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Abstract: Ensuring robustness of image classifiers against adversarial attacks and spurious correlation
has been challenging. One of the most effective methods for adversarial robustness is a type of data
augmentation that uses adversarial examples during training. Here, inspired by computational
models of human vision, we explore a synthesis of this approach by leveraging a structured prior
over image formation: the 3D geometry of objects and how it projects to images. We combine
adversarial training with a weight initialization that implicitly encodes such a prior about 3D objects
via 3D reconstruction pre-training. We evaluate our approach using two different datasets and
compare it to alternative pre-training protocols that do not encode a prior about 3D shape. To
systematically explore the effect of 3D pre-training, we introduce a novel dataset called Geon3D,
which consists of simple shapes that nevertheless capture variation in multiple distinct dimensions
of geometry. We find that while 3D reconstruction pre-training does not improve robustness for
the simplest dataset setting, we consider (Geon3D on a clean background) that it improves upon
adversarial training in more realistic (Geon3D with textured background and ShapeNet) conditions.
We also find that 3D pre-training coupled with adversarial training improves the robustness to
spurious correlations between shape and background textures. Furthermore, we show that the benefit
of using 3D-based pre-training outperforms 2D-based pre-training on ShapeNet. We hope that these
results encourage further investigation of the benefits of structured, 3D-based models of vision for
adversarial robustness.

Keywords: robust vision; adversarial examples; 3D vision

1. Introduction

Adversarial examples were first reported about a decade ago [1]. Despite tremendous
research efforts since then, adversarial robustness remains perhaps the most important chal-
lenge to safe, real-world deployment of modern computer vision systems. Many proposals
to defend against adversarial perturbations are later found to be broken [2]. A promising
defense method that has withstood scrutiny is adversarial training [3]. Previous work
extends adversarial training via surrogate-loss [4], using additional unlabelled data [5,6],
or pre-training on more natural images [7]. However, recent work shows that adversarially
trained image classifiers tend to rely on backgrounds, which makes models more sensitive
to spurious correlations [8].

In this work, we turn to recent advances in 3D computer vision that incorporate
prior knowledge of how 3D scenes are projected to 2D images via differentiable render-
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ing (especially implicit neural representations [9,10]). The 3D reconstruction objective
during pre-training implicitly encodes the prior over-3D scene structure (object shape
and pose). We investigate how weight initialization via 3D reconstruction pre-training
improves upon adversarial training in terms of robustness to both adversarial attacks and
spurious correlation.

To do so, we consider recent 3D reconstruction models that are equipped with an
image encoder based on Convolutional Neural Networks (CNNs). The goal of such an
image encoder is to produce efficient representations for 3D reconstruction, and therefore,
it is expected to encode an implicit prior of 3D scenes, as summarized in Figure 1.

CNN Encoder

Input
image

Neural Renderer 

Sampled
coordinates

Predicted
Image

(a) 2D supervision-based 3D reconstruction pipeline

z
Classification

Head
Input
image

(b) Adversarial training after 3D reconstruction pre-training

CNN Encoder z

Figure 1. (a) A class of 3D reconstruction models we are interested in is presented, where a CNN
encoder is used to condition the 3D reconstruction model on shape features of 2D input images. (b) To
leverage 3D-based pre-training, we extract the weights from the CNN encoder that is pre-trained on
3D reconstruction and use them as initialization for adversarial training on 2D rendered images of
3D objects. The goal of this paper is to investigate the effect of 3D reconstruction pre-training of these
image encoders on adversarial robustness.

Our proposal is inspired by probabilistic models of human vision, that emphasize
(in addition to uncertainty) the richness of perception in terms of 3D geometry, including
object shape and pose. This ability to make inferences about the underlying scene structure
from input images—also known as analysis-by-synthesis—is thought to be critical for the
robustness of biological vision [11,12]. Our work leaves the role of proper uncertainty
quantification (via Bayesian inference) for improving robustness to adversarial and spu-
rious correlation attacks as future work and instead focuses on implicitly encoding prior
knowledge about inferring 3D geometry.

Standard benchmark datasets for adversarial robustness of image classifiers — e.g.,
MNIST, CIFAR-10 and Tiny-ImageNet — are not suitable to address our question. These
datasets are not designed to be useful for 3D reconstruction tasks. To understand the
interplay between encoding prior knowledge about 3D geometry via pre-training and the
performance of adversarial training, we introduce Geon3D—a novel dataset comprising
simple yet realistic shape variations, derived from the human object recognition hypothesis
called geon theory [13].

