
Citation: Zhao, C.; Al-Bashabsheh, A.;

Chan, C. Game Theoretic Clustering

for Finding Strong Communities.

Entropy 2024, 26, 268. https://

doi.org/10.3390/e26030268

Academic Editor: Boleslaw K.

Szymanski

Received: 17 January 2024

Revised: 12 March 2024

Accepted: 15 March 2024

Published: 18 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Game Theoretic Clustering for Finding Strong Communities
Chao Zhao 1 , Ali Al-Bashabsheh 2 and Chung Chan 1,*

1 Department of Computer Science, City University of Hong Kong, Hong Kong, China; ao.ao@my.cityu.edu.hk
2 School of General Engineering, Beihang University, Beijing 100191, China; entropyali@gmail.com
* Correspondence: chung.chan@cityu.edu.hk

Abstract: We address the challenge of identifying meaningful communities by proposing a model based
on convex game theory and a measure of community strength. Many existing community detection
methods fail to provide unique solutions, and it remains unclear how the solutions depend on initial
conditions. Our approach identifies strong communities with a hierarchical structure, visualizable as
a dendrogram, and computable in polynomial time using submodular function minimization. This
framework extends beyond graphs to hypergraphs or even polymatroids. In the case when the model is
graphical, a more efficient algorithm based on the max-flow min-cut algorithm can be devised. Though
not achieving near-linear time complexity, the pursuit of practical algorithms is an intriguing avenue for
future research. Our work serves as the foundation, offering an analytical framework that yields unique
solutions with clear operational meaning for the communities identified.

Keywords: game theory; community detection; hierarchical clustering

1. Introduction

Community detection is a fundamental problem in various fields, such as biological
study and social network analysis. The definition of a community can vary based on the
specific problem and objective at hand, but the definitions provided in [1–3] are generally
considered widely accepted. In broad terms, a community is commonly understood as a
group of individuals with stronger connections among its members than with individuals
outside the group.

In the process of conducting community detection, real-world problems are typically
translated into graphs where nodes represent individuals and edges represent relations.
Numerous community detection methods have been developed based on diverse principles
and objective functions. Surveys of community detection methods can be found in [4–10].

Game theory has emerged as a technique applied in community detection [8,11–15].
Its applications extend to identifying disjoint, overlapping, and hierarchical communities.
As a systematic framework, game theory models and studies the decisions and outcomes
of players in a game [16,17]. Broadly, game theory can be categorized into two main
types: non-cooperative game theory and cooperative game theory. Non-cooperative game
theory focuses on the competition between individual players, emphasizing their strategies
and payoffs. Cooperative game theory, on the other hand, focuses on the cooperation
between players and addresses the allocation of payoffs to players based on the worth of
the coalitions formed. Within cooperative game theory, there are two main types: non-
transferable utility cooperative games, where the payoff for a player within a coalition
cannot be transferred to another player in the same coalition, and transferable utility
cooperative games, where payoffs are considered transferable among players in the same
coalition. Solution concepts such as the core, kernel, nucleolus, Shapley value, egalitarian,
etc., play crucial roles in cooperative game theory [18,19].

The community detection method based on cooperative game theory typically identifies
the coalition with the highest score determined by a measure evaluated on the coalitions.
However, due to the use of approximations, non-unique results are common. Zhou et al. [20]

Entropy 2024, 26, 268. https://doi.org/10.3390/e26030268 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26030268
https://doi.org/10.3390/e26030268
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-4165-2123
https://orcid.org/0000-0003-2006-0898
https://doi.org/10.3390/e26030268
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26030268?type=check_update&version=2

Entropy 2024, 26, 268 2 of 25

presented a community detection method using cooperative game theory and the Shapley
value. The study focused on a social network where nodes are linked to relationships in
various finite topics. The Shapley value represents a node’s contribution to the connection
closeness of a coalition. The algorithm forms hierarchical and overlapping coalitions by
iteratively adding each node to one of the coalitions formed in the previous iteration, where
the newly added node obtains the largest Shapley value. Despite running in polynomial
time, the algorithm relies on approximation. Another related approach for overlapping
and hierarchical community detection [21] also employs cooperative game theory, and the
hierarchical structure of coalitions is obtained through a greedy agglomerative method,
potentially yielding non-unique results.

The Naming Game [22–24] presents another game theoretic approach applicable to
community detection, where the community structure emerges from the dynamic interac-
tions between pairs of nodes within the game. However, empirical evidence suggests that
the solution is generally not unique [24]. The convergence and computational costs of the
method are analyzed through extensive empirical experiments [22,24], while it remains un-
clear regarding the theoretical bounds. Furthermore, the Naming Game relies on pairwise
connections and does not capture higher-order statistics among nodes beyond pairwise
relationships, therefore limiting its scope of applications in community detection.

We introduce a notion of strength derived from cooperative game theory to identify
strong communities that are interpretable. Moreover, the strong communities are unique,
computable in polynomial time with recursive procedures, and can be represented by a
dendrogram. The scope of consideration encompasses a set of individuals with a super-
modular function for evaluating the communities, which means our approach is applicable
to community detection tasks beyond graphical models. Our framework focuses on eluci-
dating the theoretical properties of the strong communities and can provide the foundation
for future research on empirical algorithms for large-scale datasets.

This paper is structured as follows: In Section 2, we present the relevant concepts
in cooperative games. Section 3 outlines the derivation of the objective function based
on convex games. We also formulate the definitions for community strength and strong
communities in this section. Moving on to Section 4, we delve into the discussion of the
properties of strong communities, laying the foundation for their computation. Section 5
details the solution to the problem through submodular function minimization and, in
certain cases, introduces the use of the max-flow min-cut algorithm as a more efficient
method in practice. In Section 6, concrete examples are provided to demonstrate the
computation of strong communities and the representation of the dendrogram of these
communities. Finally, in Section 7, we conclude our work.

2. Cooperative Game

A cooperative game [17] is characterized by (V, g), where

• V is a finite set of players with |V| ≥ 2, and
• g : 2V → R is a set function called the characteristic function, where g(C) is the worth

of the coalition C ⊆ V, assuming players in C cooperate to form such coalition.

Denote the payoff allocation for the players as a vector

rV = (r1, r2, ..., r|V|) ∈ R|V|,

with ri being the i-th element in rV as the payoff allocated for i-th player.
The total payoff in the coalition C ⊆ V is denoted as

r(C) := ∑
i∈C

ri. (1)

Entropy 2024, 26, 268 3 of 25

Furthermore, when g is a supermodular function, the game is called convex [17]. In
this case, for ∀B, C ⊆ V,

g(B) + g(C) ≤ g(B ∪ C) + g(B ∩ C). (2)

Or equivalently, for ∀B ⊆ C ⊆ V, i ∈ V \ B,

g(B ∪ {i})− g(B) ≤ g(C ∪ {i})− g(C), (3)

where both sides are the increases in worth when a player i is added to a coalition. (3)
means that the increase in worth, when a player adds to a coalition, is equal or larger than
that for a larger superset coalition, i.e., the marginal worth is non-diminishing for convex
games. For simplicity, g is thought to be normalized, i.e., g(∅) = 0.

As for the payoff allocation, the transferable utility is considered here, i.e., the payoffs
can be transferred between players in the same coalition. The core [18] is one of the relevant
solution concepts in cooperative games, which is about the feasible allocation of payoffs
to players.

The core of a game (V, g) is defined as [17]:

Core(V, g) := {rV ∈ R|V| | r(V) = g(V), r(C) ≥ g(C), ∀C ⊆ V}. (4)

In the definition of the core, r(V) = g(V) means the payoff allocation exactly splits
the total worth of the grand coalition V. The inequality r(C) ≥ g(C) says that no other
coalition C ⊊ V can have a worth larger than the payoff C can receive by cooperating in V,
and hence will not deviate from the grand coalition V. The core can be viewed as the stable
payoff allocation. For a convex game, the core is always nonempty [17,25].

3. Problem Formulation

By regarding the set V of nodes as players, we consider a convex game with the
characteristic function g being a supermodular function on 2V .

In particular, consider a weighted digraph on the set V of nodes. Such a graph can be
characterized by the weight of the directed edges described using the weight function w:

w(B, C) = ∑
i∈B,j∈C

aij,

where ai,j is the weight of the edge from node i to node j. This covers the undirected graphs
special cases when aij = aji for all i, j ∈ V.

Consider the function g defined in the form of

g(B) = γ · β · w(B, B)− γ · (1 − β) · w(V \ B, B), (5)

where β ∈ [0, 1] and γ > 0. The function g in (5) is supermodular [26]. When β = 0, (5)
reduces to the total weight of edges in B scaled by γ; when β = 1, (5) reduces to the negative
of the total weight of incoming edges from outside to B scaled by γ.

We want to identify strong communities based on the convex game using the following
measure of community strength.

Definition 1. For C ⊆ V : |C| > 1, define

σ(C) := min
B⊊C
B ̸=∅

max
rC∈Core(C,g)

min
i∈B

ri, (6)

which is referred to as the strength of community C.

