clustering via deep matrix factorization [35], and the deep multiview spectral network [36].
Moreover, deep architectures have been employed to generate effective representations in
methods such as multiview convolutional neural networks [37], multimodal deep Boltz-
mann machines [38], multimodal deep autoencoders [39,40], and multimodal recurrent
neural networks [41–43].

2.2. Self-Supervised Learning

Self-supervised learning (SSL) is a powerful technique that leverages unlabeled data
to learn useful representations. In contrast to supervised learning, which relies on labeled
data, SSL employs self-defined signals to establish a proxy objective between the input and
the signal. The model is initially trained using this proxy objective and subsequently fine-
tuned on the target task. Self-supervised signals, derived from the inherent co-occurrence
relationships in the data, serve as self-supervision. Various such signals have been used to
learn representations, including generative and joint embedding architectures [7,44–47].
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Two main categories of SSL architectures exist: (1) generative architectures based on
reconstruction or prediction and (2) joint embedding architectures [48]. Both architecture
classes can be trained using either contrastive or non-contrastive methods.

We begin by discussing these two main types of architectures:

1. Generative architecture: Generative architectures employ an objective function
that measures the divergence between input data and predicted reconstructions,
such as squared error. The architecture reconstructs data from a latent variable or a
corrupted version, potentially with a latent variable’s assistance. Notable examples of
generative architectures include autoencoders, sparse coding, sparse autoencoders,
and variational autoencoders [49–51]. As the reconstruction task lacks a single correct
answer, most generative architectures utilize a latent variable, which, when varied,
generates multiple reconstructions. The latent variable’s information content requires
regularization to ensure the system reconstructs regions of high data density while
avoiding a collapse by reconstructing the entire space. PCA regularizes the latent
variable by limiting its dimensions, while sparse coding and sparse autoencoders
restrict the number of non-zero components. Variational autoencoders regularize
the latent variable by rendering it stochastic and maximizing the entropy of the
distribution relative to a prior. Vector quantized variational autoencoders (VQ-VAEs)
employ binary stochastic variables to achieve similar results [52].

2. Joint embedding architectures (JEAs): These architectures process multiple views of
an input signal through encoders, producing representations of the views. The system
is trained to ensure that these representations are both informative and mutually
predictable. Examples include Siamese networks, where two identical encoders share
weights [7,53–55], and methods permitting encoders to differ [56]. A primary chal-
lenge with JEA is preventing informational collapse, in which the representations
contain minimal information about the inputs, thereby facilitating their mutual pre-
diction. JEA’s advantage lies in the encoders’ ability to eliminate noisy, unpredictable,
or irrelevant information from the input within the representation space.

To train these architectures effectively, it is essential to ensure that the representations
of different signals are distinct. This can be achieved through either contrastive or non-
contrastive methods:

• Contrastive methods: Contrastive methods utilize data points from the training set
as positive samples and generate points outside the region of high data density as
contrastive samples. The energy (e.g., reconstruction error for generative architectures
or representation predictive error for JEA) should be low for positive samples and
higher for contrastive samples. Various loss functions involving the energies of pairs
or sets of samples can be minimized to achieve this objective.

• Non-contrastive methods: Non-contrastive methods prevent the energy landscape’s
collapse by limiting the volume of space that can take low energy, either through
architectural constraints or through a regularizer in the energy or training objective.
In latent-variable generative architectures, preventing collapse is achieved by limiting
or minimizing the information content of the latent variable. In JEA, collapse is
prevented by maximizing the information content of the representations.

We now present a few concrete examples of popular models that employ various com-
binations of generative architectures, joint embedding architectures, contrastive training,
and non-contrastive training:

The denoising autoencoder approach in generative architectures [57–59] uses a triplet
loss, which utilizes a positive sample, which is a vector from the training set that should
be reconstructed perfectly, and a contrastive sample consisting of data vectors, one from
the training set and the other being a corrupted version of it. In SSL, the combination of
JEA models with contrastive learning has proven highly effective. In contrastive learning,
the objective is to attract different augmented views of the same image (positive points)
while repelling dissimilar augmented views (negative points). Recent self-supervised visual
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representation learning examples include MoCo [54] and SimCLR [7]. The InfoNCE loss is
a commonly used objective function in many contrastive learning methods:

Ex,x+ ,x−

[
− log

(
e f (x)T f (x+)

∑ k = 1Ke f (x)T f (xk)

)]
(1)

where x+ is a sample similar to x, xk are all the samples in the batch, and f is an encoder.
This loss, inspired by NCE [60], uses categorical cross-entropy loss to distinguish the pos-
itive sample amongst a set of unrelated noise samples in the batch. In this formulation,
the numerator represents the output of a positive pair, while the denominator sums the val-
ues of both positive and negative pairs. This straightforward loss function aims to increase
the value of positive pairs (driving the logarithmic term towards 1, thereby reducing the
loss towards 0) and separate the negative pairs further.

However, contrastive methods heavily depend on all other samples in the batch
and require a large batch size. Additionally, Jing et al. [61] have shown that contrastive
learning can lead to dimensional collapse, where the embedding vectors span a lower-
dimensional subspace instead of the entire embedding space. Although positive and
negative pairs should repel each other to prevent dimensional collapse, augmentation
along feature dimensions and implicit regularization cause the embedding vectors to fall
into a lower-dimensional subspace, resulting in low-rank solutions.

To address these problems, recent works have introduced JEA models with non-
contrastive methods. Unlike contrastive methods, these methods employ regularization to
prevent the collapse of the representation and do not explicitly rely on negative samples.
For example, several papers use stop gradients and extra predictors to avoid collapse [53,55],
while Caron et al. [62] employed an additional clustering step. VICReg [56] is another
non-contrastive method that regularizes the covariance matrix of representation. Consider
two embedding batches Z = [ f (x1), . . . , f (xN)] and Z′ =

[
f (x′1), . . . , f (x′N)

]
, each of size

(N × K). Denote by C the (K × K) covariance matrix obtained from [Z, Z′]. The VICReg
triplet loss is defined by the following:

L=
1
K

K

∑
k=1

(
α max

(
0, γ −

√
Ck,k + ϵ

)
+β ∑

k′ ̸=k

(
Ck,k′

)2
)

+ γ∥Z − Z′∥2
F/N. (2)

The variance loss (the diagonal terms) encourages high variance in the learned represen-
tations, thereby promoting the learning of a wide range of features. The covariance loss
(the off-diagonal terms), however, aims to minimize redundancy in the learned features by
reducing the overlap in information captured by different dimensions of the representation.

2.3. Semi-Supervised Learning

Semi-supervised learning employs both labeled and unlabeled data to enhance the
model performance [63]. Consistency regularization-based approaches [64–66] ensure that
predictions remain stable under perturbations in input data and model parameters. Certain
techniques, such as those proposed by Grandvalet and Bengio [67] and Miyato et al. [65],
involve training a model by incorporating a regularization term into a supervised cross-
entropy loss. In contrast, Xie et al. [68] utilizes suitably weighted unsupervised regulariza-
tion terms, while Zhai et al. [69] adopts a combination of self-supervised pretext loss terms.
Moreover, pseudo-labeling can generate synthetic labels based on network uncertainty to
further aid model training [70].