Using Geon3D as a bridge from simple objects to more complex real shape objects
like ShapeNet, we systematically perform experiments varying the complexity of the
shape dataset. We first find that 3D-based pre-training does not improve the performance
of adversarial training in the simplest shape dataset we consider (Geon3D with black
background). However, when in a more realistic variation of Geon3D with textured
backgrounds, we find 3D-based pre-training strengthens L∞-based adversarial training.
When we introduce spurious correlation between shape and background, 3D-based pre-
training outperforms vanilla adversarial training for both L∞ and L2 threat models in
terms of robustness to spurious correlation. We further confirm that this trend continues
to hold for more complicated shape objects, namely ShapeNet dataset [14]. Crucially,
we show that the benefit of 3D-based pre-training outperforms 2D-based pre-training on
ShapeNet. While our study is limited to shape datasets, as 3D reconstruction techniques
improve to deal with increasingly more realistic and complicated settings, we hope our
study serves as a first step towards better understanding the relationship between 3D vision
and adversarial robustness.
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2. Related Work

Pre-training for adversarial training. Ref. [7] proposes pre-training to improve
adversarial robustness, but their work focuses on classification-based pre-training by
introducing more natural images. In contrast, our work uses pre-training to encode a prior
about 3D object shape and pose. In addition to pre-training, some work explores using
additional data. Carmon et al. [5], Alayrac et al. [6] propose using unlabelled data, where
they improve adversarial robustness by training models on CIFAR-10 and unlabelled data
from the 80 Million Tiny Images dataset. These works are orthogonal to ours, since our
work specifically looks to incorporate priors about 3D geometry.

Shape bias to induce robustness. A recent line of work explores methods to in-
crease shape bias as a way to make neural network models more robust to image pertur-
bations [15–17]. A notable example is given by [15], who proposes to train a model on
Stylized-ImageNet (SIN), which is created by imposing various painting styles onto images
from ImageNet [18]. Unlike these studies, which indirectly tackle shape bias by reducing
the reliance on texture, our work induces shape bias directly into image classifiers, via
3D reconstruction pre-training. Recent studies show that generative classifiers based on
text-to-image diffusion models [19] achieve human-level shape bias [20]. Our research is in
line with this field of study, but instead of using text-to-image generative models, we focus
on employing 3D generative models.

Three-dimensional datasets. Geon3D is smaller in scale and less complex in shape
variation relative to some of the existing 3D model datasets, including ShapeNet [14],
ModelNet [21], OASIS [22] and Rel3D [23]. These datasets have been instrumental for
recent advances in 3D computer vision models (e.g., [24,25]). As we demonstrate in this
work, Geon3D allows us to systematically study the relationship between 3D-based pre-
training and adversarial training by varying the complexity of the dataset, bridging toy
datasets to more realistic datasets such as ShapeNet.

Other types of robustness. There have been many studies that attempt to improve
robustness of vision models and, more generally, to align model prediction with human
judgement. Existing work has attempted to leverage features such as low-frequency
features [26,27] and biologically constrained Gabor filters [28]. Ref. [29] introduces a
common corruption benchmark for ImageNet models. Ref. [30] shows that latest-vision
transformer models start to close the gap between human and machine vision in terms of
robustness, while room for improvement still exists.

3. Three-Dimensional Reconstruction as Pre-Training

Recently, there has been significant progress in learning-based approaches to 3D
reconstruction, where the data representation can be classified into voxels [31,32], point
clouds [33,34], mesh [35,36] and neural implicit representations [9,10,25,37]. In this paper,
we are interested in methods that can be used to pre-train an image encoder so that we can
use the weights of the pre-trained image encoder as initialization for adversarial training of
image classifiers. For this purpose, we avoid 3D reconstruction models based on voxels,
point clouds and 3D meshes, since they are not easily transferable to image classification
settings. Luckily, neural implicit representation allows the community to develop a class
of models that only requires 2D supervision. Neural implicit representation is built upon
the idea that shape can be represented by the level sets of a function f : R3 → R, and f is
approximated by neural networks.

Specifically, we use two recent 3D reconstruction models, Differentiable Volumetric
Rendering (DVR) [24] and pixelNeRF [38], both of which consist of a CNN-based image
encoder and a differentiable neural rendering module. While implicit representation
of 3D objects is completed with a neural network-based rendering module in the 3D
reconstruction model, we hypothesize that an image encoder of the 3D reconstruction model
is biased towards producing an encoded representation that is useful for 3D geometry
understanding. The main object of our study is to see to what extent we can leverage 3D
reconstruction pre-training to improve adversarial robustness. We take the encoder of the
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trained 3D reconstruction model and attach a classification head and then finetune, which
is described in Figure 1.