Entropy 2024, 26, 268 4 of 25

The inner maximization in (6) is the stable payoff guaranteed to any player in B, which
we termed the community support to B. The outside minimization in (6) gives the strength
of C, which is the minimum community support over B ⊊ C : B ̸= ∅.

The following example illustrates the interpretation of the strength in (6) more concretely.

Example 1. Consider the unweighted graph in Figure 1a with V = {1, 2, 3} and characteristic
function g in (5) with β = 1 and γ = 1, i.e., for B ⊆ V : B ̸= ∅, g(B) = 1

2 w(B, B), which
calculates the total number of internal edges inside B.

We are going to show how to obtain the strength of {1, 2}, which requires us to calculate
the minimum community support over B ⊊ {1, 2} : B ̸= ∅ according to (6). By definition, the
community support to B from {1, 2} is the stable payoff that is guaranteed to each player in B. For
a payoff allocation r{1,2} to be stable, it should be in Core({1, 2}, g), which is calculated to be

Core({1, 2}, g) = {(r1, r2)|r1 + r2 = 1, r1 ≥ 0, r2 ≥ 0}. (7)

Then, we consider the guaranteed stable payoff to each player in B. For instance, when
B = {1}, the guaranteed stable payoff to players in B is 1, which is achieved with the payoff
allocation r{1,2} = (1, 0); when B = {2}, the stable guaranteed payoff to players in B is 1, which
is achieved with the payoff allocation r{1,2} = (0, 1). Therefore, we know that the minimum
community support to any non-empty proper subset of {1, 2} is 1, i.e., the strength of {1, 2} is 1.

Additionally, there is 1 unit of payoff that is transferable between players 1 and 2 based on the
constraint for the core. Such a transferable payoff tends to improve the guaranteed payoff for players
in non-empty subsets of C. As a result, {1, 2} intuitively forms a meaningful community.

Similarly, we can show that the strength of V is 0. For a payoff allocation rV to be stable, it has
to be in Core(V, g) which is calculated to be (see Appendix A.1)

Core(V, g) = {rV := (r1, r2, r3)|r1 + r2 ≥ 1, r1 ≥ 0, r2 ≥ 0, r3 = 0}. (8)

Then, we consider the community support to B ⊊ V : B ̸= ∅. For instance, when B = {1},
the community support to B is 1, which is achieved with the payoff allocation rV = (1, 0, 0). By
enumeration over B ⊊ V : B ̸= ∅, we can obtain that when B = {3}, the community support to B
is 0, which is the minimum value of such community support. Hence, the strength of V is 0.

There is another equivalent definition for σ(C) with (1) where we consider the average
payoff allocated to a set B ⊊ C : B ̸= ∅ instead of the inner minimization term mini∈B ri
in (1), as stated in the following result.

Proposition 1. For C ⊆ V : |C| > 1,

σ(C) = min
B⊊C:
B ̸=∅

max
rC∈Core(C,g)

r(B)
|B| , (9)

Proof. See Appendix A.2.

Our goal is to identify strong communities defined using σ as follows.

Definition 2. For any threshold α, define the collection of strong communities in V as

Cα(V) := maximal{C ⊆ V | |C| > 1, σ(C) > α}. (10)

The maximal F means inclusion-wise maximal subsets in F , i.e.,

maximalF := {B ∈ F| ̸ ∃C ∈ F , B ⊊ C}. (11)

Entropy 2024, 26, 268 5 of 25

Similarly, minimal F means inclusion-wise minimal subsets in F , i.e.,

minimalF := {B ∈ F| ̸ ∃C ∈ F , B ⊋ C}. (12)

1 2 3
1

(a)

0

1 1

1

r1 r2

r3

r1 + r2 + r3 = 1

r1 + r2 ≥ 1

r1, r2, r3 ≥ 0

Core(V, g)

(b)

α

3α − 1

2α − 1

α

2α 1st turning point

f̂α(V)

fα(V)
fα({1, 2})

fα({i}) for i ∈ V

fα({1, 3}), fα({2, 3})

(c)

{1} {2} {3}

2

1

0

-1

st
re

ng
th

(d)
Figure 1. An illustrative example of an unweighted graph with g(B) := 1

2 w(B, B) for B ⊆ V : B ̸= ∅.
(a) The unweighted graph; (b) Visualization of Core(V, g); (c) The curve f̂α(V); (d) The dendrogram.

Example 2. In Example 1, we already get σ(V) = 0. Similarly, we can get σ({1, 2}) = 1,
σ({1, 3}) = 0 and σ({2, 3}) = 0.

According to (10), the strong communities in V given by our approach are

Cα(V) =

{
{V}, α < 0,
{{1, 2}}, α ≥ 0.

(13)

4. Main Results
4.1. Characterization of Community Strength

The community strength defined in (9) takes a simpler form for the convex game as
shown in Theorem 1.

Theorem 1. For any C ⊆ V : |C| > 1,

σ(C) = min
B⊊C:
B ̸=∅

g(C)− g(B)
|C \ B| , (14)

Furthermore, the set of optimal solutions to (9) is given by

{C \ B|B ∈ S(C)}, (15)

where S(C) is the set of optimal solutions to the minimization in (14).

Proof. See Appendix A.3.

Equation (14) is the basic formula of community strength that we will utilize to derive
the properties of the strong communities and investigate how to calculate the strong subsets.

Entropy 2024, 26, 268 6 of 25

The following example shows the equivalent value of the strength of V calculated
by (9) and (14).

Example 3. Consider V as in Example 1, follow (14) to calculate the strength of V,

σ(V) = min
B⊊V:
B ̸=∅

g(V)− g(B)
|C \ B| (16)

= 0 (17)

with S(V) = {{1, 2}}. The value of σ(V) calculated here according to (14) is consistent with that
calculated in Example 1.

Define for α ∈ R and C ⊆ V : |C| > 1 that

f̂α(C) := min
B⊆C:
B ̸=∅

fα(B), where (18)

fα(B) := α|B| − g(B), for B ⊆ V. (19)

Denote the optimal solution set to (18) as Bα(C), and the collection of inclusion-wise
minimal sets among Bα(C) as B∗

α(C), i.e.,

B∗
α(C) := minimal Bα(C). (20)

Bα(C) is the set that we use to analyze the relation between σ(C) and the curve f̂α(C),
and B∗

α(C) is the set we use for showing the computation of Cα(V) in the latter part.
The following example shows the curve of f̂α(V) for the set V in Example 1.

Example 4. Consider V as in Example 1, according to (18),

f̂α(V) =

3α − 1, α < 0,
2α − 1, 0 ≤ α < 1,
α, α ≥ 1,

(21)

and the inclusion-wise minimal solution set to (18) is given by

B∗
α(V) =

{V}, α < 0,
{{1, 2}}, 0 ≤ α < 1,
{{i}|i ∈ V}, α ≥ 1,

(22)

as illustrated in Figure 1c, where the result for f̂α(V) and B∗
α(V) can be obtained directly after we

draw every curve of fα(B) for B ⊆ V : B ̸= ∅.
For instance,

• when α ∈ (0, 1), f̂α(V) is given by fα({1, 2}), hence B∗
α(V) = {{1, 2}}.

• when α = 0, both {1, 2} and V are solutions to (18) with respect to f̂α(V), while {1, 2} is the
inclusion-wise minimal solution, hence B∗

α(V) = {1, 2}.

From (19), it can be seen that fα(B) is a linear function of α with slope |B|. Therefore,
f̂α(C) in (18) is a piece-wise linear function since it is a minimization of linear functions.
With C ⊆ V : |C| > 1, the curve must have at least one turning point since the slope of
fα({i}), i ∈ V is different from fα(C). Figure 1c is the curve of f̂α(V) for V in Example 1.

The following result shows that σ(C) can be obtained from the curve. It will be used
for deriving the representation and computation of the strong communities defined in
Definition 2.

Entropy 2024, 26, 268 7 of 25

Proposition 2. For the curve f̂α(C) against α ∈ R:

(1) σ(C) is the α-coordinate of the first turning point. More precisely,

min
B⊊C:
B ̸=∅

fα(B) = fα(C) ⇐⇒ σ(C) = α, (23)

min
B⊊C:
B ̸=∅

fα(B) > fα(C) ⇐⇒ σ(C) > α. (24)

(2) The collection Bα(C) of optimal solution to (18) satisfies

Bα(C) ̸∋ C, for α > σ(C), (25)

Bα(C) = S(C) ∪ {C}, for α = σ(C), (26)

Bα(C) = {C}, for α < σ(C). (27)

Proof. See Appendix A.4.

The following example can further illustrate the property of f̂α(V).

Example 5. In Example 4, the first turning point of the curve f̂α(V) is (0,−1), whose α-coordinate
is exactly σ(V).

4.2. Representation of Strong Communities

The strong communities defined in Definition 2 form a hierarchy and can be repre-
sented by a dendrogram.