2.4. Representation Learning

Representation learning is an essential aspect of various computer vision, natural
language processing, and machine learning tasks, as it uncovers the underlying structures
in data [71]. Extracting relevant information for classification and prediction tasks from
the data improves the performance and reduces computational complexity [72]. However,
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defining an effective representation remains a challenging task. In probabilistic models,
a useful representation often captures the posterior distribution of explanatory factors
beneath the observed input [2]. Bengio and LeCun [73] introduced the idea of learning
highly structured yet complex dependencies for AI tasks, which require transforming high-
dimensional input structures into low-dimensional output structures or learning low-level
representations. Consequently, identifying relevant input features is challenging because
most input entropy does not relate to the output. [74]. Ben-Shaul et al. [75] demonstrated
that self-supervised learning inherently promotes the clustering of samples based on
semantic labels. Intriguingly, this clustering is driven by the objective’s regularization term
and aligns with semantic classes across multiple hierarchical levels.

2.4.1. Minimal Sufficient Statistic

A possible definition of an effective representation is based on minimal sufficient statistics.

Definition 1. Given (X, Y) ∼ P(X, Y), let T := t(X), where t is a deterministic function. We
define T as a sufficient statistic of X for Y if Y − T − X forms a Markov chain.

A sufficient statistic is defined relative to the statistics of the data, or a probabilistic
function, and provides all the information in the data about that model or the parameters
of that model.

Intuitively, a sufficient statistic captures all the information about Y in X. Cover [76]
proved this property:

Theorem 1. Let T be a probabilistic function of X. Then, T is a sufficient statistic for Y if and only
if I(T(X); Y) = I(X; Y).

However, the sufficiency definition also encompasses trivial identity statistics that only
“copy” rather than “extract” essential information. To prevent statistics from inefficiently
utilizing observations, the concept of minimal sufficient statistics was introduced:

Definition 2. (Minimal sufficient statistic (MSS).) A sufficient statistic T is minimal if, for any
other sufficient statistic S, there exists a function f such that T = f (S) almost surely (a.s.).

In essence, MSSs are the simplest sufficient statistics, inducing the coarsest sufficient
partition on X. In MSSs, the values of X are grouped into as few partitions as possible
without sacrificing information. MSSs are statistics with the maximum information about
Y while retaining the least information about X as possible [77].

2.4.2. The Information Bottleneck

The majority of distributions lack exact minimal sufficient statistics, leading Tishby
et al. [18] to relax the optimization problem in two ways: (i) allowing the map to be
stochastic, defined as an encoder P(T|X), and (ii) permitting the capture of only a small
amount of I(X; Y). The information bottleneck (IB) was introduced as a principled method
to extract relevant information from observed signals related to a target. This framework
finds the optimal trade-off between the accuracy and complexity of a random variable y ∈ Y

with a joint distribution for a random variable x ∈ X. The IB has been employed in various
fields, such as neuroscience [78,79], slow feature analysis [80], speech recognition [81],
molecular relational learning [82], and deep learning [13,74].

Let X be an input random variable, Y a target variable, and P(X, Y) their joint distribu-
tion. A representation T is a stochastic function of X defined by a mapping P(T | X). This
mapping transforms X ∼ P(X) into a representation of T ∼ P(T) :=

∫
PT|X(· | x)dPX(x).

The triple Y − X − T forms a Markov chain in that order with respect to the joint probability
measure PX,Y,T = PX,YPT|X and the mutual information terms I(X; T) and I(Y; T).

Within the IB framework, our goal is to find a representation P(T | X) that extracts
as much information as possible about Y (high performance) while compressing X maxi-
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mally (keeping I(X; T) small). This can also be interpreted as extracting only the relevant
information that X contains about Y.

The data processing inequality (DPI) implies that I(Y; T) ≤ I(X; Y), so the compressed
representation T cannot convey more information than the original signal. Consequently,
there is a trade-off between compressed representation and the preservation of relevant
information about Y. The construction of an efficient representation variable is charac-
terized by its encoder and decoder distributions, P(T | X) and P(Y | T), respectively.
The efficient representation of X involves minimizing the complexity of the representation
I(T; X) while maximizing I(T; Y). Formally, the IB optimization involves minimizing the
following objective function:

L = min
P(t|x);p(y|t)

I(X; T)− βI(Y; T) , (3)

where β is the trade-off parameter controlling the complexity of T and the amount of
relevant information it preserves. Intuitively, we pass the information that X contains about
Y through a “bottleneck” via the representation T. It has been shown that

I(T; Y) = I(X; Y)−Ex∼P(X),t∼P(T|x)[D[P(Y|x)||P(Y|t)]]. (4)

2.5. Representation Learning and the Information Bottleneck

Information theory traditionally assumes that underlying probabilities are known
and do not require learning. For instance, the optimality of the initial IB work [18] relied
on the assumption that the joint distribution of input and labels is known. However,
a significant challenge in machine learning algorithms is inferring an accurate predictor for
the unknown target variable from observed realizations. This discrepancy raises questions
about the practical optimality of the IB and its relevance in modern learning algorithms.
The following section delves into the relationship between the IB framework and learning,
inference, and generalization.

Let X ∈ X and a target variable Y ∈ Y be random variables with an unknown joint
distribution P(X, Y). For a given class of predictors f : X → Ŷ and a loss function ℓ : Y → Ŷ

measuring discrepancies between true values and model predictions, our objective is to
find the predictor f that minimizes the expected population risk:

LP(X,Y)( f , ℓ) = EP(X,Y)[ℓ(Y, f (X))]. (5)

Several issues arise with the expected population risk. Firstly, it remains unclear which
loss function is optimal. A popular choice is the logarithmic loss (or error’s entropy), which
has been numerically demonstrated to yield better results [83]. This loss has been employed
in various algorithms, including the InfoMax principle [17], tree-based algorithms [84],
deep neural networks [85], and Bayesian modeling [86]. Painsky and Wornell [87] provided
a rigorous justification for using the logarithmic loss and showed that it is an upper
bound to any choice of the loss function that is smooth, proper, and convex for binary
classification problems.

In most cases, the joint distribution P(X, Y) is unknown, and we have access to only n
samples from it, denoted by Dn := (xi, yi) | i = 1, . . . , n. Consequently, the population risk
cannot be computed directly. Instead, we typically choose the predictor that minimizes the
empirical population risk on a training dataset:

L̂P(X,Y)( f , ℓ,Dn) =
1
n

n

∑
i=1

[ℓ(yi, f (xi))]. (6)

The generalization gap, defined as the difference between empirical and population
risks, is given by

GenP(X,Y)( f , ℓ,Dn) := LP(X,Y)( f , ℓ)− L̂P(X,Y)( f , ℓ,Dn). (7)
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Interestingly, the relationship between the population risk and the empirical risk
can be bounded using the information bottleneck term. Shamir et al. [88] developed
several finite sample bounds for the generalization gap. According to their study, the IB
framework exhibited good generalizability even with small sample sizes. In particular, they
developed non-uniform bounds adaptive to the model’s complexity. They demonstrated
that for the discrete case, the error in estimating mutual information from finite samples
is bounded by O

(
|X| log n√

n

)
, where |X| is the cardinality of X (the number of possible

values that the random variable X can take). The results support the intuition that simpler
models generalize better, and we would like to compress our model. Therefore, optimizing
Equation (3) presents a trade-off between two opposing forces. On the one hand, we want
to increase our prediction accuracy in our training data (high β).