Problem Setup for 3D Reconstruction

Both DVR and pixelNeRF are based on neural implicit representations. DVR learns
the occupancy field via neural networks and represents objects via the zero-level set, which
is found via ray-marching. The points corresponding to the zero-level are used to query
a texture network, which produces RGB values as rendered images. The image encoder
of DVR is used to condition the occupancy network and texture network. PixelNeRF is
based on NeRF, which learns radiance field via a neural network. Given a spatial point
and viewing direction, the radiance field returns the density and RGB color. PixelNeRF
additionally conditions NeRF by the local image features produced by the image encoder.
The radiance field can then be rendered by volumetric rendering. We note that only DVR
requires object masks, and pixelNeRF can be trained fully based on 2D images and camera
matrices. For more details on the problem setup and training, we refer the readers to the
Appendix C.

4. Geon3D Benchmark

The concept of geons—or geometric ions—was originally introduced by Biederman
as the building block for their Recognition-by-Components (RBC) Theory [13]. The RBC
theory argues that human shape perception segments an object at regions of sharp concavity,
modeling an object as a composition of geons—a subset of generalized cylinders [39].
Similar to generalized cylinders, each geon is defined by its axis function, cross-section
shape and sweep function. To reduce the possible set of generalized cylinders, Biederman
considered the properties of the human visual system. He noted that the human visual
system is better at distinguishing between straight and curved lines than at estimating
curvature; detecting parallelism than estimating the angle between lines; and distinguishing
between vertex types such as an arrow, Y and L-junction [40].

This paper is not focused on the validity of the RBC theory. Instead, we wish to build
upon the way in which Biederman characterized these geons. Biederman proposed using
two to four values to characterize each feature of the geons. Namely, the axis can be straight
or curved; the shape of cross section can be straight-edged or curved-edged; the sweep
function can be constant, monotonically increasing/decreasing, monotonically increasing
and then decreasing (i.e., expand and contract), or monotonically decreasing and then
increasing (i.e., contract and expand); the termination can be truncated, end in a point, or
end as a curved surface. A summary of these dimensions is given in Table 1.

Table 1. Latent features of Geons. S: straight; C: curved; Co: constant; M: monotonic; EC: expand and
contract; CE: contract and expand; T: truncated; P: end in a point; CS: end as a curved surface.

Feature Values

Axis S, C
Cross-section S, C
Sweep function Co, M, EC, CE
Termination T, P, CS

Representative geon classes are shown in Figure 2. For example, the “Arch” class is
uniquely characterized by its curved axis, straight-edged cross section, constant sweep
function and truncated termination. These values of geon features are nonaccidental—we
can determine whether the axis is straight or curved from almost any viewpoint, except
for a few accidental cases. For instance, an arch-like curve in the 3D space is perceived as a
straight line only when the viewpoint is aligned in a way that the curvature vanishes. We
list similar geon categories, where only a single feature differs in Table 2.



Entropy 2024, 26, 258 5 of 16

Table 2. Similar geon categories, where only a single feature differs out of four shape features. “T.”
stands for “Truncated”. “E.” stands for “Expanded”.

Geon Category Difference

Cone vs. Horn Axis
Handle vs. Arch Cross-Section
Cuboid vs. Cyllinder Cross-Section
T. Pyramid vs. T. Cone Cross-Section
Cuboid vs. Pyramid Sweep function
Barrel vs. T. Cone Sweep function
Horn vs. E. Handle Termination

Arch Barrel Cone Cuboid Cylinder

Truncated Cone Handle Expanded Handle Horn Truncated Pyramid

Figure 2. Examples of 10 geon categories from Geon3D. The full list of 40 geons we construct
(Geon3D-40) is provided in the Appendix A.

4.1. Data Preparation

We construct each geon using Blender (https://www.blender.org, accessed on 1 Jan-
uary 2022)—an open-source 3D computer graphics software [41].

An advantage of geons over other geometric primitives such as superquadrics [42] is
that the shape categorization of geons is qualitative rather than quantitative. That is, each
geon feature, such as the main axis being curved or not, is explicitly categorical, whereas
each deformation of shape is continuous and does not change geon features that define
each geon category. Thus, each geon category affords a high degree of in-class shape
deformation, as long as the four defining features of each shape class remains the same.
Such flexibility allows us to construct a number of different 3D model instances for each
geon class by expanding or shrinking the object along the x, y, or z-axis. In our experiments,
for each axis, we evenly sample the 11 scaling parameters from the interval [0.5, . . . , 1.5]
with a step size 0.1, resulting in 1331 model instances for each geon category.