Theorem 2. For any C1 ∈ Cα1(V), C2 ∈ Cα2(V) where α1 ≤ α2, we have

C1 ⊇ C2, or C1 ∩ C2 = ∅.

Furthermore,

if C1 ⊋ C2, then α1 < α2.

Proof. See Appendix A.6.

The following example shows that the strong communities in Figure 1a as in Example 1
with respect to two different α’s have a containment relationship.

Example 6. Let α1 := −1 and α2 := 1. By the calculation results in Example 2, C1 := V ∈ Cα1(V)
and C2 := {1, 2} ∈ Cα2(V). Then C1 ⊋ C2, which means the communities in Cα1(V) are contained
by those in Cα2(V). This shows the hierarchical structure of the strong communities with respect to the
specific α1 and α2.

Theorem 2 follows from the following lemma.

Lemma 1. For all C1, C2 ⊆ V : C1 ∩ C2 ̸= ∅,

σ(C1 ∪ C2) ≥ min{σ(C1), σ(C2)}. (28)

Proof. See Appendix A.5.

Example 7. As an example for showing Lemma 1, consider Figure 1a as in Example 1, let
C1 := {1, 2} and C2 := {2, 3}, then C1 ∩ C2 ̸= ∅. By the calculation results in Example 2,

σ(C1 ∪ C2) = 0 ≥ min{σ(C1), σ(C2)},

Entropy 2024, 26, 268 8 of 25

i.e., (28) holds for C1 and C2.

Lemma 1 establishes that the strength of the union of any two overlapping non-empty
sets is lower bound by the smaller strength among the two sets, and this is the basis for
Theorem 2.

The family
⋃

α∈R
Cα(V) is said to be laminar and can be shown to contain at most |V| − 1

elements. More precisely, we will show that the family of communities, together with their
levels of strength, can be represented by the following dendrogram with σ, meaning the
cophenetic similarity.

Definition 3. The dendrogram for the set of communities is defined as follows:

(1) Every C ∈ ⋃
α∈R

Cα(V) is an internal node annotated with the value σ(C);

(2) Every singleton {i} for i ∈ V is a leaf node (annotated with the value +∞);
(3) The parent of each node B ⊊ V : B ̸= ∅ is defined as the minimum

parent(B) := min{C ∈ Cα(V)|B ⊊ C, α ∈ R}. (29)

As illustrated in Figure 2, the dendrogram forms a tree because each node (except the root
node V) has a unique parent node.

V

· · ·
· · · · · ·

C

· · ·
C′ ∈ Cα(C)

{i′} : i′ ∈ V \⋃ Cα(C)

σ(V)

σ(C)

strength

internal nodes
C ∈ ⋃

α∈R
Cα(V)

leaf nodes
{i} : i ∈ V

Figure 2. Dendrogram of the communities.

As a result of Theorem 2, the following corollary states that the parent of each strong
community except V exists and is unique.

Corollary 1. For every B ⊊ V : B ̸= ∅, the minimum element parent(B) exists.

Proof. See Appendix A.7.

Using the following result, we can show that the set of children for each node C ∈⋃
α∈R

Cα(V) is

Cσ(C)(C) ∪ {{i} | i ∈ V \
⋃

Cσ(C)(C)},

which is also illustrated in Figure 2.
Analogous to Corollary 1, a community B has a parent C in the dendrogram if and only

if B is in Cσ(C)(C), and the strength of B is larger than that of C, as stated in the following
corollary.

Corollary 2. For any nodes C ∈ ⋃
α∈R

Cα(V) of the dendrogram,

parent(B) = C ⇐⇒ B ∈ Cσ(C)(C), (30)

which implies σ(B) > σ(C).

Entropy 2024, 26, 268 9 of 25

Proof. See Appendix A.8.

Example 8. For Figure 1a as in Example 1, by the calculation results in Example 2, the dendrogram
that corresponds to

⋃
α∈R Cα(V) is shown in Figure 1d.

We defined the community strength in (6) by modeling the problem based on the
convex game in game theory, gave its alternative forms in (9) and (14), and showed that the
community strength and the solutions to the minimization of (14) are related to the first
turning point of the curve defined by (18) against the parameter α. We also showed that the
collection of strong communities defined in (10) form a hierarchy and can be represented
by a dendrogram. These motivate the methods for computing strong communities, as
described in the following section.

5. Computation of Strong Communities

In this section, we will show how to calculate the strong communities in Cα(V) at a
threshold α, and how to calculate all the strong communities.

The following result shows that Cα(V) can be calculated with a recursive procedure.

Theorem 3. For α ∈ R, Cα(V) can be calculated with the following recurrence relation

Cα(V) =

{
∅, if |V| ≤ 1,

(B∗
α(V) \ {{i}|i ∈ V}) ∪ Cα(U), otherwise,

(31)

(32)

where

U := V\
⋃

B∗
α(V), (33)

B∗
α(V) is defined in (20), and (31) is the base case.

Proof. See Appendix A.9.

Theorem 2 shows that Cα(V) can be computed in a divisive way. In the first recursive
step, V is the ground set, if |V| ≤ 1, we directly calculate Cα(V) = ∅ by the base case (31)
and stop the recursion; otherwise we calculate B∗

α(V), then B∗
α(V) \ {{i}|i ∈ V} is the set

of newly found strong subsets, and we enter the next recursive step. The new recursive
step is similar to the first recursive step, but we use U given in (33) as the ground set.

The following example shows how to run the recursive procedure in Theorem 3 for
computing Cα(V).

Example 9. Consider Figure 1a as in Example 1 and we calculate Cα(V) at α = 1
2 by following

Theorem 3.

(1) The first recursive step:

• |V| > 1, which corresponds to the case in (32).
• Then we need to compute B∗

α(V). By the calculation in Example 4, we know
B∗

α(V) = {{1, 2}}.
• By (32), the elements in B∗

α(V) \ {{i}|i ∈ V} = {{1, 2}} are in Cα(V), and comput-
ing Cα(U) will provide us the remaining strong subsets in Cα(V), where U is given
by (33). Here, U = {3}.

(2) The second recursive step:

• Regard U as the ground set and compute Cα(U) according to (31) and (32).
• Since |U| = 1, the base case (31) applies, which means Cα(U) = ∅, and the recursive

procedure ends.

According to the recursive steps, Cα(V) = {{1, 2}}.

Entropy 2024, 26, 268 10 of 25

Notice that in this example, there are two recursive steps in total. For some other examples
where the U obtained in the first recursive step has a cardinality larger than 1, i.e., the case (32)
applies, then the following recursive step will be similar to the first recursive step except that U
instead of V is regarded as the ground set.

Additionally, we use the B∗
α(V) from the calculation in Example 4, which employs a brute force

method enumerating all B ⊆ V : B ̸= ∅. We will discuss how to compute B∗
α(V) in polynomial

time later.

The following example illustrates why there are strong communities not in B∗
α(V) and

why the recursive procedure in Theorem 3 can identify those strong communities.

Example 10. Consider Figure 3a on V = {1, 2, 3, 4} with function g defined by (5) with γ = 1
and β = 1

2 . Then g(C) is the total weight of internal edges in C.
In the graph, C1 := {1, 2} and C2 := {3, 4} have relatively large total weights of internal

edges compared with other subsets of V hence they are meaningful communities that are expected to
be identified.

Let α = 2. B∗
α(V) in (20) contains the minimal non-empty subsets of V that leads to the

minimum value of fα(·) in (19).
C1 is identified by B∗

α(V) because fα(C1) achieves the minimum value among all the non-
empty subsets of V. However, the other meaningful community C2 is not in B∗

α(V) because C2 will
never be a subsets of V that leads to the minimum value of fα(·), as fα(C1) < fα(C2) always holds.
In other words, C1 dominates C2.

To identify C2, we remove the nodes that appeared in the communities in (32) from V, as
described in (33), and then start a new recursive step to identify strong communities within the
remaining nodes. Since the community C1 that dominated C2 in V was removed, C2 can now be
identified with B∗

α(·). In this way, the recursive procedure in Theorem 3 works to identify all the
strong communities in Cα(V).

1 2 3 4
4 1 3

(a)

{1} {2} {3} {4}

4
3
2
1

st
re

ng
th

(b)

{1} {2} {3} {4}

4
3
2
1

st
re

ng
th

(c)
Figure 3. A simple digraph and the dendrogram when g is defined by (46) with different β. (a) The
digraph; (b) The dendrogram when β = 1; (c) The dendrogram when β = 1

2 .

For the recurrence relation in Theorem 3 to be applicable, the recursive procedure in
Theorem 3 finishes with finite recursive steps. The following results imply that U in (31)
always has a smaller size than V.

Proposition 3. For α ∈ R and the set V with |V| ≥ 2,

|B∗
α(V)| ≥ 1. (34)

Proof. See Appendix A.10.

As a result of Proposition 3, the number of recursive steps in Theorem 3 needed is
bounded by |V|.

Proposition 4. For a non-empty set V, it takes at most |V| recursive steps to calculate Cα(V) by
Theorem 3.