On the other hand, we would like to decrease β to narrow the generalization gap.
Vera et al. [89] extended their work and showed that the generalization gap is bounded by
the square root of mutual information between training input and model representation
times log n

n . Furthermore, Russo and Zou [90] and Xu and Raginsky [14] demonstrated that
the square root of the mutual information between the training input and the parameters
inferred from the training algorithm provides a concise bound on the generalization gap.
However, these bounds critically depend on the Markov operator that maps the training
set to the network parameters, whose characterization is not trivial.

Achille and Soatto [91] explored how applying the IB objective to the network’s
parameters may reduce overfitting while maintaining invariant representations. Their
work showed that flat minima, which have better generalization properties, bound the
information with the weights, and the information in the weights bound the informa-
tion in the activations. Chelombiev et al. [92] found that the generalization precision
is positively correlated with the degree of compression of the last layer in the network.
Shwartz-Ziv et al. [93] showed that the generalization error depends exponentially on the
mutual information between the model and the input once it is smaller than log 2n—the
query sample complexity. Moreover, they demonstrated that M bits of compression of X
are equivalent to an exponential factor of 2M training examples. Piran et al. [94] extended
the original IB to the dual form, which offers several advantages in terms of compression.
As an example, when the data can be modeled in a parametric form, the dual IB preserves
this structure and obtains the representation based on the original parameters, resulting in
a more efficient compression.

These studies illustrate that the IB leads to a trade-off between prediction and com-
plexity, even for the empirical distribution. With the IB objective, we can design estimators
to find optimal solutions for different regimes with varying performances, complexity,
and generalization.

3. Information-Theoretic Objectives

Before delving into the details, this section aims to provide an overview of the
information-theoretic objectives in various learning scenarios, including supervised, un-
supervised, and self-supervised settings. We will also introduce a general framework
to understand better the process of learning optimal representations and explore recent
methods working towards this goal.

Developing a novel algorithm entails numerous aspects, such as architecture, initial-
ization parameters, learning algorithms, and pre-processing techniques. A crucial element,
however, is the objective function. As demonstrated in Section 2.4.2, the IB approach,
originally introduced by Tishby et al. [18], defines the optimal representation in supervised
scenarios, enabling us to identify which terms to compress during learning by explicitly
defining the relevant information I(T; Y) that we want to optimize. However, determining
the optimal representation and deriving information-based objective functions in self-
supervised settings are more challenging. In this section, we introduce a general framework
to understand the process of learning optimal representations and explore recent methods
striving to achieve this goal.
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3.1. Setup and Methodology

Using a two-channel input allows us to model complex multiview learning prob-
lems. In many real-world situations, data can be observed from multiple perspectives or
modalities, making it essential to develop learning algorithms capable of handling such
multiview data.

Consider a two-channel input, X1 and X2, and a single-channel label Y for a down-
stream task, all possessing a joint distribution P(X1, X2, Y). We assume the availability
of n labeled examples S = (xi

1, xi
2, yi)

n
i=1 and t unlabeled examples U = (xi

1, xi
2)

n+t
i=n+1,

both independently and identically distributed. Our objective is to predict Y using a
loss function.

In our model, we use a learned encoder with a prior P(Z) to generate a conditional
representation (which may be deterministic or stochastic) Zi|Xi = Pθi (Zi|Xi), where i = 1, 2
represents the two views. Subsequently, we utilize various decoders to "decode" distinct
aspects of the representation.

For the supervised scenario, we have a joint embedding of the label classifiers from
both views, Ŷ1,2 = Qρ(Y|Z1, Z2), and two decoders predicting the labels of the downstream
task based on each individual view, Ŷi = Qρi (Y|Zi) for i = 1, 2.

For the unsupervised case, we have direct decoders for input reconstruction from the
representation, X̄i = Qψi (Xi|Zi) for i = 1, 2.

For self-supervised learning, we utilize two cross-decoders, Z̃1|Z2 = qη1(Z1|Z2) and
Z̃2|Z1 = qη2(Z2|Z1), attempting to predict one representation based on the other. Figure 1
illustrates this structure.

The information-theoretic perspective of self-supervised networks has led to confusion
regarding the information being optimized in recent work. In supervised and unsupervised
learning, only one "information path" exists when optimizing information-theoretic terms:
the input is encoded through the network, and then the representation is decoded and
compared to the targets. As a result, the representation and corresponding information
always stem from a single encoder and decoder.

Complexity

Unsupervised
Reconstruction 

Supervised Prediction Self-Supervised
Predication

Supervised Prediction
Unsupervised

Reconstruction 

Complexity

Figure 1. Multiview information bottleneck diagram for self-supervised, unsupervised, and super-
vised learning.

However, in the self-supervised multiview scenario, we can construct our representa-
tion using various encoders and decoders. For instance, we need to specify the associated
random variable to define the information involved in I(X1; Z1). This variable could either
be based on the encoder of X1 − Pθ1(Z1|X1) or based on the encoder of X2 − Pθ2(Z2|X2),
which is subsequently passed to the cross-decoder Qη1(Z1|Z2) and then to the direct de-
coder Qψ1(X1|Z1).

To fully understand the information terms, we aim to optimize and distinguish be-
tween various “information path”; we marked each information path differently. For ex-
ample, I,P(X1),P(Z1|X1),P(Z2|Z1)

(X1, Z2) is based on the path P(X1) → P(Z1|X1) → P(Z2|Z1).
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In the following section, we will “translate” previous work into our present framework
and examine the loss function.

3.2. Optimization with Labels

After establishing our framework, we can now incorporate various learning algo-
rithms. We begin by examining classical single-view supervised information bottleneck
algorithms for deep networks that utilize labeled data during training and extend them
to the multiview scenario. Next, we broaden our perspective to include unsupervised
learning, where input reconstruction replaces labels, and semi-supervised learning, where
information-based regularization is applied to improve predictions.

3.2.1. Single-View Supervised Learning

In classical single-view supervised learning, the task of representation learning in-
volves finding a distribution p(z|x) that maps data observations x ∈ X to a representation
z ∈ Z, capturing only the relevant features of the input [95]. The goal is to predict a label
y ∈ Y using the learned representation. Achille and Soatto [91] defined the sufficiency of Z
for Y as the amount of label information retained after passing data through the encoder:

Definition 3. Sufficiency: A representation Z of X is sufficient for Y if and only if I(X; Y|Z) = 0.

Federici et al. [96] showed that Z is sufficient for Y if and only if the amount of
information regarding the task remains unchanged by the encoding procedure.

I(X; Y|Z) = 0 ⇔ I(X; Y) = I(Y; Z). (8)

A sufficient representation can predict Y as accurately as the original data X. In
Section 2.4, we saw a trade-off between prediction and generalization when there is a finite
amount of data. To reduce the generalization gap, we aim to compress X while retaining
as much predicate information on the labels as possible. Thus, we relax the sufficiency
definition and minimize the following objective:

L = I(X; Z)− βI(Z; Y). (9)

The mutual information I(Y; Z) determines how much label information is accessible
and reflects the model’s ability to predict performance on the target task. I(X; Z) represents
the information that Z carries about the input, which we aim to compress. However, I(X; Z)
contains both relevant and irrelevant information about Y. Therefore, using the chain rule
of information, Federici et al. [96] proposed splitting I(X, Z) into two terms:

I(X; Z) = I(X; Z|Y)︸ ︷︷ ︸
superfluous information

+ I(Z; Y)︸ ︷︷ ︸
predictive information

. (10)

The conditional information I(X, Z|Y) represents information in Z that is not predictive
of Y, i.e., superfluous information. The decomposition of input information enables us
to compress only irrelevant information while preserving the relevant information for
predicting Y. Several methods are available for evaluating and estimating these information-
theoretic terms in the supervised case (see Section 5 for details).