4.2. Rendering and Data Splits

We randomly sample 50 camera positions from a sphere with the object at the origin.
For each model instance, 50 images are rendered using these camera positions with a
resolution of 224 × 224. We then split the data into train/validation/test with a ratio of
8:1:1 using model instance ids, where each instance id corresponds to the scaling parameters
described above. For more details of data preparation, see the Appendix A.

5. General Methods for Experiments
5.1. Pre-Training

We use DVR and pixelNerf as our 3D reconstruction models. During 3D reconstruction
pre-training, we first sample object instance ids of batch size, and then randomly sample

https://www.blender.org
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a single view for each object instance to form a mini-batch, following the community
convention of 3D reconstruction training. For the image encoder of 3D reconstruction
models, we use ResNet18, which is expected to encode shape and category information
during training. In the following Geon3D and ShapeNet experiments, we focus on the
pre-training method that performs better 3D reconstruction on the respective dataset (e.g.,
DVR for Geon3D and pixelNeRF for ShapeNet).

5.2. Adversarial Training

We used the Python package (https://github.com/MadryLab/robustness (accessed
on 1 January 2022)) to perform adversarial training (AT) [3]. Throughout the experiments
in this paper, we study a threat model where the adversary is constrained to Lp-bounded
perturbations, where we use p = ∞ and p = 2. We consider the white-box setting, where
we assume that the adversary has complete knowledge of the model and its parameters. For
AT-L2 training, we train our models via Projected Gradient Decent (PGD) [3] for 60 epochs
with the batch size of 50, the attack steps of 7, the perturbation budget ϵ of 1.0, and the
attack learning rate of 0.2. For AT-L∞ training, we train our models for 60 epochs with
the batch size of 100, the attack steps of 7, the perturbation budget of 0.05, and the attack
learning rate of 0.01. We use the best PGD step as an adversarial example during training.
We use ResNet-18 [43] as our architecture throughout our experiments.

5.3. Evaluation

It is notoriously difficult to correctly evaluate adversarial robustness [2]. The attack
based on Projected Gradient Descent (PGD) ([3]) is widely used, but many defense methods
are later found to be broken partly because PGD requires careful parameter tuning to
be a reliable attack. To mitigate these issues, ref. [44] proposes AutoAttack, which is an
ensemble of four strong, diverse attacks: two extensions of PGD, the white-box fast adaptive
boundary (FAB) attack [45], and the black-box Square Attack [46]. We use AutoAttack
with the default parameter setting for both L∞ and L2 robustness evaluation throughout
our experiments.

5.4. Additional Training Details

We used Tesla V100 GPUs for all of our experiments. DVR 3D reconstruction training
takes roughly about 1.5 days on a single GPU. The hyperparameters for adversarial training,
described in the main paper, were chosen by monitoring the model convergence on the
validation set. All the other results are from a single training run and a single evaluation run.

5.4.1. DVR

We used the code (https://github.com/autonomousvision/differentiable_volumetr
ic_rendering, accessed on 1 January 2022) open-sourced by [24]. We followed the default
hyperparameters recommended by [24] for 3D reconstruction training, with the exception
of batch size, which we set as 32 to fit into a single GPU memory.

5.4.2. PixelNeRF

We use the code (https://github.com/sxyu/pixel-nerf, accessed on 1 January 2022)
open-sourced by the original authors [38].

5.4.3. AE and VAE

We use the code (https://pytorch-lightning-bolts.readthedocs.io/en/latest/models/
autoencoders.html, accessed on 1 January 2022) from pytorch-lightning bolts to train AE
and VAE on ShapeNet. Both the encoder and decoder are based on ResNet18.

5.4.4. Dataset

For training Geon3D image classifiers, we center and re-scale the color values of
Geon3D with µ = [0.485, 0.456, 0.406] and σ = [0.229, 0.224, 0.225], which is estimated from
ImageNet. We construct the 40 3D model instances as well as the whole training data in

https://github.com/MadryLab/robustness
https://github.com/autonomousvision/differentiable_volumetric_rendering
https://github.com/autonomousvision/differentiable_volumetric_rendering
https://github.com/sxyu/pixel-nerf
https://pytorch-lightning-bolts.readthedocs.io/en/latest/models/autoencoders.html
https://pytorch-lightning-bolts.readthedocs.io/en/latest/models/autoencoders.html
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Blender. We then normalize the object bounding box to a unit cube, which is represented as
1.0_1.0_1.0 in the dataset folder.