Entropy 2024, 26, 268 11 of 25

Proof. See Appendix A.11.

The following property is the basis of Theorem 3, which ensures that the recursive
procedure in Theorem 3 does not leave out any strong communities in Cα(V) for a chosen α.

Proposition 5. For any B ∈ B∗
α(V) : |C| > 1, ∀C ⊆ V,

B ∩ C ̸= ∅ and C ̸⊆ B ⇒ σ(C) ≤ α, (35)

or the contrapositive

σ(C) > α ⇒ B ∩ C = ∅ or C ⊆ B. (36)

Proof. See Appendix A.12.

Equation (36) implies that any other strong subset with strength larger than α is either
disjoint with the elements in B∗

α(V), or is a subset of an element in B∗
α(V). This ensures

that when we continue the computation with U in (33) as the ground set after we obtained
the strong subset with strength larger than α in B∗

α(V) \ {{i}|i ∈ V}, the remaining strong
subsets will be captured by Cα(U).

To obtain Cα(V), calculating B∗
α(V) is a basic step that requires optimization of (18),

which can be done based on the method in [26] as described in the following.

5.1. Divide-and-Conquer

We rewrite the minimization of f̂α(V) in (18) in a similar way as that in [26]:

f̂α(V) = min
t∈V

f̂ (t)α (V), where (37)

f̂ (t)α (V) := min
B⊆V:
t∈B

fα(B), (38)

which is a two-step optimization problem, and denote B(t)
α (V) as the minimal optimal

solution set to (38).
Since f̂α defined in (18) is a submodular function, B(t)

α (V) can be solved with submod-
ular function minimization (SFM) algorithms, and it has a unique element since the feasible
domain {B ⊆ V|j ∈ B} is a lattice ([27] Proposition 10.1).

Let T∗
α (V) be the set of optimal solutions t to (37), we have the following result that

indicates how B∗
α(V) can be calculated.

Proposition 6 ([26] Proposition 2). For α ∈ R, B∗
α(V) in (20) can be obtained from B(t)

α (V),
t ∈ V and T∗

α (V) by

B∗
α(V) = minimal

⋃
t∈T∗

α (V)

B(t)
α (V). (39)

Proof. See Appendix A.13.

According to Theorem 3, computing Cα(V), all the strong subset with a strength larger
than α, can be done with the following steps:

(1) Calculate B(t)
α (V) for t ∈ V by optimizing (38) with SFM algorithms;

(2) Calculate T∗
α (V) by optimizing (38);

(3) Calculate B∗
α(V) according to (39);

(4) Calculate U by (33);
(5) M is the newly found strong subsets that have a strength larger than α in this recursive

step. If |U| ≤ 1, then stop; otherwise, regard U as V and go to (1) to start a new
recursive step.

Entropy 2024, 26, 268 12 of 25

The union of the set of strong subsets calculated in all the recursive steps is Cα(V).
To calculate all the strong subsets, i.e.,

⋃
α∈R Cα(V), for each t ∈ V, define

g(t)(A) := g(A ∪ {t})− g({t}) for A ⊆ (V \ {i}), (40)

then

B′ ⊆ (V \ {i}) 7→ α|B′| − g(t)(B′) (41)

is a normalized submodular function.
We need to obtain the minimal optimal solution to (41) for all α ∈ R. Luckily, with

SFM algorithms such as Wolfe’s minimum norm point algorithm [28], for (41), we can
obtain for some N′

t ∈ N the sequence of α
(t)
1 , α

(t)
2 , · · · , α

(t)
N′

t
and the corresponding sequence

of sets A(t)
1 , A(t)

2 , · · · , A(t)
N′

t
that satisfies ([27] Proposition 8.6)

−∞ = α
(t)
0 < α1 < α

(t)
2 < · · · < α

(t)
N′

t
< α

(t)
N′

t+1∞, (42)

A(t)
0 := V ⊋ A(t)

1 ⊋ A(t)
2 ⊋ · · · ⊋ A(t)

N′
t

:= ∅, (43)

and for any α ∈ [α
(t)
i , α

(t)
i+1), i ∈ {0, 1, · · · , N′

t},

A(t)
i is the minimal minimizer to (41). (44)

Equation (44) means with the sequences (42) and (43), we can obtain the minimum
solution to (41) for all α ∈ R.

For any α ∈ R, if A(t) is the unique minimal solution to (41), then B(t) = A(t) ∪ {i}
will be the unique minimal solution to (37), or in another word,

B(t)
α (V) = {B(t)}, (45)

since g(B′)− g(t)(B′) = g({t}) is a constant for all C ⊆ V \ {t}. This means the minimal
solution set B(t)

α (V) to (37) for all α ∈ R can be obtained from the solutions to (41) with
sequences (42) and (43).

Therefore, with sequences (42) and (44) for all t ∈ V, T∗
α (V) can be obtained for all

α ∈ R. Then calculating Cα(V) for all α ∈ ⋃
t∈V{a(t)0 , α1, · · · , α

(t)
N′

t+1} based on Theorem 3,

Proposition 6 and T∗
α (V) is sufficient for us to obtain

⋃
α∈R Cα(V).

With MNB(n) denoting the complexity of the minimum norm base algorithm for SFM
on the ground set of size n, we have the following result.

Proposition 7.
⋃

α∈R Cα(V) can be computed in O(|V|3 MNB(|V|)) time.

Proof. See Appendix A.14.

5.2. Using Max-Flow Min-Cut Algorithm

For the step of optimizing (38) in computing Cα(V), SFM algorithms are used. How-
ever, SFM algorithms are generally computationally expensive. There are works on im-
proving the efficiency of SFM problems by max-flow min-cut algorithms [29,30]. We
discuss a category of choices for g when the max-flow min-cut algorithm can be utilized for
computing Cα(V).

Consider the function g defined in the form of ([26] Difinition 2)

g(B) = β · w(B, B)− (1 − β) · w(V \ B, B), (46)

Entropy 2024, 26, 268 13 of 25

which is a special case of (5) with γ = 1.
Following the method in [26], we can construct an augmented digraph and run a

max-flow min-cut algorithm [31–34] to obtain the solution to (38). With α in (19) and β
in (46), the (α, β, t)-augmented digraph [26] is a digraph on {V} ∪ {s} where s ̸∈ V is an
additional node, with the edge weight wα,β,t : (V ∪ {i}) → R≥0 defined as

wαβt(i, j) :=

w(i, j), i ∈ V, j ∈ V\{t}
w(i, j) + βdi, i ∈ V, j = t
α, i = s, j ∈ V
0, otherwise.

(47)

Proposition 8 ([26] Theorem 3). The B(t)
α (V) contains a unique minimum set C such that

({s} ∪ V \ C, C) is a minimum s-t cut of the (α, β, t)-augmented digraph.

Proposition 8 implies that B(t)
α (V) can be solved by max-flow min-cut algorithm.

Moreover, with the parametric max-flow min-cut algorithms [34], we can obtain B(t)
α (V)

for all α ≥ 0. Hence, when g has the form of (46), computing Cα(V) for a certain α or all
α follows the same procedure in Section 5.1, except that we can use max-flow min-cut
algorithms to calculate B(t)

α (V) instead of SFM algorithms.

6. Discussions

To illustrate the dendrogram of strong communities found by our approach, the
digraph in Figure 3a is used as an example, with the function g given in (46) for different
choices of β for experiments.

The result for the cases β = 1 and β = 0.5 are shown in Figure 3b and Figure 3c,
respectively. The example of the calculation procedures based on Theorem 3 for the case
β = 1 is in Appendix A.15.

We can obtain the collection of strong communities Cα(V) in (10) for α from the
dendrogram. For instance, the strong communities for α = 5

2 is,

C 5
2
(V) = {{1, 2}, {3, 4}}.

The parameter β in (46) is a balancing factor between the total weight of internal edges
and the negative total weight of incoming edges, and when β = 1, it can be used for the
problem of finding the minimal densest subgraphs.

In [35], another kind of augmented graph is constructed, and an algorithm is given for
quickly increasing α value based on the current community that has already been found
and then conducting max-flow min-cut algorithms. We want to point out that, although the
method there is similar to solving Bα(V) in our work, the algorithm there for calculating
the next critical α, as the author also said, needs more calculation steps if we want to obtain
more solutions for intermediate α’s. In other words, not all critical α’s are found, while our
approach calculates all the critical α’s and the solutions directly. Additionally, our approach
goes beyond just finding Bα(V), and we considered digraphs, which can be generalized to
undirected graphs directly.

The work in [26] extends the notion of web communities [36] to digraphs and calculates
the communities in polynomial time, which is closely related to our approach. In fact,
B∗

α(V) \ {{i}|i ∈ V} is the set of web communities, which is included in the strong
communities defined in (10) in this work. For a set C ⊊ V : C ̸= ∅, subsets of V \ C can
prevent C from being a web community in [26], even if C has a strength larger than α.
Nevertheless, such a phenomenon does not exist for strong communities detected by our
approach. Whether C is a strong community in (10) or not is independent of subsets of
V \ C according to (10). In Example 10, C1 is a web community, and C2 is not, since C2 is
dominated by C1. However, C2 is a meaningful community that is expected to be identified.