3.2.2. The Information Bottleneck Theory of Deep Learning

The IB hypothesis for deep learning proposes two distinct phases of training neural
networks [74]: the fitting and compression phases. The fitting phase involves extracting
information from the input and converting it into learned representations, characterized
by increased mutual information between inputs and hidden representations. Conversely,
the compression phase, which is much longer, concentrates on discarding unnecessary
information for target prediction, decreasing mutual information between learned represen-
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tations and inputs. In contrast, the mutual information between representations and targets
increases. For more information, see Geiger [97]. Despite the elegance and plausibility of
the IB hypothesis, empirically investigating it remains challenging [98].

The study of representation compression in deep neural networks (DNNs) for su-
pervised learning has shown inconsistent results. For instance, Chelombiev et al. [92]
discovered a positive correlation between generalization accuracy and the compression
level of the network’s final layer. Shwartz-Ziv et al. [93] also examined the relationship
between generalization and compression, demonstrating that generalization error exponen-
tially depends on mutual information, I(X; Z). Furthermore, Achille et al. [99] established
that flat minima, known for their improved generalization properties, constrain the mutual
information. However, Saxe et al. [100] showed that compression was not necessary for
generalization in deep linear networks. Basirat et al. [101] revealed that the decrease in
mutual information is essentially equivalent to geometrical compression. Other studies
have found that the mutual information between training inputs and inferred parameters
provides a concise bound on the generalization gap [14,102]. Lastly, Achille and Soatto [91]
explored using an information bottleneck objective on network parameters to prevent
overfitting and promote invariant representations.

3.2.3. Multiview IB Learning

The IB principle offers a rigorous method for learning encoders and decoders in super-
vised single-view problems. However, it is not directly applicable to multiview learning
problems, as it assumes only one information source as the input. A common solution
is to concatenate multiple views, though this neglects the unique characteristics of each
view. To address this issue, Xu et al. [103] introduced the large-margin multiview IB (LMIB)
as an extension of the original IB problem. The LMIB employs a communication system
where multiple senders represent various views of examples. The system extracts spe-
cific components from different senders by compressing examples through a “bottleneck”,
and the linear projectors for each view are combined to create a shared representation.
The large-margin principle replaces the maximization of mutual information in prediction,
emphasizing the separation of samples from different classes. For the complexity, they
used the Rademacher complexity, which is defined as follows:

Definition 4. Rademacher complexity Given a sample S = {X1, . . . , Xn} ∈ Xn and a real-
valued function class F defined on a space X, the empirical Rademacher complexity of F is defined as

R̂n(F) = Eσ

[
sup
f∈F

∣∣∣∣∣ 2n n

∑
j=1

σj f (Xj)

∣∣∣∣∣
∣∣∣∣∣X1, . . . , Xn

]
,

where σ = (σ1, . . . , σn) are i.i.d. Rademacher variables (taking values +1 or −1 with equal
probability).

In the LMIB framework, limiting the Rademacher complexity improves the solu-
tion’s accuracy and generalization error bounds. Moreover, the algorithm’s robustness is
enhanced when accurate views counterbalance noisy views.

However, the LMIB method has a significant limitation: it utilizes linear projections
for each view, which can restrict the combined representation when the relationship be-
tween different views is complex. To overcome this limitation, Wang et al. [104] proposed
using deep neural networks to replace linear projectors. Their model first extracts con-
cise latent representations from each view using deep networks and then learns the joint
representation of all views using neural networks. They minimize the objective:

L = αIP(X1),P(Z1|X1)(X1; Z1) + βIP(X2),P(Z2|X2)(X2; Z2)− IP(Z2|X2),P(Z2|X1)(Z1,2; Y). (11)

Here, α and β are trade-off parameters, Z1 and Z2 are the two neural networks’ represen-
tations, and Z1,2 is the joint embedding of Z1 and Z2. The first two terms decrease the
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mutual information between a view’s latent representation and its original data representa-
tion, resulting in a simpler and more generalizable model. The final term forces the joint
representation to maximize the discrimination ability for the downstream task.

3.2.4. Semi-Supervised IB Learning: Leveraging Unlabeled Data

Obtaining labeled data can be challenging or expensive in many practical scenar-
ios, while many unlabeled samples may be readily available. Semi-supervised learning
addresses this issue by leveraging the vast amount of unlabeled data during training in
conjunction with a small set of labeled samples. Common strategies to achieve this involve
adding regularization terms or adopting mechanisms that promote better generalization.
Berthelot et al. [105] grouped regularization methods into three primary categories: entropy
minimization, consistency regularization, and generic regularization.

Voloshynovskiy et al. [106] introduced an information-theoretic framework for semi-
supervised learning based on the IB principle. In this context, the semi-supervised classifi-
cation problem involves encoding input X into the latent space Z while preserving only
class-relevant information. A supervised classifier can achieve this if there are sufficient
labeled data. However, when the number of labeled examples is limited, the standard label
classifier p(y|z) becomes unreliable and requires regularization.

To tackle this issue, the authors assumed a prior on the class label distribution p(y).
They introduced a term to minimize the DKL between the assumed marginal prior and
the empirical marginal prior, effectively regularizing the conditional label classifier with
the labels’ marginal distribution. This approach reduces the classifier’s sensitivity to the
scarcity of labeled examples. They proposed two variational IB semi-supervised extensions
for the priors:

Handcrafted priors: These priors are predefined for regularization and can be based
on domain knowledge or statistical properties of the data. Alternatively, they can be learned
using other networks. Handcrafted priors in this context are similar to priors used in the
variational information bottleneck (VIB) formalism [13,104].

Learnable priors: Voloshynovskiy et al. [106] also suggests using learnable priors as an
alternative to handcrafted regularization priors on the latent representation. This method
involves regularizing Z through another IB-based regularization with two components:
(i) latent space regularization and (ii) observation space regularization. In this case, an addi-
tional hidden variable M is introduced after the representation to regulate the information
flow between Z and Y. An autoencoder q(m|z) is employed, and the optimization process
aims to compress the information flowing from Z to M while retaining only label-relevant
information. The IB objective is defined as follows:

L = DKL(q(m|z)||p(m|z))− βDKL(q(x|m)||p(x|m))− βyDKL(p(y|z)||p(y))
⇔ I(M; Z)− βI(M; X)− βy I(Y; Z).

(12)

Here, β and βy are hyperparameters that balance the trade-off between the relevance
of M to the labels and the compression of Z into M.

Furthermore, Voloshynovskiy et al. [106] demonstrated that various popular semi-
supervised methods can be considered special cases of the optimization problem de-
scribed above. Notably, the semi-supervised AAE [107], CatGAN [108], SeGMA [109], and
VAE [110] can all be viewed as specific instantiations of this framework.