5.4.5. Background Textures

We used the following label-to-texture class mapping: {0: ‘zigzagged’; 1: ‘banded’; 2:
‘wrinkled’; 3: ‘striped’; 4: ‘grid’; 5: ‘polka-dotted’; 6: ‘chequered’; 7: ‘blotchy’; 8: ‘lacelike’; 9:
‘crystalline’}. For the distributional shift experiment, we used the following mapping: {0:
‘crystalline’; 1: ‘zigzagged’; 2: ‘banded’; 3: ‘wrinkled’; 4: ‘striped’; 5: ‘grid’; 6: ‘polka-dotted’;
7: ‘chequered’; 8: ‘blotchy’; 9: ‘lacelike’}. The DTD data are licensed under the Creative
Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/, https:
//www.tensorflow.org/datasets/catalog/dtd, accessed on 1 January 2022).The texture
images are randomly sampled from the DTD data. We used a variety of textures with the
same style for each category. Specifically, DTD has 47 texture categories in total, and there
are 120 texture images for each category. We pick 10 categories for Geon3D, so the stimuli
included as backgrounds are sampled from 1200 texture images for Geon3D.

6. Experiments Using Geon3D

In this section, we will use the Geon3D shapes to create three increasingly more
challenging datasets: (i) Geon3D with clean background (“Black Background”), (ii) Geon3D
with randomly assigned textured backgrounds (“Textured Background”) and (iii) Geon3D
with correlated textured backgrounds, which introduces spurious correlations between
background textures and categories (“Spurious Correlations”). For simplicity, we focus on
10 representative geon categories (instead of the full 40 categories) and call it the Geon3D
dataset. The dataset for adversarial training is a subset of the Geon3D data we used for 3D
reconstruction pre-training. Specifically, we sample 10,000/1000/1000 images for training,
validation, and test sets, respectively. We ensure that we sub-sample each split from the
original train/val/test splits of Geon3D so that there is no data leakage from pre-training
to adversarial training.

6.1. Adversarial Robustness
6.1.1. Setup

We start from the simplest setting: Geon3D with black background. We then vary the
complexity of the experimental setting by introducing background textures to the dataset.
Specifically, we replace each black background of Geon3D with a random texture image out
of 10 texture categories chosen from the Describable Textures Dataset (DTD) [47]. Example
images from this Geon3D Textured Background dataset can be seen in Figure 3 (Left). These
two datasets allow us to analyze the effect of 3D reconstruction pre-training as a function
of dataset (in particular, background) complexity.

Figure 3. (Left) Example images from Geon3D with textured backgrounds. (Right) Example images
from ShapeNet.

6.1.2. Results

Seen in Figure 4 are the results of adversarial robustness evaluation for L∞ threat
models. For the black background, DVR+AT slightly outperforms AT for ϵ = 8/255, but as
the the perturbation budget becomes large, AT outperforms DVR+AT. However, for the
textured background, DVR+AT consistently outperforms vanilla AT across all perturbation
budgets. Figure 5 shows the results of adversarial robustness with L2 threat models. On

https://creativecommons.org/licenses/by/4.0/
https://www.tensorflow.org/datasets/catalog/dtd
https://www.tensorflow.org/datasets/catalog/dtd
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both the black and textured background settings, we find that AT is on average, across all
perturbation budgets, more robust than DVR+AT. However, consistent with the L∞ results,
we see that DVR+AT better performs on the more complex textured background setting,
slightly outperforming AT for small perturbation budgets.
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Figure 4. Adversarial robustness of vanilla adversarial training (AT) and 3D-based pre-training with
increasing perturbation budget for L∞ threat model on Geon3D with black and textured backgrounds.
DVR stands for Differentiable Volume Rendering. For textured backgrounds, we perform our
experiments three times with different random initialization for the classification linear layer, where
we use DVR-pretrained ResNet-18 and ImageNet-pretrained ResNet-18 for the main backbone. We
report the mean and standard deviation over these three runs. For Black Background, we run AT
with different attack learning rates (0.1, 0.2 and 0.3) and report its adversarial accuracy. Here, we
use the adversarial perturbation budget of 0.05, which corresponds to 12.75 on the x-axis, for both
textured backgrounds and black backgrounds during adversarial training. Between the simplest
setting of Geon3D with black background and Geon3D with textured background, we observe that
the effect of 3D reconstruction pre-training (DVR) emerges only under the latter. The perturbation
budget during adversarial training is 0.05, which corresponds to 12.75 on the x-axis.
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Figure 5. Adversarial robustness of AT and DVR+AT with increasing perturbation budget for L2

threat models on Geon3D. For L2 textured backgrounds, we perform our experiments three times
with different random initialization for the classification linear layer, where we use DVR-pretrained
ResNet-18 and ImageNet-pretrained ResNet-18 for the main backbone. We report the mean and
standard deviation over these three runs, where we see a small variance for AT − L2. For L2 Black
Background, we run AT with different attack learning rates (0.2, 0.3 and 0.4) and report its adversarial
accuracy. Here, we use the adversarial perturbation budget of 3.0 for textured backgrounds and 1.0 for
black backgrounds during adversarial training. In the aggregate, 3D pre-training does not improve,
and in fact lowers, the performance of AT for black backgrounds. However, similar to the L∞ case,
we continue to see the trend that 3D-based pre-training helps more for textured backgrounds.
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6.2. Robustness to Spurious Correlations between Shape and Background
6.2.1. Setup