Entropy 2024, 26, 268 14 of 25

The web community method fails to identify C2, while our approach can identify it as a
strong community, as we have calculated in the example.

Our approach also addresses some known issues associated with existing community
detection methods. For instance, Modularity [37], a common community detection method, is
NP-hard and suffers from the limitation of resolution limit [38]. There are works such as [39,40]
aiming at resolving the resolution limit issue, yet both rely on heuristics to obtain solutions. It
is worth mentioning that Modularity is a measure applied over partitions, while our strength
measure is on individual communities. In Figure 4, there are four complete graphs of two sizes,
m1 = 20 and m2 = 5. Despite the two complete graphs of size m2 being smaller than the other
two, they should be identified as communities since they are the maximal complete graphs.
However, Modularity fails to recognize the two smaller complete graphs, and instead, it merges
them into a single community [38]. In contrast, our approach successfully identifies the two
smaller complete graphs of size m2 as strong communities.

Km1 Km1

Km2

Km2

Figure 4. An unweighted graph with m1 = 20, m2 = 5 where Km denotes the complete graph with
m nodes [38]. As for the two smaller complete graphs denoted by Km2 , Modularity [37] will merge
the two into a single community as indicated by the blue dashed ellipse due to resolution limit [38],
while our approach can identify each of them as strong communities.

The strong communities are derived from game theory, where the strength can be in-
terpreted as the support inside the community that can be shared with a part of individuals
in need in the same community. Application in real-world problems is promising, such
as finding small groups of advertisers and keywords in sponsored auctions, where the
community strength means the average money inside the groups [35,41].

7. Conclusions

We introduced a novel concept of strength for community detection using a convex
game model in cooperative game theory. It can be applied to networks with a supermodular
characteristic function. Theorem 1 establishes the dual objective function, based on which
we conducted a comprehensive analysis of strong community properties. The laminar
structure demonstrated in Theorem 2 reveals that strong communities form a hierarchy
and can be represented by a dendrogram.

To compute strong subsets, Theorem 3 introduces a recurrence relation, enabling polyno-
mial time calculations through submodular function minimization. For specific characteristic
function choices in the convex game on the graphical model, an augmented digraph can be
constructed to apply the max-flow min-cut algorithm to improve computation efficiency.

Unlike many existing community detection methods, which often rely on approximation,
are non-deterministic, and lack guarantees on complexity, our approach for community
detection is deterministic, computable in polynomial time, and supported by a rigorous
theoretical analysis of its properties. Since our approach captures high-order statistics through
the supermodular characteristic function, the primary limitation of our approach lies in its
computational complexity. This complexity presents a challenge when applying the method
to large-scale real-world datasets. Nevertheless, our work proposes an analytical framework
for community detection that yields unique solutions and provides theoretical foundations
for future research aimed at improving the complexity and empirical applications.

Entropy 2024, 26, 268 15 of 25

Appendix A

Appendix A.1

We show the computation and visualization of Core(V, g) in Example 1.
According to (4),

Core(V, g) = {rV := (r1, r2, r3)|r1 + r2 + r3 = g(V) = 1, (A1)

r1 + r2 ≥ g({1, 2}) = 1, (A2)

r1 + r3 ≥ g({1, 3}) = 0, (A3)

r2 + r3 ≥ g({2, 3}) = 0, (A4)

r1, r2, r3 ≥ 0} (A5)

= {(r1, r2, r3)|r1 + r2 ≥ 1, r1 ≥ 0, r2 ≥ 0, r3 = 0}, (A6)

where r1, r2, r3 are the payoff allocated to players 1, 2 and 3, respectively.
Equation (A1) ensures that the payoff vector rV exactly splits the total worth of V, (A2)

ensures that the total payoff for {1, 2} is no less than the worth of {1, 2} so that players in {1, 2}
will not deviate from V. The interpretation for (A3)–(A5) is similar to (A2). The intersection
defined by (A1) through (A5) is the Core(V, g) which is visualized in Figure 1b, where

• (A1) is the region given by the plane containing (1, 0, 0), (0, 1, 0) and (0, 0, 1), as indi-
cated by green color;

• (A2) is the region that includes the plain and on the opposite side of the origin relative
to the plane, which contains (1, 0, 0) and (0, 1, 0) and parallel to r3 axis, as indicated
by red color;

• (A5) restricts each element of rV to be non-negative, which includes the region repre-
sented by (A3) and (A4); and

• the line segment in blue between (1, 0, 0) and (0, 1, 0) is Core(V, g).

Equation (A6) is the simplified algebraic form for Core(V, g).

Appendix A.2

Proof of Proposition 1. Given C ⊆ V : |C| > 1, for any B ⊊ C : B ̸= ∅ and payoff vector rC,

min
i∈B

ri ≤
r(B)
|B| . (A7)

Then, we show that the equality in (A7) holds. Suppose node j ∈ B is a solution to the
left-hand side of (A7), i.e.,

min
i∈B

ri = rj. (A8)

Let B = {j}, then the right-hand side of (A7) is

r(B)
|B| = rj. (A9)

Equations (A8) and (A9) imply that the equality in (A7) holds.
Since the equality in (A7) holds for B ⊊ C : B ̸= ∅ and payoff vector rC, then

min
B⊊C
B ̸=∅

max
rC∈Core(C,g)

min
i∈B

ri = min
B⊊C
B ̸=∅

max
rC∈Core(C,g)

r(B)
|B| , (A10)

which establishes (9) according to (6).

Entropy 2024, 26, 268 16 of 25

Appendix A.3

Proof of Theorem 1. For ∀B ⊊ C, B ̸= ∅, by the relationship between r(·) and g(·) when
rC ∈ Core(C, g), we have

r(B) = r(C)− r(C \ B) ≤ g(C)− g(C \ B),

where the equality is achieved when r(C \ B) = g(C \ B). Hence,

max
rC∈Core(C,g)

r(B)
|B| ≤ g(C)− g(C \ B)

|B| (A11)

Next, we will show that ∃rC ∈ Core(C, g) s.t. r(C \ B) = g(C \ B) so that the equality
is achieved in (A11).

To ease the notation, denote

T := C \ B. (A12)

With T, (A11) becomes

max
rC∈Core(C,g)

r(B)
|B| ≤ g(C)− g(T)

|C \ T| (A13)

For the convex subgame (T, g), the core of (T, g) is non-empty since the game is
convex [17,25]. Suppose rT ∈ Core(T, g), which means

r(T) = g(T), and (A14)

r(T′) ≥ g(T′), ∀T′ ⊆ T. (A15)

Then we show the steps to construct a vector rC from rT with rC ∈ Core(C, g).
Step 1: Select an i, with

i ∈ arg max
j:j∈C\T

g(T ∪ {j})− g({j}). (A16)

Step 2: Assign

ri = g(T ∪ {i})− g({i}), (A17)

and construct rT∪{i} by values from rT and ri.
For ∀T′ ⊆ T, by supermodularity of g,

g(T′ ∪ {i})− g(T′) ≤ g(T ∪ {i})− g(T). (A18)

Then,

r(T′ ∪ {i}) = r({i}) + r(T′) (A19)

= g(T ∪ {i})− g({i}) + r(T′) (A20)

≥ g(T ∪ {i})− g({i}) + g(T′) (A21)

≥ g(T′ ∪ {i}), (A22)

where (A19) is by (1), (A20) is by (A17), (A21) is by (A15), and (A22) is by (A18).
Equations (A22), (A14) and (A15) indicate that

rT∪{i} ∈ Core(T ∪ {i}, g). (A23)

Entropy 2024, 26, 268 17 of 25

Update T by T ∪ {i}, and continue the Step 1 and Step 2 above, and finally we will
have a constructed

rC ∈ Core(C, g), (A24)

with r(T) = g(T) preserved.
This means, for ∀B ⊊ C, B ̸= ∅, the formula (A11), or its equivalent formula (A13), can

achieve equality with the constructed rC obtained in (A24). Then (14) is implied considering (9).
Therefore, the minimization over the non-empty proper subset of C for the right-hand

side of (A13) will lead to a value equal to the minimization over the non-empty proper
subset of the left-hand side of (A13), which is the community strength for C defined in (9).
And based on the above proof, we know that if a non-empty set B∗ is a solution for the
minimization in (9), the set T∗ := C \ B∗ will be a solution for the minimization in (14).

Hence, Theorem 1 is established.

Appendix A.4

Proof of Proposition 2. We first show the second property in Proposition 2, which will
imply the first property.

Denote the sign of a number x by

sgn(x) :=

1, x > 0

−1, x < 0

0, x = 0.