3.2.5. Unsupervised IB Learning

In the unsupervised setting, data samples are not directly labeled by classes.
Voloshynovskiy et al. [106] defined the unsupervised IB as a "compressed" parameter-
ized mapping of X to Z, which preserves some information in Z about X through the
reverse decoder X̄ = Q(X|Z). Therefore, the Lagrangian of the unsupervised IB can be
defined as follows:
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IP(X),P(Z|X)(X; Z)− βIP(Z),Q(X|Z)(Z; X̄), (13)

where I(X; Z) is the information determined by the encoder q(z|x) and I(Z; X̄) is the
information determined by the decoder q(x|z), i.e., the reconstruction error. In other words,
the unsupervised IB is a special case of the supervised IB, where labels are replaced with
the reconstruction performance of the training input. Alemi et al. [13] showed that the
variational autoencoder (VAE) [111] and β-VAE [112] are special cases of the unsupervised
variational IB. Voloshynovskiy et al. [106] extended their results and showed that many
models, including adversarial autoencoders [107], InfoVAEs [113], and VAE/GANs [114],
could be viewed as special cases of the unsupervised IB. The main difference between them
is the bounds on the different mutual information of the IB. Furthermore, the unsupervised
IB was used by Uğur et al. [115] to derive lower bounds for their unsupervised generative
clustering framework, while Roy et al. [116] used it to study vector-quantized autoencoders.

Voloshynovskiy et al. [106] pointed out that for the classification task in the supervised
IB, the latent space Z should have sufficient statistics for Y, whose entropy is much lower
than X. This results in a highly compressed representation where sequences close in the
input space might be close in the latent space, and the less significant features will be
compressed. In contrast, in the unsupervised setup, the IB suggests compressing the
input to the encoded representation so that each input sequence can be decoded uniquely.
In this case, the latent space’s entropy should correspond to the input space’s entropy,
and compression is much more difficult.

4. Self-Supervised Multiview Information Bottleneck Learning

How can we learn without labels and still achieve good predictive power? Is compres-
sion necessary to obtain an optimal representation? This section analyzes and discusses
how to achieve an optimal representation for self-supervised learning when labels are
not available during training. We review recent methods for self-supervised learning
and show how they can be integrated into a single framework. We compare their objec-
tive functions, implicit assumptions, and theoretical challenges. Finally, we consider the
information-theoretic properties of these representations, their optimality, and different
ways of learning them.

One approach to enhance deep learning methods is to apply the InfoMax principle
in a multiview setting [17,117]. As one of the earliest approaches, Linsker [17] proposed
maximizing the information transfer from input data to its latent representation, showing
its equivalence to maximizing the determinant of the output covariance under the Gaussian
distribution assumption. Becker and Hinton [118] introduced a representation learning
approach based on maximizing an approximation of the mutual information between
alternative latent vectors obtained from the same image. The most well-known application
is the Independent Component Analysis (ICA) InfoMax algorithm [119], designed to
separate independent sources from their linear combinations. The ICA-InfoMax algorithm
aims to maximize the mutual information between mixtures and source estimates while
imposing statistical independence among outputs. The Deep InfoMax approach [120]
extends this idea to unsupervised feature learning by maximizing the mutual information
between input and output while matching a prior distribution for the representations.
Recent work has applied this principle to a self-supervised multiview setting [46,120–122],
wherein these works maximize the mutual information between the views Z1 and Z2 using
the classifier q(z1|z2), which attempts to predict one representation from the other.

However, Tschannen et al. [123] demonstrated that the effectiveness of InfoMax mod-
els is more attributable to the inductive biases introduced by the architecture and estimators
than to the training objectives themselves, as the InfoMax objectives can be trivially maxi-
mized using invertible encoders. Moreover, a fundamental issue with the InfoMax principle
is that it retains irrelevant information about the labels, contradicting the core concept of the
IB principle, which advocates compressing the representation to enhance generalizability.
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Going beyond the InfoMax principle requires us to tackle the crucial question: How
do we discern between relevant and irrelevant information? A foundational concept in ad-
dressing this challenge is partial information decomposition (PID), as outlined by Williams
and Beer [124] and further explored in Gutknecht et al. [125]. PID provides an elegant
framework for categorizing the information provided by a set of source variables about a
target variable into distinct types: unique, shared (redundant), and synergistic information.

PID enables us to leverage the complexity of information interactions. For example,
shared information refers to common information across multiple sources, valuable for
tasks that aggregate information from multiple sources or utilize redundancy in the data.
Unique information, conversely, is knowledge exclusive to a specific source, enhancing
the diversity of representations, and is particularly useful for tasks requiring specialized
knowledge. Synergistic information arises from the combination of sources, unveiling
insights unattainable when sources are considered individually.

For example, Sridharan and Kakade [126] proposed the multiview IB framework, which
uses the shared information as the way to compress. According to this framework, in the
multiview without labels setting, the IB principle of preserving relevant data while com-
pressing irrelevant data requires assumptions regarding the relationship between views
and labels. They presented the multiview assumption, which asserts that either view (ap-
proximately) would be sufficient for downstream tasks. By this assumption, they define
the relevant information as the shared information between the views. Therefore, augmen-
tations (such as changing the image style) should not affect the labels.

Additionally, the views will provide most of the information in the input regarding
downstream tasks. We improve generalization without affecting the performance by
compressing the information not shared between the two views. Their formulation is
as follows:

Assumption 1. The multiview assumption: There exists a ϵinfo (which is assumed to be small)
such that

I(Y; X2|X1) ≤ ϵinfo

I(Y; X1|X2) ≤ ϵinfo.

As a result, when the information sharing parameter, ϵinfo, is small, the information
shared between views includes task-relevant details. For instance, in self-supervised
contrastive learning for visual data [120], views represent various augmentations of the
same image. In this scenario, the multiview assumption is considered mild if the downstream
task remains unaffected by the augmentation [127]. Image augmentations can be perceived
as altering an image’s style without changing its content. Thus, Tsai et al. [128] contends that
the information required for downstream tasks should be preserved in the content rather
than the style. This assumption allows us to separate the information into relevant (shared
information) and irrelevant (not shared) components and to compress only the unimportant
details that do not contain information about downstream tasks. Based on this assumption,
we aim to maximize the relevant information I(X2; Z1) and minimize I(X1; Z1 | X2)—the
exclusive information that Z1 contains about X1, which cannot be predicted by observing
X2. This irrelevant information is unnecessary for the prediction task and can be discarded.
In the extreme case, where X1 and X2 share only label information, this approach recovers
the supervised IB method without labels. Conversely, if X1 and X2 are identical, this method
collapses into the InfoMax principle, as no information can be accurately discarded.