Recent work [8] shows that adversarially trained image classifiers tend to rely on
backgrounds rather than objects. Can 3D pre-training help mitigate such reliance of
backgrounds for adversarial training? Here, we test whether 3D-based pre-training, which
directly targets shape features (e.g., scene geometry that causes pixel intensity values
only on the foreground object), improves over vanilla AT in terms of robustness towards
spurious correlation that is created by backgrounds.

To do this, we create a new variant of Geon3D, where we choose 10 texture categories
from DTD and introduce spurious correlations between shape category and textured
background class (i.e., each shape category is paired with one texture class). During 3D
pre-training, we feed this dataset (referred to as “Correlated Texture”) to the image encoder
of the 3D reconstruction model. Adversarial training of all models is also performed using
this dataset. Therefore, during adversarial training, a model can pick up classification
signals from both the shape of the geon as well as the background texture. To evaluate
whether or not 3D pre-training helps models ignore spurious correlations more effectively,
we prepare a test set that breaks the correlation between shape category and background
texture class by cyclically shifting the texture class from i to i + 1 for i = 0, . . . , 9, where the
class 10 is mapped to the class 0. This design is inspired by [15]; however, in our case, a
distributional shift from training to test set is designed to isolate out and directly measure
the effect of 3D prior by fully disentangling the contributions of texture and shape.

6.2.2. Results

We note that in this section, we do not perform adversarial attacks, but simply evaluate
classification accuracy of all models on the newly constructed test set that breaks the
correlation between textures and shape, as described above.

The results are shown in Table 3. We find that regardless of the perturbation set,
DVR+AT outperforms AT, by a large margin in the case of L2 and still substantially for L∞.
Together, these results suggest that we can view 3D-based pre-training as a way to bias
models to prefer shape features, even in the presence of strong, spurious correlations.

Table 3. Accuracy of adversarially trained models against distributional shift in backgrounds. Here,
all models are trained on Geon3D Correlated Textured (with background textures correlated with
shape categories) and evaluated on a test set where we break this correlation. We see that for both
L∞ and L2, pre-training using DVR biases the models to prefer shape features to textures. Moreover,
the difference between two threat models of vanilla AT suggests that AT-L2 prefers texture features,
while AT-L∞ prefers shape features.

AT-L2 DVR+AT-L2 AT-L∞ DVR+AT-L∞

10.8 35.6 79.0 84.20

6.2.3. Summary

We have varied the background texture and texture-shape correlation of Geon3D and
measured how such variation affects the relationship between 3D-based pre-training and
adversarial robustness. Our results with Geon3D so far suggest that the benefit of 3D-based
pre-training emerges in the setting of spurious correlation.

7. Experiments Using More Complex Objects: ShapeNet
7.1. Setup

We use ShapeNet [14] to evaluate the effect of 3D reconstruction pre-training on
adversarial robustness under a shape distribution that is significantly more complex than
Geon3D. Example images from ShapeNet are shown in Figure 3. We use the 13 most densely
sampled shape categories from ShapeNet, as is commonly used in 3D reconstruction
benchmarks. We perform 3D-based pre-training using the pixelNerf (PxN) model, which
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performs the basic task of 3D reconstruction more accurately than the DVR model on
the ShapeNet dataset [38]. However, we note that we find similar results using DVR as
the pre-training architecture (see Figure 7). After 3D-based pre-training, we sub-sample
130,000/13,000/13,000 images as training/validation/test splits for adversarial training. We
also ensure that object instances that are used for 3D reconstruction do not overlap with
validation and test splits for adversarial training, so that there is no data leakage from
pre-training.

7.2. Results

Figure 6 shows the results of adversarial robustness on ShapeNet. In contrast to
previous results, we can see that for both L∞ and L2 threat models, 3D-based pre-training
(PxN+AT) improves over vanilla AT, across the entire range of perturbation budgets. This
suggests that as we increase the complexity of object shapes, the 3D-based pre-training
more consistently yields better robustness.
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Figure 6. Adversarial robustness of AT and PxN+AT with increasing perturbation budget for
ShapeNet. PxN stands for pixelNeRF. We see that 3D reconstruction pre-training (PxN+AT) improves
over vanilla adversarial training (AT) for both L∞ and L2 across all perturbation budgets. The
perturbation budget during adversarial training is 0.05, which corresponds to 12.75 on the x-axis for
L∞ and 1.0 for L2 threat models.