(A25)

We have

sgn(σ(C)− α)

= sgn(min
B⊊C:
B=∅

g(C)− g(B)
|C \ B| − α) (A26a)

= sgn(min
B⊊C:
B=∅

g(C)− g(B)− α|C \ B|) (A26b)

= sgn(min
B⊊C:
B=∅

fα(B)− fα(C)), (A26c)

where

• (A26a) is by (14);
• (A26b) is because |C \ B| > 0 and B ̸= C and sgn(x) = sgn(ax) if a > 0;
• (A26c) is by the definition of fα in (19).

Note also that the sets of optimal solutions to the minimization/maximization in each
step are the same. Hence,

σ(C) < α ⇐⇒ sgn(σ(C)− α) < 0 (A27)

⇐⇒ sgn(min
B⊊C:
B=∅

fα(B)− fα(C)) < 0 (A28)

⇐⇒ min
B⊊C:
B=∅

fα(B) < fα(C) (A29)

⇐⇒ C ̸∈ Bα(C), (A30)

where

• (A27) is by (A25);
• (A28) is by (A26c);
• (A29) is by (A25);
• (A30) is by definition of Bα(C).

Entropy 2024, 26, 268 18 of 25

Equation (A30) implies (25).
Similarly, with the inequalities “<” replaced by “>”, and simply by definition of

Bα(C), we have

σ(C) > α ⇐⇒ min
B⊊C:
B=∅

fα(B) > fα(C)

⇐⇒ {C} = Bα(C),

which implies (24) and (27).
With the inequalities replaced by equalities, we have

σ(C) = α ⇐⇒ min
B⊊C:
B=∅

fα(B) = fα(C),

which implies (23) and (26). This completes the proof.

Appendix A.5

Proof of Lemma 1. Assume

σ(C1) ≥ σ(C2) = α (A31)

It suffices to show that σ(C1 ∪ C2) ≥ α, or equivalently, by (23) and (24),

fα(B) ≥ fα(C1 ∪ C2), ∀B ⊆ C1 ∪ C2 : B ̸= ∅. (A32)

Consider the case B ⊆ C1 first,

fα(B)
(a)
≥ fα(C1)

(b)
≥ fα(C1 ∪ C2)− fα(C1) + fα(C1 ∩ C2)︸ ︷︷ ︸

(c)
≥ 0

which implies (A32) as desired, where

• (a) and (c) are by (23) and (24), since both σ(C1) and σ(C2) are at least α by (A31);
• (b) is because fα is submodular due to the supermodularity of g and modularity of

the cardinality function.

Then consider the remaining case B ̸⊆ C1, i.e., B ⊆ C1 ∪ C2 and B ∩ C2 ̸= ∅,

fα(B)
(d)
≥ fα(B ∪ C2)− fα(C2) + fα(B ∩ C2)︸ ︷︷ ︸

(e)
≥ 0

(f)
≥ fα((B ∪ C2) ∪ C1)︸ ︷︷ ︸

g
=C1∪C2

− fα(C1) + fα((B ∪ C2) ∩ C1︸ ︷︷ ︸
(h)
≥ 0

,

which implies (A32) as desired, where

• (d) and (f) are by the submodularity of fα explained above;
• (h) is by (23) and (24) since (B∪C2)∩C1 ⊆ C1, (B∪C2)∩C1 ⊇ C1 ∩C2 and C1 ∩C2 ̸=

∅ by the assumption stated in the lemma;
• (g) is because B ⊆ C1 ∪ C2.

Entropy 2024, 26, 268 19 of 25

Appendix A.6

Proof of Theorem 2. Suppose on the contrary that C1 ̸⊇ C2 and C1 ∩ C2 ̸= ∅. By Lemma 1,

σ(C1 ∪ C2) ≥ σ(C1) > α1.

This contradicts C1 ∈ Cα1(V), in particular, the inclusion-wise maximality of C1, since
C1 ∪ C2 ⊋ C1, where the strict inclusion is because C1 ̸⊇ C2.

Appendix A.7

Proof of Corollary 1. Consider B ⊊ V : B ̸= ∅. An inclusion-wise minimal element in the
set in its parent p(B) exists since V is in the set. Suppose on the contrary that there can be
multiple minimal elements, say C1 ∈ Cα(V) and C2 ∈ Cα(V) with α1 ≤ α2 w.l.o.g.

By Theorem 2, since C1 ∩ C2 ⊇ B ̸= ∅, we have C2 ⊆ C1, contradicting the minimality
of C1 as desired. Hence, p(B) exists and is unique.

Appendix A.8

Proof of Corollary 2. To prove the “if” case, consider any B ∈ Cσ(C)(C), on one hand,
B ⊊ C; on the other hand, by definition of Cα(·) in (14), we have σ(B) > σ(C). Hence, C
satisfies the condition in (29). To show minimality, note that the maximality of B ∈ Cσ(C)(C)
according to the definition of Cα(·) in (14) indicates that

∀C′ ⊆ C : B ⊊ C′, σ(C′) ≤ σ(C).

Hence, p(B) = C.
Consider the reverse case, i.e., p(B) = C and any α′ ∈ R s.t. B ∈ Cα′(V). Then

σ(B) > α′ ≥ σ(C),

where the last inequality is by Theorem 2 because C ̸∈ Cα′(V) as C ⊋ B. To show B ∈
Cσ(C)(C), it suffices to show maximality of B in Cσ(C)(C), i.e.,

∀C′ ⊊ C : C′ ⊋ B, σ(C′) ≤ σ(C).

Suppose, on the contrary, that there exists

C′ ⊊ C : C′ ⊋ B, σ(C′) > σ(C).

Then, there must also exist

C′′ ∈ Cσ(C)(C) : C′′ ⊇ C′.

By Theorem 2, since C′′ ∩ C ⊇ B ̸= ∅, we must have C′′ ⊊ C, contradicting the
minimality of C by definition of parent in (29) as desired.

Hence, Corollary 2 is established.

Appendix A.9

Proof of Theorem 3. When |U| ≤ 1, we have Cα(U) = ∅ by the definition of Cα(·) in (10),
then (31) is implied by (32).

Then we prove the equality in (32) by showing that for |V| ≥ 2,

(B∗
α(V) \ {{i}|i ∈ V}) ⊆ Cα(V). (A33)

and

Cα(V) \ B∗
α(V) = Cα(U). (A34)

Entropy 2024, 26, 268 20 of 25

To show (A33), consider any B ∈ B∗
α(V) : |B| ≥ 2. By minimality of B in Bα(V),

fα(B) > min
T⊆B
T ̸=∅

fα(T),

which implies

σ(B) > α

by (23) and (24) since |B| > 1. Then by Proposition 5, B is maximal among

{B′ | B′ ⊆ V, σ(B′) > α}, (A35)

which means B ∈ Cα(V).
It remains to show (A34).
First, we show that any element of the left-hand side of (A34) is on the right-hand side

of (A34).
Consider any element C of the left-hand side of (A34), i.e.,

C ∈ Cα(V), and (A36)

C /∈ B∗
α(V). (A37)

Since C ∈ B∗
α(V), we have

σ(C) > α. (A38)

For any B ∈ B∗
α(V), we deduce that

C ̸⊆ B. (A39)

This is because,

• when |B| = 1, (A39) trivially, otherwise (A36) does not hold by (10).
• when |B| > 1,by (A33),

B ∈ Cα(V). (A40)

Then by (A37),

C ̸= B,

which further implies (A39) by the maximality of C ∈ Cα(V) according to (10).

By (A36), (A37), (A39) and Proposition 5,

B ∩ C = ∅.

Then

C ⊆ V \
⋃

B∗
α(V),

which is equivalent to C ⊆ U by definition of U, and hence by (A36),

C ∈ Cα(U). (A41)

Next, we show that any element of the left-hand side of (A34) is in the right-hand side
of (A34).

Entropy 2024, 26, 268 21 of 25

Consider any element C of the right-hand side of (A34), i.e.,

C ∈ Cα(U), (A42)

then by (10), we have

σ(C) > α. (A43)

For any

C′ ⊆ V : C′ ⊋ C, (A44)

we deduce that

σ(C′) ≤ α. (A45)

This is because

• when C′ ⊆ U, (A45) holds by the maximality of C in Cα(U) indicated by (10).
• when C′ ̸⊆ U,

∃B ∈ B∗
α(V) s.t. (A46a)

B ∩ C′ ̸= ∅ (A46b)

since the way U is defined in (33) means any elements not in U must appear in subsets
in B∗

α(V). Additionally,

C′ ̸⊆ B, (A47)

otherwise (A44) implies C ⊊ B, which further implies (A42) must not hold. According
to Proposition 5, (A46a), (A46b) and (A47) implies (A45) holds.

(A45) implies C is maximal among subsets in

{C′′|C′′ ⊆ V, σ(C′′) > α},

which further implies

C ∈ Cα(V). (A48)

According to (10), (A42) implies

C ⊆ U. (A49)

By (33), any element appeared in subsets in B∗
α(V) is not in U, then (A49) implies all

the elements in C is not in any subset in B∗
α(V). Hence

C ̸∈ B∗
α(V) (A50)

As a result, (A48) and (A50) implies

C ⊆ (Cα(V) \ B∗
α(V)).