Federici et al. [96] used the relaxed Lagrangian objective to obtain the minimal suffi-
cient representation Z1 for X2 as follows:

L1 = IP(Z1|X1)(Z1; X1 | X2)− β1 IP(X2|Z2)P(Z2|Z1)P(Z1|X1)(X2; Z1), (14)
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and the symmetric loss to obtain the minimal sufficient representation Z2 for X1:

L2 = IP(Z2|X2)(Z2; X2 | X1)− β2 IP(X1|1),Q(Z1|Z2),P(Z2|X2)) I(X1; Z2), (15)

where β1 and β2 are the Lagrangian multipliers introduced by the constraint optimiza-
tion. By defining Z1 and Z2 on the same domain and re-parameterizing the Lagrangian
multipliers, the average of the two loss functions can be upper-bounded as follows:

L = −IP(Z1|X1),Q(Z2|Z1),P(Z2|X2),Q(Z1|Z2)(Z1; Z2) + βDSKL[p(z1 | x1)||P(z2 | x2)], (16)

where DSKL represents the symmetrized KL divergence obtained by averaging the expected
values of DKL(p(z1 | x1)||p(z2 | x2)) and DKL(p(z2 | x2)||p(z1 | x1)). Note that when the
mapping from X1 to Z1 is deterministic, I(Z1; X1 | X2) minimization and H(Z1 | X2) mini-
mization are interchangeable and the algorithms of Federici et al. [96] and Tsai et al. [128]
minimize the same objective. Another implementation of the same idea is based on the
conditional entropy bottleneck (CEB) algorithm [129] and proposed by Lee et al. [130]. This
algorithm adds the residual information as a compression term to the InfoMax objective
using the reverse decoders q(z1 | x2) and q(z2 | x1).

In conclusion, all the algorithms mentioned above are based on the multiview assump-
tion. Utilizing this assumption, they can distinguish relevant information from irrelevant
information. As a result, all these algorithms aim to maximize the information (or the
predictive ability) of one representation with respect to the other view while compressing
the information between each representation and its corresponding view. The key dif-
ferences between these algorithms lie in the decomposition and implementation of these
information terms.

Dubois et al. [131] offers another theoretical analysis of the IB for self-supervised
learning. Their work addresses the question of the minimum bit rate required to store the
input but still achieve a high performance on a family of downstream tasks Y ∈ Y. It is a
rate-distortion problem, where the goal is to find a compressed representation that will give
us a good prediction for every task. We require that the distortion measure is bounded:

DT(X, Z) = sup
Y∈Y

H(Y | Z1)− H(Y | X1) ≤ δ.

Accessing the downstream task is necessary to find the solution during the learning
process. As a result, Dubois et al. [131] considered only tasks invariant to some equivalence
relation, which divides the input into disjoint equivalence classes. An example would be
an image with labels that remain unchanged after augmentation. This is similar to the
multiview assumption where ϵin f o → 0. By applying Shannon’s rate-distortion theory, they
concluded that the minimum achievable bit rate is the rate-distortion function with the
above invariance distortion. Thus, the optimal rate can be determined by minimizing the
following Lagrangian:

L = min
P(Z1|X1)

IP(Z1|X1)(X1; Z1) + βH(Z2 | X1). (17)

Using this objective, the maximization of information with labels is replaced by max-
imizing the prediction ability of one view from the original input, regularized by direct
information from the input. Similarly to the above results, we would like to find a rep-
resentation Z1 that compresses the input X1 so that Z1 has the maximum information
about X2.

4.1. Implicit Compression in Self-Supervised Learning Methods

While the optimal IB representation is based on the multiview assumption, most
self-supervised learning models only use the InfoMax principle and maximize the mutual
information I(Z1; Z2) without an explicit regularization term. However, recent studies
have shown that contrastive learning creates compressed representations that include
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only relevant information [132,133]. The question is why is the learned representation
compressed? The maximization of I(Z1; Z2) could theoretically be sufficient to retain all the
information from both X1 and X2 by making the representations invertible. In this section,
we attempt to explain this phenomenon.

We begin with the InfoMax principle [17], which maximizes the mutual information
between the representations of random variables Z1 and Z2 of the two views. We can
lower-bound it using the following:

I(Z1; Z2) = H(Z)− H(Z1 | Z2) ≥ H(Z1) +E[log q(z1 | z2)]. (18)

The bound is tight when q(z1|z2) = p(z1|z2), in which case E[log q(z1 | z2)], or the
negative reconstruction error, equals the conditional entropy H(Z1|Z2).

In the supervised case, where Z is a learned stochastic representation of the input and
Y is the label, we aim to optimize

I(Y; Z) ≥ H(Y) +E[log q(Y | Z)]. (19)

Since Y is constant, optimizing the information I(Z; Y) requires only minimizing the
prediction term E[log q(Y|Z)] by making Z more informative about Y. This term is the
cross-entropy loss for classification or the square loss for regressions. Thus, we can minimize
the log loss without any other regularization on the representation.

In contrast, for the self-supervised case, we have a more straightforward option to
minimize H(Z1|Z2): making Z1 easier to predict by Z2, which can be achieved by reducing
its variance along specific dimensions. If we do not regularize H(Z1), it will decrease to
zero, and we will observe a collapse. This is why, in contrastive methods, the variance in the
representation (large entropy) is significant only in the directions with a high variance in the
data, which is enforced by data augmentation [61]. According to this analysis, the network
benefits from making the representations “simple” (easier to predict). Hence, even though
our representation does not have explicit information-theoretical constraints, the learning
process will compress the representation.

4.2. Beyond the Multiview Assumption

According to the multiview IB analysis presented in Section 4, the optimal way to
create a useful representation is to maximize the mutual information between the represen-
tations of different views while compressing irrelevant information in each representation.
In fact, as discussed in Section 4.1, we can achieve this optimal compressed representation
even without explicit regularization. However, this optimality is based on the multiview
assumption, which states that the relevant information for downstream tasks comes from
the information shared between views. Therefore, Tian et al. [133] concluded that when a
minimal sufficient representation has been obtained, the optimal views for self-supervised
learning are determined by downstream tasks.

However, the multiview assumption is highly constrained, as all relevant information
must be shared between all views. In cases where this assumption is incorrect, such as
with aggressive data augmentation or multiple downstream tasks or modalities, sharing
all the necessary information can be challenging. For example, if one view is a video
stream while the other is an audio stream, the shared information may be sufficient for
object recognition but not for tracking. Furthermore, relevant information for downstream
tasks may not be contained within the shared information between views, meaning that
removing non-shared information can negatively impact the performance.

Kahana and Hoshen [134] identified a series of tasks that violate the multiview as-
sumption. To accomplish these tasks, the learned representation must also be invariant to
unwanted attributes, such as bias removal and cross-domain retrieval. In such cases, only
some attributes have labels, and the objective is to learn an invariant representation for the
domain for which labels are provided while also being informative for all other attributes
without labels. For example, for face images, only the identity labels may be provided,
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and the goal is to learn a representation that captures the unlabeled pose attribute but
contains no information about the identity attribute. The task can also be applied to fair
decisions, cross-domain matching, model anonymization, and image translation.

Wang et al. [132] formalized another case where the multiview assumption does not hold
when non-shared task-relevant information cannot be ignored. In such cases, the minimal
sufficient representation contains less task-relevant information than other sufficient repre-
sentations, resulting in an inferior performance. Furthermore, their analysis shows that in
such cases, the learned representation in contrastive learning is insufficient for downstream
tasks, which may overfit the shared information.

As a result of their analysis, Wang et al. [132] and Kahana and Hoshen [134] proposed
explicitly increasing mutual information between the representation and input to preserve
task-relevant information and prevent the compression of unshared information between
views. In this case, the two regularization terms of the two views are incorporated into the
original InfoMax objective, and the following objective is optimized:

L = min
P(Z1|X1),p(Z2|X2)

−IP(Z1|X1)(X1; Z1)− IP(Z2|X2)(X2; Z2)− βIP(Z1|X1),P(Z2|Z1)(Z1; Z2). (20)

Wang et al. [132] demonstrated the effectiveness of their method for SimCLR [7], BYOL [55],
and Barlow Twins [135] across classification, detection, and segmentation tasks.