7.3. Adversarial Robustness on ShapeNet

In Figure 7, we show additional results of adversarial robustness for both L∞ and L2
threat models. In addition to PxN+AT, we include DVR+AT. We also include AE+AT and
VAE+AT across the perturbations we tested. We see that 3D-based pre-training (PxN+AT
and DVR+AT) outperforms 2D-based pre-training (AE+AT and VAE+AT) as we increase
the magnitude of the perturbations ϵ.
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Figure 7. Adversarial robustness comparison between PxN+AT, DVR+AT, AE+AT, VAE+AT and
AT for both L∞ and L2 threat models with increasing perturbation budget ϵ on ShapeNet. The
perturbation budget during adversarial training is 0.05, which corresponds to 12.75 on the x-axis for
L∞ and 1.0 for L2 threat models.
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Seen in Figure 8 are the reconstructed images of AutoEncoder and Variational AutoEn-
coder (VAE).

AutoEncoder Reconstruction VAE Reconstruction

Figure 8. Reconstructed ShapeNet images. (Left) AutoEncoder, (Right) VAE.

8. Limitations and Discussion

The advantage of Geon3D over other datasets lies in its simplicity, which makes it
easier to isolate the effect of 3D shape features. This simplicity is beneficial for future
research aimed at examining the relationship between model behavior and 3D shape
features. However, there are limitations as well. In this paper, we view 3D reconstruction as
a pre-training task that provides better weight initialization in the form of a 3D object prior.
The robustness gained from such a 3D prior is necessarily constrained by the capability
of the underlying 3D reconstruction models. We studied only one form of causal, thus
by definition, robust set of features (3D shape and pose); future work should consider
incorporating priors based on other causal variables, such as the physical properties of
objects. We studied only one way to induce such a prior (via pre-training); future work
should explore other ways in which explicit robust properties can be integrated to AT.
Moreover, we focus on the aspect of structured representation of human cognition. Future
work should also explore how uncertainty representation of human cognition can play a
part in adversarial robustness. Finally, future work should understand why 3D pre-training
is not helpful for the simplest data setting studied here.

9. Conclusions

We investigated how 3D-based pre-training can affect robust accuracy of adversarial
training. We start from the simplest setting: Geon3D with black background. In this case,
3D-based pre-training does not improve vanilla adversarial training. However, we find
that 3D-based pre-training improves over adversarial training under more complex data
distributions, including the ShapeNet objects. Importantly, 3D-based pre-training outper-
forms 2D-based pre-training methods that otherwise receive identical training procedures.
We hope that these results motivate further exploration of structured 3D-based models of
vision for addressing adversarial robustness.
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Appendix A. Dataset

A line of work in psychophysics of human visual cognition has argued that the visual
system exploits certain types of shape features in inferring 3D structure and geometry.
In Geon3D, by treating these shape features as the dimensions of variation, we model
40 classes of 3D objects, and render them from random viewpoints, resulting in an image
set and their corresponding camera matrices. Upon publication, we will make the Geon3D
dataset publicly available. Examples of Geon3D are shown in Figure A1.

Appendix A.1. List of 40 Geons

In Figure A1, we provide a list of 40 geons we have constructed. The label for each
geon class represents the four defining shape features, in the order of “axis”, “cross section”,
“sweep function”, “termination”, as described in the main paper. We put “na” for the
termination when the sweep function is constant. We also distinguish the two termination
types “c-inc” and “c-dec” when the sweep function is monotonic. For instance, “c-inc”
means that the curved surface is at the end of the increasing sweep function, whereas
“c-dec” means that the curved surface is at the end of the decreasing sweep function. As a
reference, here is the mapping between the name and the code of 10 geons we used in the
10-geon classification: “Arch”: c_s_c_na; “Barrel”: s_c_ec_t; “Cone”: s_c_m_p; “Cuboid”:
s_s_c_na; “Cylinder”: s_c_c_na; “Truncated cone”: s_c_m_t; “Handle”: c_c_c_na; “Ex-
panded Handle”: c_c_m_t; “Horn”: c_c_m_p; “Truncated pyramid”: s_s_m_t.

c_c_c_na c_c_ce_c c_c_ce_t c_c_ec_c c_c_ec_p c_c_ec_t c_c_m_c-dec c_c_m_c-inc c_c_m_p c_c_m_t

c_s_c_na c_s_ce_c c_s_ce_t c_s_ec_c c_s_ec_p c_s_ec_t c_s_m_c-dec c_s_m_c-inc c_s_m_p c_s_m_t

s_c_c_na s_c_ce_c s_c_ce_t s_c_ec_c s_c_ec_p s_c_ec_t s_c_m_c-dec s_c_m_c-inc s_c_m_p s_c_m_t

s_s_c_na s_s_ce_c s_s_ce_t s_s_ec_c s_s_ec_p s_s_ec_t s_s_m_c-dec s_s_m_c-inc s_s_m_p s_s_m_t

Figure A1. The list of 40 geons we constructed.