Hence, (A34) is established.
The combination of (A33) and (A34) establish (32) in Theorem 3.
Hence, the equality in the recurrence relation holds.
By Proposition 4, the recursive procedure ends in finite steps. Hence, Theorem 3 is

valid for calculating Cα(V) recursively.

Entropy 2024, 26, 268 22 of 25

Appendix A.10

Proof of Proposition 3. When |V| ≥ 2, the feasible domain of (18) is non-empty, then its
solution set Bα(V) is non-empty, and hence B∗

α(V) is non-empty, i.e., (34) holds.

Appendix A.11

Proof of Proposition 4. When |V| = 1, it corresponds to the base case in (31), hence only
need 1 recursive step to calculate Cα(V).

When |V| ≥ 2, for N′ ∈ N, suppose Ui, U2, · · · , UN′−1 is the sequence of the ground
set for computing Cα(·) used in the recursive steps that corresponds to (32), and UN′ is the
ground set for computing Cα(·) by the base case (31). Then we know U1 = V, |UN′ | ∈ {0, 1}
and N′ is the number of recursive steps. Proposition 3 implies that |Ui+1| ≤ |Ui| − 1 for
i = 1, 2, · · · , N′ − 1. Hence N′ ≤ |V|.

Hence, Proposition 4 holds.

Appendix A.12

Proof of Proposition 5. Suppose on the contrary that there exists C ⊆ V s.t. σ(C) > α,
B ∩ C = ∅ and C ̸⊆ B. Consider an inclusion-wise maximal C. By Lemma 1 we have

σ(C ∪ B) ≥ min{σ(C), σ(B)}
> α,

and so, by maximality of C we have C ⊋ B. Then we have

fα(C)
(a)
< min

T⊊C:
T ̸=∅

fα(T)

(b)
≤ fα(B),

where (a) is by (23) and (24) in Proposition 2, and (b) is by C ⊋ B as obtained above with
the assumption. However, this contradicts the optimality of B ∈ B∗

α(V).

Appendix A.13

Proof of Proposition 6.

B∗
α(V)

(a)
= minimal

⋃
t∈T∗

α (V)

arg min
B⊆C:t∈B

fα(B) (A51)

(b)
= minimal

⋃
t∈T∗

α (V)

(
minimal arg min

B⊆C:t∈B
fα(B)

)
(A52)

(c)
= minimal

⋃
t∈T∗

α (V)

B(t)
α (V), (A53)

where (a) is by definition of B∗
α(V), (20) and (37); (b) is by the fact that for a t ∈ T∗

α (V) and
any A ∈ arg minB⊆C:t∈B fα(B), if A is not minimal, then A is not in the right-hand side due

to the outer minimal applied to the union; and (c) is by definition of B(t)
α (V).

Appendix A.14

Proof of Proposition 7. When |V| ≤ 1, the base case (31) applies, and it takes O(1) time.
When |V| ≥ 2, the recursive case (32) applies. Consider the recursive step with ground

set V in Theorem 3:

Entropy 2024, 26, 268 23 of 25

• For a t ∈ V, calculating B(t)
α (V) for all α ∈ R takes MNB(|V|) time by the min-

imum norm base algorithm, hence calculating B(t)
α (V) for all t ∈ V, α ∈ R takes

O(|V|2 MNB(|V|)) time;
• Calculating T∗

α (V) for an α ∈ R takes O(|V|) time, hence calculating T∗
α (V) for all

α ∈ R takes O(|V|3) time, since there can be a number O(|V|) of α values where we
need to conduct calculation;

Hence it takes O(|V|2 MNB(|V|)) time for this recursive step.
According to Proposition 4, the recursive procedure ends with at most |V| recursive

steps, hence it takes O(|V|3 MNB(|V|)) time to calculate
⋃

α∈R Cα(V).

Appendix A.15. Calculation of Strong Communities in Figure 3b

As an example, we show how to obtain the dendrogram in Figure 3b and then obtain
the strong communities below.

Following the recursive procedure in Theorem 3, to solve Cα(V), first seek to solve
B∗

α(V), then for each critical α value at turning point, solve for Cα(U) with similar procedure,
where U is the complement set of V given by (33). Hence, the procedure to calculate B∗

α(V)
is representative, which can be done according to Proposition 6.

When j = 1 is the sink node,

fα({1}) = α · |({1})| − g({1}) = α,

fα({1, 2}) = α · |({1, 2})| − g({1, 2}) = 2α − 4,

fα({1, 2, 3}) = 3α − 5,

fα({1, 2, 3, 4}) = 4α − 8,

and fα({1, 2, 4}), fα({1, 3}), fα({1, 3, 4}), fα({1, 4}) can be written out similarly and we
omit them here. Then drawing fα against α, the lowest curve formed is f̂ (1)α (V), and the
corresponding solution B(1)

α (V) can be obtained.

f̂ (1)α (V) =

4α − 8, α < 2,
2α − 4, 2 ≤ α < 4,
α, α ≥ 4,

and correspondingly,

B(1)
α (V) =

{{1, 2, 3, 4}}, α < 2,
{{1, 2}}, 2 ≤ α < 4,
{{1}}, α ≥ 4,

Then, for all j ∈ V, calculate f̂ (j)
α (V) and B(j)

α (V), and finally obtain T∗
α (V) and B∗

α(V).
The result is

T∗
α (V) =

{1, 2, 3, 4}, α < 2,
{1, 2}, 2 ≤ α < 4,
{1, 2, 3, 4}, α ≥ 4,

B∗
α(V) =

{{1, 2, 3, 4}}, α < 2,
{{1, 2}}, 2 ≤ α < 4,
{{1}, {2}, {3}, {4}}, α ≥ 4,

and

Entropy 2024, 26, 268 24 of 25

B∗
α(V) \ {{i}|i ∈ V} =

{{1, 2, 3, 4}}, α < 2,
{{1, 2}}, 2 ≤ α < 4,
∅, α ≥ 4,

When α < 2 or α ≥ 4, the U in (33) satisfies (31), hence the base case applies, no new
strong subset is found and the recursion finishes.

For 2 ≤ α < 4, we need to continue to calculate Cα(U) with U = {3, 4}. With a similar
calculation procedure, we can obtain for 2 ≤ α < 4,

B∗
α(U) =

{
{{3, 4}}, 2 ≤ α < 3,
{{3}, {4}}, 3 ≤ α < 4,

and

B∗
α(U) \ {{i}|i ∈ U} =

{
{{3, 4}}, 2 ≤ α < 3,
∅, 3 ≤ α < 4.

Then the remaining recursions to be done satisfy the base case in (31). Hence all the strong
communities are obtained. The dendrogram of the strong communities is shown in Figure 3b.

Author Contributions: Conceptualization, C.C.; Formal analysis, C.C.; Investigation, A.A.-B.; Project
administration, C.C.; Software, C.Z.; Supervision, C.C.; Visualization, C.Z.; Writing—original draft,
C.Z. and C.C.; Writing—review and editing, A.A.-B. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Flake, G.W.; Lawrence, S.; Giles, C.L. Efficient identification of web communities. In Proceedings of the 6th International

Conference on Knowledge Discovery and Data Mining (ACM SIGKDD 2000), Boston, MA, USA, 20–23 August 2000; Association
for Computing Machinery: New York, NY, USA 2000; Volume 2000, pp. 150–160.

2. Radicchi, F.; Castellano, C.; Cecconi, F.; Loreto, V.; Parisi, D. Defining and identifying communities in networks. Proc. Natl. Acad.
Sci. USA 2004, 101, 2658–2663. [CrossRef] [PubMed]

3. Newman, M.E. Fast algorithm for detecting community structure in networks. Phys. Rev. E 2004, 69, 066133. [CrossRef] [PubMed]
4. Javed, M.A.; Younis, M.S.; Latif, S.; Qadir, J.; Baig, A. Community detection in networks: A multidisciplinary review. J. Netw.

Comput. Appl. 2018, 108, 87–111. [CrossRef]
5. Chintalapudi, S.R.; Prasad, M.K. A survey on community detection algorithms in large scale real world networks. In Proceedings

of the 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India,
11–13 March 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1323–1327.

6. Cai, Q.; Ma, L.; Gong, M.; Tian, D. A survey on network community detection based on evolutionary computation. Int. J.
Bio-Inspired Comput. 2016, 8, 84–98. [CrossRef]

7. Pizzuti, C. Evolutionary computation for community detection in networks: A review. IEEE Trans. Evol. Comput. 2017, 22, 464–483.
[CrossRef]

8. Jonnalagadda, A.; Kuppusamy, L. A cooperative game framework for detecting overlapping communities in social networks.
Phys. A Stat. Mech. Appl. 2018, 491, 498–515. [CrossRef]

9. Su, X.; Xue, S.; Liu, F.; Wu, J.; Yang, J.; Zhou, C.; Hu, W.; Paris, C.; Nepal, S.; Jin, D.; et al. A Comprehensive Survey on Community
Detection with Deep Learning. arXiv 2021, arXiv:2105.12584.