4.3. To Compress or Not to Compress?

As seen in Equation (20), when the multiview assumption is violated, the objective
for obtaining an optimal representation is to maximize the mutual information between
each input and its representation. This contrasts with the situation in which the multiview
assumption holds, or the supervised case, where the objective is to minimize the mutual in-
formation between the representation and the input. In both supervised and unsupervised
cases, we have direct access to the relevant information, which we can use to separate and
compress irrelevant information. However, in the self-supervised case, we depend heavily
on the multiview assumption. If this assumption is violated due to unshared information
between views that is relevant for the downstream task, we cannot separate relevant and
irrelevant information. Furthermore, the learning algorithm’s nature requires that this
information be protected by explicitly maximizing it.

As datasets continue to expand in size and models are anticipated to serve as base
models for various downstream tasks, the multiview assumption becomes less pertinent.
Consequently, compressing irrelevant information when the multiview assumption does not
hold presents one of the most significant challenges in self-supervised learning. Identifying
new methods to separate relevant from irrelevant information based on alternative assump-
tions is a promising avenue for research. It is also essential to recognize that empirical
measurement of information-theoretic quantities and their estimators plays a crucial role in
developing and evaluating such methods.

5. Optimizing Information in Deep Neural Networks: Challenges and Approaches

Recent years have seen information-theoretic analyses employed to explain and op-
timize deep learning techniques [74]. Despite their elegance and plausibility, empirically
measuring and analyzing information in deep networks presents challenges. Two critical
problems are (1) information in deterministic networks and (2) estimating information in
high-dimensional spaces.

5.1. Information in Deterministic Networks

Information-theoretic methods have significantly impacted deep learning [13,15,74].
However, a key challenge is addressing the source of randomness in deterministic DNNs.

The mutual information between the input and representation is infinite, leading to
ill-posed optimization problems or piecewise constant outcomes [136,137]. To tackle this
issue, researchers have proposed various solutions. One common approach is to discretize
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the input distribution and real-valued hidden representations by binning, which facili-
tates non-trivial measurements and prevents the mutual information from always taking
the maximum value of the log of the dataset size, thus avoiding ill-posed optimization
problems [74].

However, binning and discretization are essentially equivalent to geometrical compres-
sion and serve as clustering measures [137]. Moreover, this discretization depends on the
chosen bin size and does not track the mutual information across varying bin sizes [137,138].
To address these limitations, researchers have proposed alternative approaches, such as
interpreting binned information as a weight decay penalty [139], estimating mutual infor-
mation based on lower bounds assuming a continuous input distribution without making
assumptions about the network’s output distribution properties [140–142], injecting addi-
tive noise, and considering data augmentation as the source of noise [74,130,131,137].

5.2. Measuring Information in High-Dimensional Spaces

Estimating mutual information in high-dimensional spaces presents a significant
challenge when applying information-theoretic measures to real-world data. This problem
has been extensively studied [143,144], revealing the inefficiency of solutions for large
dimensions and the limited scalability of known approximations with respect to the sample
size and dimension. Despite these difficulties, various entropy and mutual information
estimation approaches have been developed, including classic methods like k-nearest
neighbors (KNNs) [145] and kernel density estimation techniques [146], as well as more
recent efficient methods.

Chelombiev et al. [92] developed adaptive mutual information estimators based on
entropy equal bins and the scaled noise kernel density estimator. Generative decoder
networks, such as PixelCNN++ [147], have been employed to estimate a lower bound on
mutual information [148–150]. Another strategy includes ensemble dependency graph
estimators (EDGEs), adaptive mutual information estimation methods by merging random-
ized locality-sensitive hashing (LSH), dependency graphs, and ensemble bias reduction
techniques [151]. The Mutual Information Neural Estimator (MINE) [152] maximizes KL
divergence using the dual representation of Donsker and Varadhan [153] and has been
employed for direct mutual information estimation [154]. Shwartz-Ziv and Alemi [155]
developed a controlled framework that utilized the neural tangent kernels [156], in order
to obtain tractable information measures.

Recent work by Poole et al. [157] introduced a framework for variational bounds
of mutual information (MI), addressing bias and variance in existing estimators. This
approach unifies recent developments and proposes a continuum of lower bounds that
flexibly trades off bias and variance. In contrast, McAllester and Stratos [158] highlighted
the statistical limitations inherent in all MI measuring methods. They suggest a difference-
of-entropies estimator as a feasible alternative for estimating large MI.

Improving mutual information estimation can be achieved using larger batch sizes,
although this may negatively impact the generalization performance and memory require-
ments. Alternatively, researchers have suggested employing surrogate measures for mutual
information, such as log-determinant mutual information (LDMI), based on second-order
statistics [159,160], which reflects linear dependence. Goldfeld and Greenewald [161] pro-
posed the Sliced Mutual Information (SMI), defined as an average of MI terms between
one-dimensional projections of high-dimensional variables. SMI inherits many properties
of its classic counterpart. It can be estimated with optimal parametric error rates in all
dimensions by combining an MI estimator between scalar variables with an MC integra-
tor [161]. The k-SMI, introduced by Goldfeld et al. [162], extends the SMI by projecting
to a k-dimensional subspace, which relaxes the smoothness assumptions, improves the
scalability, and enhances the performance.

In conclusion, estimating and optimizing information in deep neural networks present
significant challenges, particularly in deterministic networks and high-dimensional spaces.
Researchers have proposed various approaches to address these issues, including discretiza-
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tion, alternative estimators, and surrogate measures. As the field continues to evolve, it is
expected that more advanced techniques will emerge to overcome these challenges and
facilitate the understanding and optimization of deep learning models.

6. Related Work

This work lies at the intersection of information theory and SSL, aiming to enhance
machine learning models through the principles of encoding, compression, and generalization.

6.1. Information Theory Reviews

Information theory has been crucial in machine learning’s evolution, starting with
Shannon [163], who introduced key concepts like entropy and mutual information. Further
reviews by Cover and Thomas [164] and Yeung [165] extended these ideas, incorporating
computational advances to address data transmission and decoding challenges. Recent
studies, such as those by Wilde [166] and Dimitrov et al. [167], have explored information
theory’s application in quantum computing and neuroscience.

Significant review works on the IB principle include Slonim [168], which thoroughly
reviewed the IB method and its extensions, including the multivariate IB. Recent research
by Goldfeld and Polyanskiy [169] and Shwartz-Ziv and Tishby [74] has applied IB theory to
deep learning, optimizing feature representations to balance informativeness and compres-
sion. This research underscores the theory’s importance in advancing machine learning
algorithms and deep learning, seeking to bridge theory and practice.

6.2. Self-Supervised Learning Reviews

SSL represents a significant shift, allowing for the use of unlabeled data to learn
valuable representations. Jaiswal et al. [170] covers SSL’s progress, especially in contrastive
learning’s application to computer vision, NLP, and beyond. It provides an overview of
various methods, showcasing how SSL improves learning representations for diverse tasks,
and evaluates the potential and limitations of current methods.

Liu et al. [48] and Gui et al. [171] give detailed analyses of SSL techniques across several
domains, including computer vision, NLP, and graph learning. They details how SSL,
using input data for supervision, overcomes supervised learning’s limitations, enhancing
representation learning without manual labeling. This survey classifies methods into
generative, contrastive, and generative–contrastive (adversarial) categories, providing
theoretical insights.