Appendix B. Additional Experiments

In this section, we assess the impact of 3D pretraining alone on adversarial robustness.
Differing from the experiments described in the main text, we do not perform adversarial
training following the 3D pretraining. Instead, we simply fine-tune the model for Geon3D
classification. We perform both L2 and L∞ adversarial attacks for multiple epsilon values
using Geon3D-10-BlackBackground. As shown in Figure A2, we see that 3D pretraining
itself does not have robustness against adversarial attacks.
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Figure A2. Adversarial robustness of 3D pre-trained ResNet-18 for both L∞ and L2 threat models
with increasing perturbation budget ϵ on Geon3D with black backgrounds.

Appendix C. Details of 3D Reconstruction Training

We provide details of the problem setup of 3D reconstruction, following [24].
During training, we render an image, which is then used to minimize the RGB recon-

struction loss. To render a pixel of an image observed by a virtual camera, we need to first
find the world coordinate of the intersection of the camera ray with the object surface and
then map the world coordinate into a RGB color.

Let u = (u1, u2) be the image coordinate of the pixel we want to render. To find the
world coordinates of the intersection, we first parameterize the points along the camera ray
rp0→(u1,u2)

by the distance d to the camera origin p0 as follows:

rp0→(u1,u2)
(d) = RT

K−1

u1
u2
d

− T


Here, R ∈ R3×3 is a camera rotation matrix, T ∈ R3 is a translation vector, and K ∈ R3×3

is a camera intrinsic matrix. In the main paper, we denote cex = [R, T] and cin = K. Here,
T is the position of the origin of the world coordinate system with respect to the camera
coordinate system. Therefore, the position of the camera origin p0 (with respect to the
world coordinate system) is −RTT.

Then, we solve the following optimization problem:

argmin d s.t. rp0→(u1,u2)
(d) ∈ Ω (A1)

where Ω is the set of points p in R3 such that fθ(p) = 0.5.
To solve for d, we start from the camera origin p0 and step along the ray until object

surface is intersected, which we can determine by evaluating the points along the ray via fθ .
To summarize, we are given a set of object images {xi ∈ RH×W×3}n

i=1, their corre-
sponding binary object masks {mi ∈ RH×W}n

i=1, and extrinsic/intrinsic camera matrices
{ci = (cex

i ∈ R3×3 ×R3, cin
i ∈ R3×3)}n

i=1. Let U0 be a set of pixel points which lie inside
the ground truth object mask and where the model predicts a depth. U1 is a set of points
outside the object mask where the model falsely predicts depth. Finally, U2 is a set of points
inside the object mask where the model does not predict any depth. Then, the objective is
as follows:

arg min
ϕ,θ,θ′

E
[

∑
u∈U0

(||x̂u − xu||1 + λ1Lnormal( p̂u,c|z))

+ λ2 ∑
u∈U1

BCE( fθ( p̂u,c|z), 0) + λ3 ∑
u∈U2

BCE( fθ(prand(u),c|z), 1)
]
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Here, BCE stands for Binary Cross Entropy loss, and p̂u,c = rp0→u(d̂), where d̂ is the
predicted depth, provided as a solution to the optimization problem Equation (A1). The
value of prand(u),c = rp0→u(drand(u)), where the value of drand(u) is chosen uniformly
randomly on the ray to encourage occupancy for u ∈ U2. x̂u = rθ′( p̂u,c|z) for u ∈ U0.
z = gϕ(x(rand)

i ), where we take a random view x(rand)
i from the same object instance as xi.

Lnormal(p|z) is the normal loss, which is a geometric regularizer to encourage smooth
object surface. For a point p ∈ R3 and some object encoding z, the unit normal vector can
be calculated by

nθ(p|z) =
∇p fθ(p|z)

||∇p fθ(p|z)||2

We apply the l2 loss to minimize the difference between the normal vectors at p and p′,
where p′ is in a small neighborhood around p. Formally,

Lnormal(p|z) = ||nθ(p|z)− nθ(p′|z)||2

for a point p ∈ R3.
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