10. Liu, F.; Xue, S.; Wu, J.; Zhou, C.; Hu, W.; Paris, C.; Nepal, S.; Yang, J.; Yu, P.S. Deep Learning for Community Detection: Progress,
Challenges and Opportunities. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI-20, Yokohama, Japan, 11–17 July 2020; pp. 4981–4987.

11. Athey, S.; Calvano, E.; Jha, S. A Theory of Community Formation and Social Hierarchy. SSRN Electron. J. 2016 1–53. [CrossRef]
12. Gilles, R.P. The Cooperative Game Theory of Networks and Hierarchies; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2010; Volume 44.

http://doi.org/10.1073/pnas.0400054101
http://www.ncbi.nlm.nih.gov/pubmed/14981240
http://dx.doi.org/10.1103/PhysRevE.69.066133
http://www.ncbi.nlm.nih.gov/pubmed/15244693
http://dx.doi.org/10.1016/j.jnca.2018.02.011
http://dx.doi.org/10.1504/IJBIC.2016.076329
http://dx.doi.org/10.1109/TEVC.2017.2737600
http://dx.doi.org/10.1016/j.physa.2017.08.111
http://dx.doi.org/10.2139/ssrn.2823777

Entropy 2024, 26, 268 25 of 25

13. Zhou, X.; Zhao, X.; Liu, Y.; Sun, G. A game theoretic algorithm to detect overlapping community structure in networks. Phys.
Lett. A 2018, 382, 872–879. [CrossRef]

14. Torkaman, A.; Badie, K.; Salajegheh, A.; Bokaei, M.H.; Ardestani, S.F.F. A Four-Stage Algorithm for Community Detection Based
on Label Propagation and Game Theory in Social Networks. AI 2023, 4, 255–269. [CrossRef]

15. Ferdowsi, F.; Aghababaei Samani, K. Detecting overlapping communities in complex networks using non-cooperative games.
Sci. Rep. 2022, 12, 11054. [CrossRef]

16. Morgenstern, O.; Von Neumann, J. Theory of Games and Economic Behavior; Princeton University Press: Princeton, NJ, USA, 1953.
17. Chalkiadakis, G.; Elkind, E.; Wooldridge, M. Computational Aspects of Cooperative Game Theory; Synthesis Lectures on Artificial

Intelligence and Machine Learning Series; Springer: Cham, Switzerland, 2011; 168p.
18. Myerson, R.B. Game Theory: Analysis of Conflict; Harvard University Press: Cambridge, MA, USA, 1997.
19. Jonnalagadda, A.; Kuppusamy, L. A survey on game theoretic models for community detection in social networks. Soc. Netw.

Anal. Min. 2016, 6, 83. [CrossRef]
20. Zhou, L.; Lü, K.; Cheng, C.; Chen, H. A game theory based approach for community detection in social networks. In Big Data,

Proceedings of the 29th British National Conference on Databases, Oxford, UK, 8–10 July 2013; Springer: Berlin/Heidelberg, Germany,
2013, pp. 268–281.

21. Zhou, L.; Lü, K.; Yang, P.; Wang, L.; Kong, B. An approach for overlapping and hierarchical community detection in social
networks based on coalition formation game theory. Expert Syst. Appl. 2015, 42, 9634–9646. [CrossRef]

22. Lu, Q.; Korniss, G.; Szymanski, B.K. The naming game in social networks: Community formation and consensus engineering. J.
Econ. Interact. Coord. 2009, 4, 221–235. [CrossRef]

23. Baronchelli, A. A gentle introduction to the minimal naming game. Belg. J. Linguist. 2016, 30, 171–192. [CrossRef]
24. Uzun, T.G.; Ribeiro, C.H.C. Detection of communities with Naming Game-based methods. PLoS ONE 2017, 12, e0182737.

[CrossRef] [PubMed]
25. Shapley, L.S. Cores of convex games. Int. J. Game Theory 1971, 1, 11–26. [CrossRef]
26. Chan, C.; Al-Bashabsheh, A.; Zhao, C. Finding Better Web Communities in Digraphs via Max-Flow Min-Cut. In Proceedings of

the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019; IEEE: Piscataway, NJ, USA,
2019; pp. 410–414.

27. Bach, F. Learning with submodular functions: A convex optimization perspective. Found. Trends® Mach. Learn. 2013, 6, 145–373.
[CrossRef]

28. Fujishige, S.; Isotani, S. A submodular function minimization algorithm based on the minimum-norm base. Pac. J. Optim. 2011, 7, 3–17.
29. Granot, F.; McCormick, S.T.; Queyranne, M.; Tardella, F. Structural and algorithmic properties for parametric minimum cuts.

Math. Program. 2012, 135, 337–367. [CrossRef]
30. Arora, C.; Banerjee, S.; Kalra, P.; Maheshwari, S. Generic cuts: An efficient algorithm for optimal inference in higher order

MRF-MAP. In Computer Vision—ECCV 2012, Proceedings of the 12th European Conference on Computer Vision, Florence, Italy, 7–13
October 2012; Part V 12; Springer: Berlin/Heidelberg, Germany, 2012; pp. 17–30.

31. Goldberg, A.V.; Hed, S.; Kaplan, H.; Tarjan, R.E.; Werneck, R.F. Maximum flows by incremental breadth-first search. In
Algorithms—ESA 2011, Proceedings of the 19th Annual European Symposium on Algorithms, Saarbrücken, Germany, 5–9 September 2011;
Springer: Berlin/Heidelberg, Germany, 2011; pp. 457–468.

32. Goldberg, A.V.; Hed, S.; Kaplan, H.; Kohli, P.; Tarjan, R.E.; Werneck, R.F. Faster and more dynamic maximum flow by incremental
breadth-first search. In Algorithms—ESA 2015, Proceedings of the 23th Annual European Symposium on Algorithms, Patras, Greece,
14–16 September 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 619–630.

33. Kolmogorov, V. A faster algorithm for computing the principal sequence of partitions of a graph. Algorithmica 2010, 56, 394–412.
[CrossRef]

34. Gallo, G.; Grigoriadis, M.D.; Tarjan, R.E. A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 1989,
18, 30–55. [CrossRef]

35. Lang, K.J.; Andersen, R. Finding dense and isolated submarkets in a sponsored search spending graph. In Proceedings of the
Sixteenth ACM Conference on Information and Knowledge Management, Lisbon, Portugal, 6–10 November 2007; pp. 613–622.

36. Flake, G.W.; Tarjan, R.E.; Tsioutsiouliklis, K. Graph clustering and minimum cut trees. Internet Math. 2004, 1, 385–408. [CrossRef]
37. Newman, M.E. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [CrossRef]
38. Fortunato, S.; Barthelemy, M. Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 2007, 104, 36–41. [CrossRef] [PubMed]
39. Chen, M.; Nguyen, T.; Szymanski, B.K. A new metric for quality of network community structure. arXiv 2015, arXiv:1507.04308.
40. Lu, X.; Kuzmin, K.; Chen, M.; Szymanski, B.K. Adaptive modularity maximization via edge weighting scheme. Inf. Sci. 2018,

424, 55–68. [CrossRef]
41. Auerbach, J.; Galenson, J.; Sundararajan, M. An empirical analysis of return on investment maximization in sponsored search

auctions. In Proceedings of the 2nd International Workshop on Data Mining and Audience Intelligence for Advertising, Las
Vegas, NV, USA, 24–27 August 2008; pp. 1–9.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.physleta.2018.01.036
http://dx.doi.org/10.3390/ai4010011
http://dx.doi.org/10.1038/s41598-022-15095-9
http://dx.doi.org/10.1007/s13278-016-0386-1
http://dx.doi.org/10.1016/j.eswa.2015.07.023
http://dx.doi.org/10.1007/s11403-009-0057-7
http://dx.doi.org/10.1075/bjl.30.08bar
http://dx.doi.org/10.1371/journal.pone.0182737
http://www.ncbi.nlm.nih.gov/pubmed/28797097
http://dx.doi.org/10.1007/BF01753431
http://dx.doi.org/10.1561/2200000039
http://dx.doi.org/10.1007/s10107-011-0463-1
http://dx.doi.org/10.1007/s00453-008-9177-z
http://dx.doi.org/10.1137/0218003
http://dx.doi.org/10.1080/15427951.2004.10129093
http://dx.doi.org/10.1073/pnas.0601602103
http://dx.doi.org/10.1073/pnas.0605965104
http://www.ncbi.nlm.nih.gov/pubmed/17190818
http://dx.doi.org/10.1016/j.ins.2017.09.063

	Introduction
	Cooperative Game
	Problem Formulation
	Main Results
	Characterization of Community Strength
	Representation of Strong Communities

	Computation of Strong Communities
	Divide-and-Conquer
	Using Max-Flow Min-Cut Algorithm

	Discussions
	Conclusions
	AppendixA
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	References