Patil and Gudivada [172] and Wang et al. [173] delve into SSL-enhanced language
models and their application to non-sequential tabular data, respectively. Meanwhile, Xie
et al. [174] highlights the parallels between graph neural networks and SSL algorithms,
and Hojjati et al. [175] discusses SSL’s impact on anomaly detection in fields such as
cybersecurity, finance, and healthcare. Moreover, Schiappa et al. [176] and Yu et al. [177]
reviewed SSL in videos and recommendation systems.

Our work compiles these insights, offering a comprehensive review that combines
the theoretical rigor of information theory with the practical advancements of SSL. Our
goal is to pave the way for future research that leverages this interdisciplinary approach to
uncover new efficiencies and applications in machine learning.

7. Future Research Directions

Despite the solid foundation established by existing self-supervised learning methods from
an information theory perspective, several potential research directions warrant exploration:

• Self-supervised learning with non-shared information. As discussed in Section 4,
the separation of relevant (preserved) and irrelevant (compressed) information relies
on the multiview assumption. This assumption, which states that only shared informa-
tion is essential for downstream tasks, is rather restrictive. For example, situations may
arise where each view contains distinct information relevant to a downstream task or
multiple tasks necessitate different features. Some methods have been proposed to
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tackle this problem, but they mainly focus on maximizing the network’s information
without explicit constraints. Formalizing this scenario and exploring differentiating
between relevant and irrelevant data based on non-shared information represents an
intriguing research direction.

• Self-supervised learning for tabular data. At present, the internal compression of
self-supervised learning methods may compress relevant information due to improper
augmentation (Section 4.1). Consequently, we must heavily rely on generating the two
views, which must accurately represent information related to the downstream pro-
cess. Custom augmentation must be developed for each domain, taking into account
extensive prior knowledge on data augmentation. While some papers have attempted
to extend self-supervised learning to tabular data [178,179], further work is necessary
from both theoretical and practical standpoints to achieve a high performance with
self-supervised learning for tabular data [180]. The augmentation process is crucial for
the performance of current vision and text models. In the case of tabular data, employ-
ing information-theoretic loss functions that do not require information compression
may help harness the benefits of self-supervised learning.

• Integrating other learning methods into the information-theoretic framework. Prior
works have investigated various supervised, unsupervised, semi-supervised, and self-
supervised learning methods, demonstrating that they optimize information-theoretic
quantities. However, state-of-the-art methods employ additional changes and en-
gineering practices that may be related to information theory, such as the stop gra-
dient operation utilized by many self-supervised learning methods today [53,55].
The Expectation–Maximization (EM) algorithm [181] can be employed to explain this
operation when one path is the E-step and the other is the M-step. Additionally, Elidan
and Friedman [182] proposed an IB-inspired version of the EM algorithm, which could
help develop information-theoretic-based objectives using the stop gradient operation.

• Expanding the analysis to usable information. While information theory offers
a rigorous conceptual framework for describing information, it neglects essential
aspects of computation. Conditional entropy, for example, is directly related to the
predictability of a random variable in a betting game where agents are rewarded
for accurate guesses. However, the standard definition assumes that agents have no
computational bounds and can employ arbitrarily complex prediction schemes [76].
In the context of deep learning, predictive information H(Y|Z) measures the amount
of information that can be extracted from Z about Y given access to all decoders
p(y|z) in the world. Recently, Xu et al. [183] introduced predictive V-information as an
alternative formulation based on realistic computational constraints.

• Extending self-supervised learning’s information-based perspective to energy-
based model optimization. Until now, research combining self-supervised learning
with information theory has focused on probabilistic models with tractable likelihoods.
These models enable the specific optimization of model parameters concerning the
tractable log-likelihood [184–187] or a tractable lower bound of the likelihood [13,111].
Although models with tractable likelihoods offer certain benefits, their scope is limited
and necessitates a particular format. Energy-based models (EBMs) present a more
flexible, unified framework. Rather than specifying a normalized probability, EBMs
define inference as minimizing an unnormalized energy function and learning as
minimizing a loss function. The energy function does not require integration and
can be parameterized with any nonlinear regression function. Inference typically
involves finding a low-energy configuration or sampling from all possible configu-
rations such that the probability of selecting a specific configuration follows a Gibbs
distribution [188,189].
Investigating energy-based models for self-supervised learning from both theoretical
and practical perspectives can open up numerous promising research directions.
For instance, we could directly apply tools developed for energy-based models and
statistical machines to optimize the model, such as Maximum Likelihood Training with
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MCMC [190], score matching [191], denoising score matching [192,193], and score-
based generation models [194].

• Expanding the multiview framework to accommodate more views and tasks. The
multiview self-supervised IB framework can be extended to cases involving more than
two views (X1, · · · , Xn) and multiple downstream tasks (Y1, · · · , YK). A simple exten-
sion of the multiview IB framework can be achieved by setting the objective function
to maximize the joint mutual information of all views’ representations I(Z1; · · · Zn)
and compressing the individual information for each view I(Xi; Zi), 1 ≤ i ≤ N.
However, to ensure the optimality of this objective, we must expand the multiview
assumption to include more than two views. In this scenario, we need to assume that
relevant information is shared among all different views and tasks, which might be
overly restrictive. As a result, defining and analyzing a more refined version of this
naive solution is essential. One potential approach involves utilizing the multi-feature
information bottleneck (MfIB) [195], which extends the original IB. The MfIB pro-
cesses multiple feature types simultaneously and analyzes data from various sources.
This framework establishes a joint distribution between the multivariate data and
the model. Rather than solely preserving the information of one feature variable
maximally, the MfIB concurrently maintains multiple feature variables’ information
while compressing them. The MfIB characterizes the relationships between different
sources and outputs by employing the multivariate information bottleneck [196] and
setting Bayesian networks.

8. Conclusions

In this study, we delved deeply into the concept of optimal representation in self-
supervised learning through the lens of information theory. We synthesized various
approaches, highlighting their foundational assumptions and constraints, and integrated
them into a unified framework. Additionally, we explored the key information-theoretic
terms that influence these optimal representations and the methods for estimating them.

While supervised and unsupervised learning offer more direct access to relevant in-
formation, self-supervised learning depends heavily on assumptions about the relationship
between data and downstream tasks. This reliance makes distinguishing between relevant
and irrelevant information considerably more challenging, necessitating further assumptions.

Despite these challenges, information theory stands out as a robust and versatile
framework for analysis and algorithmic development. This adaptable framework caters to
a range of learning paradigms and elucidates the inherent assumptions underpinning data
and model optimization.

With the rapid growth of datasets and the increasing expectations placed on models
to handle multiple downstream tasks, the traditional multiview assumption might become
less reliable. One significant challenge in self-supervised learning is the precise compression
of irrelevant information, especially when these assumptions are compromised.

Future research avenues might involve expanding the multiview framework to include
more views and tasks and deepening our understanding of information theory’s impact on
facets of deep learning, such as reinforcement learning and generative models.

In summary, information theory is a crucial tool in our quest to better understand
and optimize self-supervised learning models. By harnessing its principles, we can more
adeptly navigate the intricacies of deep neural network development, paving the way for
creating more effective models.
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